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Abstract 

 
Some results that are true in classical groups are investigated 
in generalized groups and are shown to be either generally true 
in generalized groups in some special types of generalized 
groups. Also, it is shown that a Bol groupoid and a Bol 
quasigroup can be constructed using a non-abelian 
generalized group. 
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1.0 Introduction  
 

Generalized group is an algebraic structure which has a deep physical background in the unified gauge 
theory and has direct relation with isotopies. Mathematicians and Physicists have been trying to construct a 
suitable unified theory for twists theory, isotopies theory and so on. It was known that generalized groups 
are tools for constructions in unified geometric theory and electroweak theory. Electroweak theories are 
essentially structured on Minkowskian axioms and gravitational theories are constructed on Riemannian 
axioms. Actions to [4], generalized group is equivalent to the notion of completely simple semigroup. 

Some of the structures and properties of generalized groups have been studied by [1], [15], [16], [19], 
[20] and [22]. Smooth generalized groups were introduced in [3] and later on, [2] also presented smooth 
generalized subgroups while [17] and [18] considered the notion of topological groups. [21] were able to 
construct a Bol loop using a group with a non-abelian subgroup and recently, [6] gave a new construction 
of Bol loops for odd case. [14], [24] and [11] contain most of the results on classical groups while for more 
on loops their properties, readers should check [20, 5, 7, 8, 9, 12, 23]. The aim of this study is to investigate 
if some results that are true in classical group theory are also true in generalized groups and to find a way of 
constructing a Bol structure (i.e. Bol loop or Bol quasigroup or Bol groupoid) using a non-abelian 
generalized group. 

It is shown that in a generalized group G, (a-1)-1 = a for all a ∈G. In a normal generalized group G, it is 

shown that the anti-automorphic inverse property (ab)-1 = b 1− a 1−  for all a, b ∈G holds under a necessary 
condition. A necessary and sufficient condition for a generalized group (which obeys the cancellation law 
and in which e (a) = e (ab -1) if and only if ab-1 =a) to be idempotent is established. The basic theorem used 
in classical groups to define the subgroup of a group is shown to be true for generalized groups. The kernel 
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of any homomorphism (at a fixed point) mapping a generalized group to another generalized group is 
shown to be a normal subgroup. Furthermore, the homomorphism is found to be an injection if and only if 
its kernel is the set of the identity element at the fixed point. Given a generalized group G with a 
generalized subgroup H, it is shown that the factor set G/H is a  
generalized group. The direct product of two generalized group is shown to be a generalized group. 
Furthermore, necessary conditions for a generalized group G to be isomorphic to the direct product of any 
two abelian generalized subgroups is shown. It is shown that Bol groupoid can be constructed using a non-
abelian generalized group with an abelian generalized subgroups. It is also established that if the non-
abelian generalized group obeys the cancellation law, then a Bol quasigroup with a left identity element can 
be constructed. 
 
2.0   Preliminaries 
 
Definition 2.1 A generalized group G is non-empty set admitting a binary operation called 
multiplication subject to the set of rules given below. 
 

(i) (xy) z = x(yz) for all x,y,z  ∈G. 
(ii) For each x ∈G there exists a unique e (x) ∈  G such that xe (x) = e (x)x = x (existence and 

uniqueness of identity element). 

(iii) For each x ∈G, there exists x
1− ∈  G such that xx-1 = x-1x = e(x) (existence of inverse element). 

 
Definition 2.2 Let L be a non-empty set. Define a binary operation (.) on L. If x.y ∈  L for all x, y ∈ , 
(L,.) is called a groupoid. 
If the equations a.x = b and y.a = b have unique solutions relative to x and y respectively, then (L,.) is 
called a quasigroup. Furthermore, if there exist a element e ∈  L called the identity element such that for 
all x ∈  L, x . e = e . x = x, (L,. ) is called a loop. 
 
Define 2.3 A loop is called a Bol loop if and only if it obeys the identity 
((xy)z)y = x((yz) 
 
Remark 2.1 One of the most studied type of loop is the Bol loop. 
 
2.1 Properties of Generalized Groups 
A generalized group G exhibits the following properties: 

(i) for each x ∈  G, there exists a unique x-1 ∈  G. 
(ii)  e (e(x)) = e(x) and e(x-1) = e(x) where x ∈  G. Then, e (x) is a unique identity element of x ∈G. 

