# Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), pp 391-394 <br> © J. of NAMP 

Integral Solutions To Heun's Differential Equation via Some Rational<br>Polynomial of Degree 2, 3,4,5,6 Transformation<br>A. Anjorin<br>Department of Mathematics Lagos State University (LASU)<br>P.M.B 1089 Apapa Lagos Nigeria<br>Corresponding authors e-mail: anjomaths@yahoo.com Tel. +2348025818386

## Abstract

The present work determines the integral form solution derived from the transformation of Heun's equation to hypergeometric equation by rational substitution.

AMS Subject classification: 33CXX
Key words: Hypergeometric Functions, Heun's Functions Polynomial transform.

### 1.0 Introduction

Polynomial transformations from some properties of hypergeometric equation
Considering Hn $(a, q, \alpha, \beta, \gamma, \delta, \varepsilon, x)$ as the analytic solution of GHE equation[2] around $x=0$ and normalized by $\mathrm{H}_{\mathrm{n}}(0)=1$, we seek to answer the following questions
(i) When is $\mathrm{Hn}(x)$ reducible to some hypergeometric equation ${ }_{2} \mathrm{~F}_{1}$ ?
(ii) When is $\mathrm{DH}_{\mathrm{n}}(x)$ again a $\mathrm{H}_{\mathrm{n}}(x)$ for a good choice of parameters?

Maier [4] in 2005 solved the problem (i) in full generality from the following theorem, enlarging the work of Kuiken[1]
Theorem1.1 if the Heun's equation parameter value (a,q, $\alpha, \bar{\beta}, \gamma, \bar{\delta}$, are such that the equation is non trivial $(q \neq 0$ or $\alpha \beta \neq 0)$, and all four of $t=0,1, a, \infty$ are singular points, then there are only seven non composite no prefatory Heun- to-hypergeometric transformations, up to isomorphism. These seven transformations involve polynomial maps of degree 2,4,3,4,5,6 respectively. A representative list gives

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(2, \alpha \beta, \alpha, \beta, \gamma, \alpha+\beta-2 \gamma+1, t)={ }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{2}, \frac{\beta}{2} ; \gamma, 1-(1-t)^{2}\right) \tag{1}
\end{equation*}
$$

$\mathrm{H}_{\mathrm{n}}\left(4, \alpha \beta ; \alpha, \beta ; \frac{1}{2}, \frac{2(\alpha+\beta)}{2} ; t\right)={ }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{3}, \frac{\beta}{3} ; \frac{1}{2} ; 1-(1-t)^{2}\left(1-\frac{t}{4}\right)\right)$.
$\mathrm{H}_{\mathrm{n}}\left(2, \alpha \beta ; \alpha, \beta \frac{\alpha+\beta+2}{4}, \frac{\alpha+\beta}{2}, t={ }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{4}, \frac{\beta}{4}, \frac{\alpha+\beta 2}{4}, 1-4\left[t(2-t)=\frac{1}{2}\right]^{2}\right)\right.$.

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}, \alpha \beta\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right), \alpha, \beta, \frac{(\alpha+\beta+1}{3} ; \frac{\alpha+\beta+1}{3}, t\right)={ }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{3}, \frac{\beta}{3} ; \frac{\alpha+\beta+1}{3}, 1-\left[1-\frac{z}{\frac{1}{2}+\frac{\sqrt{3}}{4}}\right]^{3}\right) \tag{1.3}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{H}_{\mathrm{n}}\left(\frac{1}{2}+i \frac{5 \sqrt{2}}{4}, \alpha\left(\frac{1}{2}-\alpha\right)\left(\frac{1}{2}+i \frac{\sqrt{2}}{4}\right) ; \alpha_{,}, \frac{1}{3}-\alpha, \frac{1}{2} ; t\right)=  \tag{5}\\
& { }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{4}, \frac{2-3 \alpha}{12} ; \frac{1}{2} ; 1-\left(1-\frac{4 t}{2+i \sqrt{2}}\right)^{3}\left(1-\frac{4 \varepsilon}{2+5 i \sqrt{2}}\right)\right) . \tag{1.4}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{H}_{\mathrm{n}}\left(\frac{1}{2}+i \frac{11 \sqrt{15}}{90}, \alpha\left(\frac{5}{6}-\alpha\right)\left(\frac{1}{2}+i \frac{\sqrt{15}}{18}\right) ; \alpha \frac{5}{6}-\alpha, \frac{2}{3} ; \frac{2}{3} ; t\right)=  \tag{6}\\
& { }_{2} \mathrm{~F}_{1}\left(\frac{\alpha}{5}, \frac{5-6 \alpha}{30} ; \frac{2}{3} ;-\frac{2025}{64} i \sqrt{15} t\left(\frac{18 t-9-i \sqrt{15}}{18}\right)^{3}\right) \tag{1.5}
\end{align*}
$$

$$
\begin{align*}
& H_{n}\left(\frac{1}{2} \pm i \frac{\sqrt{3}}{2}, \alpha(1-\alpha)\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right) ; \alpha ; 1-\alpha, \frac{2}{3}, \frac{2}{3} ; t\right)= \tag{7}
\end{align*}
$$

