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Abstract 

 
The present work determines the integral form solution 
derived from the transformation of Heun’s equation to 
hypergeometric equation by rational substitution. 
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1.0 Introduction 
 
 Polynomial transformations from some properties of hypergeometric equation 
 
Considering Hn (a, q, �, β, , , , x) as the analytic solution of GHE equation[2]  around x = 0 and 
normalized by  Hn (0) =1, we seek to answer  the following questions 

(i) When is Hn (x) reducible to  some hypergeometric equation 2F1? 
(ii)  When is DHn (x) again a Hn (x) for a good choice of parameters? 

Maier [4] in 2005 solved the problem (i) in full generality from the following theorem, enlarging the work 
of  Kuiken[1] 
Theorem1.1 if the Heun’s equation parameter value (a,q,, , , ,) are such that the  equation is non 

trivial (q  0 or ), and  all four of  t = 0,1, a,∞   are singular points, then there are only seven 
non composite no  prefatory Heun- to-hypergeometric  transformations, up to isomorphism. These seven 
transformations involve polynomial maps of degree 2,4,3,4,5,6 respectively. A representative list gives 

(1)         Hn (2,  2F1 (  ).         

 (1.1) 
 
(2) Hn (4, 2F1 ( )).     

 (1.2) 
 
(3) Hn (2,   2F1 .  

 (1.3)  
  

(4) Hn ( ) = 2F1  
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(5)         Hn = 

                                      2F1 .    

 (1.4)  
 
 

(6) Hn = 

              2F1            

 (1.5)  
           

 (7)       );  

  2F1  

Main Results 
 
2.0 Integral solutions 
 

In this section we shall apply the relations above in deriving the integral form of solution via 
these polynomial transformations. Let be ∫c a integral operator defined over a compact interval C. 

Since (a)n-1 =   we have ∫c 2F1  2F1 

   and through a push and pull- back processes we the following 

possible solutions; 
 

 ∫c 2F1 2F1(          

(2.1)  
 
 and the pull back operator gives 
 

(1)      ∫c  

   

   
   
 The other six transformations work in the same way: 
 

 (2)        ∫c  
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 (3)     ∫c  

 
                                     

(2.3) 
  

 
 

(4) ∫c  ( )dt 

   

   

                                            (2.4) 

 (5) 

   ∫c  

   

     

 
                                                             (2.5) 

 (6)  

  ∫c    =  

                      

          + 

                     x 
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 (7)  Putting i /6, we obtain  

  ∫c    = 

   

   

            (2.6) 
 

Equivalent results for the transformation involving polynomial map of degree 2 proposed in 
[1] has been obtained in the same way as above. 
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