 
Definition 2.4 If e(xy) = e(x) e(y) for all x,y ∈  G, then G is called normal generalized group. 
 
Theorem 2.1 For each element x in a generalized group G, there exists a unique x-1 ∈G. 
The next theorem shows that an abelian generalized group is a group. 
 
Theorem 2.2 Let G be generalized group and xy = yx for all x,y ∈G. Then G is a group. 
 
Theorem 2.3 A non-empty subset H of a generalized group G is a generalized subgroup of G if and 

only if for all a,b ∈  H, ab 1−  ∈H. 
If G and H are two generalized groups and f : G → H is a mapping then by [19]   f  is a homomorphism if f 
(ab) = f (a) f(b) for all a,b ∈  G. 
They also stated the following results on homomorphisms of generalized groups. These results are 
established in this work. 
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Theorem 2.4 Let  f :G → H be a homomorphism where G and H are two distinct generalized groups. 
Then: 

(i) f (e(a)) = e(f(a)) is an identity element in H for all a ∈G. 

(ii)  f (a
1−

) = (f(a))-1. 
(iii)  If K is also generalized subgroup of G, then f (K) is a generalized subgroup of H. 
(iv) If G is a normal generalized group, then the set {(e(g), f(g))  : g ∈  G} 

                      with the product 
                                                 (e(a), f(a))(e(b), f(b)):=(e(ab), f(ab) 
                     is a generalized group denoted by Υ  f(G). 
 
3.0 Main Results  
 
3.1 Results on Generalized Groups and Homomorphisms 
 
Theorem 3.1 Let G be a generalized group. For all a ∈G, (a-1) -1 = a. 
Proof 

(a-1) -1 a -1 = e(a-1) = e(a). Post multiply by a, we obtain 
[(a-1) -1a-1] a = e(a)a.        (3.1) 
From the L.H.S., (a-1) -1 (a-1) = (a-1) -1e(a) = (a-1) -1e(a-1) = (a-1) -1e(a-1) -1)  

= (a
1−

)
1−

.         (3.2) 
Hence from (3.1) and (3.2), (a-1) -1 = a. 
 
Theorem 3.2 Let G be a generalized group in which the left cancellation law holds and e(a)b-1 = b-1 

if and only if ab-1 = a. G is a idempotent generalized group if and only if e(a)b-1 = b-1 e(a) ∀ a, b∈ G. 
 
Proof 

e(a) b-1 = b-1 e(a) ⇔ (ae(a) b-1 = ab-1 e(a) ⇔ ab
1−

=ab-1 e(a) ⇔ e(a) =e(ab -1) ⇔ ab-1 = a 
⇔ ab-1b = ab ⇔ ae (b) = ab ⇔  a-1 ae (b) = a -1 ab ⇔ e(a) e (b) = e(a) b ⇔ e(b) = b ⇔  b = 
bb. 

 
Theorem 3.3 Let G be a normal generalized group in which e (a)b-1 = b-1 e(a) ∀  a, b∈ G. Then, (ab)-1 = 
b-1a-1 ∀ a,b ∈ G. 
Proof 

Since (ab)-1 (ab) = e(ab), then by multiplying both sides of the equation on the right by  
b-1 a-1 we obtain 
[(ab) -1ab]b-1a-1 = e(ab)b-1 a-1       (3.3) 

So, [(ab)
1−

ab]b-1a-1 = (ab)
1−

a(bb
1−

) a-1 = (ab) -1a(e(b)a-1 = (ab) -1 (aa-1) e(b) =  
(ab) -1 (e(a)e(b)) = (ab) -1 e(ab) = (ab-1) e((ab) -1) = (ab) -1.    (3.4) 

Using (3.3) and (3.4), we obtain [(ab) -1 ab]b-1 a-1 = (ab)-1 ⇒ e(ab)(b-1a-1) = (ab) -1 ⇒ (ab) -1 =    b-1 

a-1. 
 
Theorem 3.4 Let H be a non-empty subset of a generalized group G. The following are equivalent. 

(i) H is a generalized subgroup of G. 

(ii) For a, b ∈ H, ab
1− ∈ H. 