## Main Results

### 2.0 Integral solutions

In this section we shall apply the relations above in deriving the integral form of solution via these polynomial transformations. Let be $\int_{\mathrm{c}}$ a integral operator defined over a compact interval $C$. Since $(a)_{n-1}=\frac{(a-1) n}{a-1}, \quad$ we have $\int_{c} \quad{ }_{2} \mathrm{~F}_{1} \quad a, b ; c ; z=R(t)=\frac{c-1}{(a-1)(b-1} \quad{ }_{2} \mathrm{~F}_{1}$ $(a-1, b-1 ; c-1 ; z=R(t) \mid c$ and through a push and pull- back processes we the following possible solutions;

$$
\begin{equation*}
\int_{c} \quad{ }_{2} \mathrm{~F}_{1} \quad\left(\frac{\alpha}{2}, \frac{\beta}{2} ; \gamma ; 1-(1-t)^{2}\right) d t=\frac{4 t(y-1)}{3(\alpha-2)(\beta-2}\left[1+\frac{t}{2 t-t^{2}}\right] \mathrm{F}_{1}\left(\frac{\alpha-2}{2}, \frac{\beta-2}{2} ; \gamma ; 2 t-t^{2}\right) c_{c} \tag{2.1}
\end{equation*}
$$

and the pull back operator gives

$$
\begin{align*}
& \int_{c} H n(2, \alpha \beta ; \alpha, \beta, \gamma, \alpha+\beta-2 \gamma+1 ; t) d t=\frac{4 v(\gamma-1}{3(\alpha-2)(\beta-2)}\left[1+\frac{t}{2 z-z^{2}}\right]  \tag{1}\\
& x H n(2,(\beta-2)(\alpha-2) / 2 ; \alpha-2, \beta-2, \gamma+1, \alpha+\beta-2 \gamma-1 ; t) \mid c
\end{align*}
$$

The other six transformations work in the same way:

$$
\begin{align*}
\int_{\mathrm{c}} H_{n}(4, \alpha \beta ; \alpha, \beta & \left.\frac{1}{2}, \frac{2(\alpha+\beta)}{3} ; t\right) d t=  \tag{2}\\
& \frac{t}{4}\left[1+\frac{2 t^{2}+\frac{5}{2}}{\left.4(1-(1-t))^{2}\left(1-\frac{5}{4}\right)\right)}\right\rfloor \frac{1}{(\alpha-3)(\beta-3)}
\end{align*}
$$

$\left.x H n\left(4,(\alpha-3)(\beta-3) ; \alpha-3, \beta-3, \frac{1}{2} ; \frac{2}{3}(\alpha+\beta-6) ; t\right) \right\rvert\, c$

> (3) $\int_{c} H n\left(2, \alpha \beta ; \alpha, \beta, \frac{\alpha+\beta+2}{4}, \frac{(\alpha+\beta)}{2}, t\right) d t$
> $=\frac{64(\alpha+\beta-2)}{(\alpha-4)(\beta-4)^{2}} x \frac{t}{15}\left[1+\frac{52 t-80 t^{2}+56 t^{2}-8 t^{2}}{1-4\left(t(2-t)-\frac{1}{2}\right)^{2}}\right]$
> $\left.\quad \times H_{n}\left(2,(\alpha-4)(\beta-4), \alpha-4, \beta-4, \frac{\alpha+\beta-6}{4}, \frac{(\alpha-8)}{2}, t\right) \right\rvert\, c$
(4) $\int_{c} H_{n}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}, \alpha \beta\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right), \alpha, \beta, \frac{(\alpha+\beta+1}{3} ; \frac{\alpha+\beta+1}{3} ; t\right) \mathrm{dt}$

$$
\begin{align*}
& =3 \frac{(\beta+\alpha-2}{4(\alpha-3)(\beta-3)} \frac{z}{8}\left[1+\frac{t^{3}+9 t\left(\frac{2}{2}+i \frac{\sqrt[3]{4}}{6}\right)^{2}+2 t^{2}\left(\frac{\frac{2}{2}}{2}+i \frac{\sqrt{2}}{6}\right.}{\left.\left(\frac{2}{2}+i \frac{\sqrt{3}}{6}\right)^{2}\left(1-\left(1-\frac{t}{\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right.}\right)^{3}\right)\right)}\right] \\
& x H_{n}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2},(\beta-3)(\alpha-3)\left(\frac{1}{2}+i \frac{\sqrt{3}}{6} ;\right.\right. \\
& \left.\alpha-3, \beta-3, \frac{\alpha+\beta-5}{3}, \frac{\alpha+b-5}{3} ; t\right) \mid c \tag{2.4}
\end{align*}
$$