(iii) For a,b ∈ H, ab ∈ H and for any a ∈ H, a
1− ∈ H. 
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Proof        (i)  ⇒  (ii) If H is a generalized subgroup of G and b ∈G, then b
1− ∈ H. So by closure 

property, ab -1 ∈    H ∀  a ∈ H. 
 

 

(ii) ⇒ (iii) If H ≠ φ  , and a, b ∈H, then we have bb
1−

 = e(b) ∈H, e(b)b
1−

 = b-1 ∈H ab = 

a(b
1−

) ∈ H i.e. ab
1−

 ∈ H. 

(iii) ⇒ (i) H ⊆ G so H is associative since G is associate. Obviously, for any a ∈H, a
1−

 ∈ H. 

Let a ∈ H, then a
1− ∈ H. So, aa

1−
= a

1−
a = e(a) ∈ H. Thus, H is a generalized subgroup of G. 

 
Theorem 3.5 Let a ∈G and f   : G →   H be an homomorphism. If ker f at a is denoted by 
Ker fa = {(x) = f(e(a))}. 

Then, 
(i) ker fa < G. 

(ii)  f  is a monomorphism if and only if ker fa = {e(a) : a ∀ ∈G.} 
Proof 

(i)  First it is necessary to show that ker fa ≤ G. 
              Let x,y ∈ ker fa ≤ G, then f(xy-1) = f(x) f(y-1) = f(e(a)) f(e(a)) -1 = f(e(a)) f(e(a) -1 )= f(e(a))     

f(e(a)) =   f(e(a). So, xy-1 ∈ ker fa. Thus, ker fa≤  G. To show that ker fa < G. Now to show 
that ker fa < G, let  y ∈ ker fa then by the definition of ker fa, f(xyx-1) = f(x) f(y) f(x-1) = 

f(e(a)) f(e(a))-1 = f(e(a)) f(e(a)) f(e(a)) ⇒ xyx -1 ker fa. So ker fa < G. 

(ii)  f   : G →  H.. Let ker fa = {e(a) : ∀ a  ∈ G} and f(x) = f(y), this implies that f(x) f(y)-1 

= f(y) f(y) -1 ⇒  f(xy-1) = e(f(y)) = f(e(y)) ⇒  xy-1 ker fy ⇒  xy -1 = e(y)   
   
and f(x) f(y)-1 = f(x) f (x)-1 ⇒  f(xy)-1 = e(f(x)) = f(e(x)) ⇒ xy-1 ∈ker fx ⇒  xy-1 = e(x). 

       
Using (5) and (6), xy-1 = e(y) = e(x) ⇔  x = y. So, f  is a monomorphism. 

Conversely, if f is a monomorphism, then f (y) = f(x) ⇒ y = x. Let k ∈ ker fa ∀ a ∈G. 

Then, f(k) = f(e(a)) ⇒ k = e(a). So, ker fa = {e(a): ∀ a ∈G.}. 
 
Theorem 3.6 Let G be a generalized group and H a generalized subgroup of G. The G/H is a 
generalized group called the quotient or factor generalized group of G by H. 
 
Proof           It is necessary to check axioms of generalized group on G/H 

Associativity Let a,b,c ∈G and aH, bH, cH ∈G/H. Then aH (bH.cH) = (aH.bH) cH, so 
associativity law holds. 
Identity if e(a) is the identity element for each a ∈ G, then e(a) H is the identity element of aH 
in G/H since e(a)H. aH = e(a) .aH = aH. E(a) = H. Therefore identity element exists and is 
unique for each elements aH in G/H. 
Inverse (aH)(a-1H) = (aa-1) H = e(a)H = (a-1a)H = (a-1H)(aH) shows that a-1 is the inverse of 
aH in G/H. 
So the axioms of generalized group are satisfied in G/H. 

 
Theorem 3.7 Let G and H be two generalized groups. The direct product of G and H denoted by 
G ×  H = {(g, h) : g ∈ G and h ∈ H} 
Is a generalized group under the binary operation  ο  such that  
(g1 h1) ο ( g2, h2) = (g1 g2 , h1 h2). 
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Proof This is achieved by investigating the axioms of generalized group for the pair (G ×  H, ο ). 
 
Theorem 3.8 Let G be a generalized group with two abelian generalized subgroups N and H of G 
such G = N H. If N ⊆ C O M (H) or H ⊆ C O M (N) where  C O M (N) and 
 C O M (H) represents the commutators of N and H respectively, then G ≅ N ×  H. 
 
 
Proof 
Let a ∈ G. Then a = nh for some n ∈ N and h ∈ H. Also, let a = n1h1 for some n1 ∈ N and h1 ∈ H. Then 
nh = n1h1 so that e(nh) = e(n1h1), therefore n = n1 and h = h1. So that a = nh is unique. 
Define f : G →  H by f(a) = (n,h) where a = nh. This functions is well defined in the previous paragraph 
which also shows that f is a one-one correspondence. It remains to check that f is a group homomorphism. 
Suppose that a = nh and b = n1h1, then ab = nhn1h1 and n1h= hn1 . Therefore, f(ab) = f(nhn1h1) = f(nn1hh1) = 
(nn1, hh1) = (n,h) (n1, h1) = f(a) f(b). So, f is a group homomorphism. Hence a group isomorphism since it is 
a bijection. 
 
3.2 Construction of Bol Algebraic Structures  
Theorem 3.9 Let H be a subgroup of a non-abelian generalized group G and let A = H × G. 
For (h1, g1), (h2, g2) ∈ A, define 

(h1, g1 ) ο (h2, g2) = (h1  h 2 ,h2 g1h2
-1g2). Then (A, ο ) is a Bol groupoid. 

 

Proof 
Let x,y,z ∈ A. By checking, it is true that x ο (yο

 z) ≠  (xο
 y)ο z. So, (A, ο ) is non-associative. H is 

quasigroup and a loops (groups are Quasigroups and loops) but G is neither a quasigroup nor a loop 
(generalized groups are neither quasigroups nor loops) so A is neither a quasigroup nor a loop but is a 
groupoid because H and G are groupoids. 
 
The Bol identity  
((x 0 y) 0 z) 0 y = x 0 (y 0 z) 0  y) 
Is now verified 
L.H.S. = ((x 0 y) 0 z) 0 y = (h1h2h3h2, h2h3h2g1h2

-1g2h3
-1g3h2

-1g2). 
R.H.S. = x 0 ((y 0 z) = (h1h2h3h2, h2h3h2g1h2

-1(h3
-1h2

-1h2h3)g2h3
-1g3h2

-1g2) 
 = (h1h2h3h2, h2h3h2g1h2

-1g2h3
-1g3h2

-1g2). 
So, L.H.S. = R. H.S. Hence, (A, 0) is a Bol groupoid. 
 
Corollary 3.1. Let H be a abelian generalized subgroup of a non-abelian generalized group G and let A 
= H ×  G. For (h1, g1), (h2, g2) ∈ A, define 
(h1, g1) 0  (h2, g2) = (h1h2,h2 g1h2

-1 g2) 
Then (A, 0)is a Bol groupoid. 
 
Proof 
By Theorem 2.2, an abelian generalized group is a group, so H is a group. The rest of the claim follows 
Theorem 3.9. 
 
Corollary 3.2 Let H be a subgroup of a non-abelian generalized group G such that G has the cancellation 
law and let A = H × G. For (h1, g1 ), (h2, g2) ∈ A, define 
(h1, g1) 0  (h2, g2) = (h1h2,h2g1h2

-1 g2) 
Then (A, 0) is a Bol quasigroup with a left identity element. 
 
Proof 
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The proof of this goes in line with Theorem 3.9. A groupoid which has the cancellation law is a quasigroup, 
so G is quasigroup hence A is a quasigroup. Thus, (A, 0) is a Bol qausigroup with a left identity element 
since by Kunen [13], every quasigroup satisfying the right Bol identity has a left identity. 
 

 
 

 

Corollary 3.3 Let H be a abelian generalized subgroup of a non-abelian generalized group G such that 
G has the cancellation law and let A = H ×  G. For  

(h1, g1) 0  (h2, g2) = (h1h2,h2 g1h2
-1 g2) 

then (A, 0) is a Bol quasigroup with a left identity element. 
 
Proof 
By Theorem 2.2, an abelian generalized group is a group, so H is a group. The rest of the claim follows 
from Theorem 3.2 
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