(5)

$$
\begin{gather*}
\int_{c} H_{n}\left(\frac{1}{2}+i \frac{5 \sqrt{2}}{4}, a\left(\frac{2}{3}-\alpha\right)\left(\frac{1}{2}+i \frac{\sqrt{2}}{4}\right) ; \alpha_{x} \frac{2}{3}-\alpha_{,} \frac{1}{2}, \frac{1}{2}, t\right) d t \\
=\frac{12}{(\alpha-4)(10+3 \alpha)} \\
x \frac{t}{20}\left[1+27\left(\frac{4 t}{2+i \sqrt{2}}+9 \frac{4 t}{2+5 i \sqrt{2}}\right) t-17\left(\left(\frac{4 t}{2+i \sqrt{2}}\right)^{2}+\left(\frac{4 t}{2+i \sqrt{2}}\right) \frac{4 t}{2+5 i \sqrt{2}}\right) t^{2}\right] \\
x H n\left(\frac{1}{2}+i \frac{5 \sqrt{2}}{4},(\alpha-4)\left(\frac{14}{2}-\alpha\right)\left(\frac{1}{2}+i \frac{\sqrt{2}}{4} ;\right.\right. \\
\left.\alpha-4, \frac{14}{3}-\alpha, \frac{1}{2}, \frac{1}{2} ; t\right) \mid c \tag{2.5}
\end{gather*}
$$

(6)

$$
\begin{aligned}
& \quad \int_{\mathrm{c}} H_{n}\left(\frac{1}{2}+i \frac{11 \sqrt{15}}{90}, \alpha\left(\frac{5}{6}-\alpha\right)\left(\frac{1}{2}+i \frac{\sqrt{15}}{18}\right) ; \alpha, \frac{5}{6}-\alpha, \frac{2}{3}, \frac{2}{3} ; t\right) d t= \\
& \left.\frac{(18 t-9-i \sqrt{15}}{18}\right) 4 \\
& \left(\left(t^{2}-t\right)+1 / 360(18 t-9-i \sqrt{15})-t / 180(18 t-9-i \sqrt{15}+\right. \\
& 1 / 60((18 t-9-i \sqrt{15}) / 18)^{2} \mathrm{x} \\
& H_{n}\left(\frac{1}{2}+i \frac{11 \sqrt{15}}{90},(\alpha-5)\left(\frac{35}{6}-\alpha\right)\left(\frac{1}{2}+i \frac{i \sqrt{15}}{18}\right) ;\right. \\
& \left.\alpha-5, \frac{35}{6}-\alpha, \frac{2}{3}, \frac{2}{3} ; t\right) \mid c
\end{aligned}
$$

$$
\begin{equation*}
\text { Putting } r=1 / 2 \pm \mathrm{i} \sqrt{3} / 6 \text {, we obtain } \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \int_{c} H_{n}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}, \alpha(1-\alpha)(1-\alpha)\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right) ; \alpha, 1-\alpha, \frac{2}{3}, \frac{2}{3} ; t\right) d t= \\
& \frac{-12\left(-\frac{t^{6}}{2 r^{2} q^{2}}+r^{5} t^{3}-12 r^{4} z^{3}+19 r^{3} \varepsilon^{4}-16 r^{2} z^{3}+6 r z^{2}\right.}{(\alpha-6)(12-\alpha)} \\
& H x\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}, \left.(\alpha-6)\left(7-\alpha\left(\frac{1}{2}+i \frac{\sqrt{3}}{6}\right) ; \alpha-6,7-\alpha, \frac{2}{3}, \frac{2}{3} ; t\right) \right\rvert\, c\right. \tag{2.6}
\end{align*}
$$

Equivalent results for the transformation involving polynomial map of degree 2 proposed in [1] has been obtained in the same way as above.

## References

[1] K. Kuiken, Heun's equations and the Hypergeometric equations, S.I.A.M. J. math. Anal. 103(3), 655-657 (1979).
[2] A. Ronveaux, Heun Differential equation (Oxford University press, Oxford, 1995).
[3] A.Ambramowiz, Dover, (1965).
[4] R.S Maier, Heun-to-hypergeometric transformations, contribution to the conference of Foundations of Computation Mathematics 02(2002);down-loadeable from http://www/math.edu/-focm/c-/Maier.pdf.

