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Abstract 

 
Incident radiation in its journey through the atmosphere before 
reaching the earth surface encounters particles of different sizes and 
composition such as dust aerosols resulting in interactions that lead to 
absorption and scattering. The Radiative Transfer Equation (RTE) is 
one of the methods of analysis of how these interactions occur in the 
atmosphere. This paper explores the Radiative Transfer Equation and 
shows how it is used to describe the scattered radiative field at points in 
the atmosphere.  A RTE model has been adapted for a dust aerosol 
layer and results of computations of dust aerosol reflectivity of down-
welling radiation in a plane-parallel atmosphere for various incident 
angles using: Chandrashekhar Isotropic Scattering (CIS) model is 
presented. 
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1.0 Introduction 

Radiative transfer refers to the physical phenomena of energy transfer in the form of electromagnetic 
radiation. The propagation of electromagnetic waves through the atmosphere is affected by absorption, 
emission and scattering processes. The equation of radiative transfer describes these interactions 
mathematically. Equations of radiative transfer have application in wide variety of subjects including 
optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the Radiative Transfer 
Equation (RTE) exist for simple cases but for more realistic media with complex multiple scattering effects 
numerical methods are often used.  
 
 Dust Aerosol and Interaction with Incident Radiation  
 

Dust aerosols result from natural sources such as volcanic activities and dust storms. Anthropogenic 
sources include land use and agricultural activities. They are dominant in the lower atmosphere and have 
sizes ranging from 0.1 to 10 microns with lifetimes averaging two weeks [1]. Dust aerosols have a direct 
solar effect by scattering and absorbing solar radiation and a direct terrestrial effect where large-sized dust 
aerosols behave like greenhouse gases. Dust aerosols also have an indirect effect by altering cloud 
properties; changing their reflectivity, droplet size and lifetime. They also affect precipitation efficiency 
[2]. 
 
 The Radiative Transfer Equation (RTE) 
 

The Radiative Transfer Equation simply states that as a beam of radiation or electromagnetic waves 
travels, it looses energy to the atmosphere by absorption and gains energy by atmospheric emission, and 
redistributes energy by scattering. Solution of the Radiative Transfer Equations therefore enables one to 
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describe the radiative field at each point in the atmosphere [3]. However, due to the complexity of the 
radiation mentioned earlier, the solution is not so straightforward and certain assumptions have to be made 
to arrive at the required solution. 
 

      
   

 

2.0     Radiative Transfer without Absorption and Scattering 

If a radiation propagates without absorption and scattering, conservation laws require that energy and 
power are conserved. Since in a homogeneous medium (free space) rays propagate along straight lines, then 
if ds is an  
infinitesimal path length along the propagating ray path, one can write: 

   0
dI

ds
λ =        

 (2.1) 
This is the RTE for free space propagation. It is independent of position and valid for all ray directions. 

If it is however assumed that the medium is slightly inhomogeneous but still scattering and absorption is 
not present (this is possible if the gradient of the real part of the refractive index of the propagating ray is 
very small and if the imaginary part is negligible) i.e.: 

   
0

n k

n

′∇ <<
′′ =

       

 (2.2) 
In such a case, the rays will follow the rules of Geometric Optics (Snell’s Law, Fermat’s Principle etc) [4]. 
The RTE remains as for free space. 
 
 Radiative Transfer with Absorption 
 

If the medium were absorbing, then there will be power loss by absorption and by employing 
Kirchhoff’s Law that the absorptivity of any quantity of matter in Local Thermodynamic Equilibrium is 
equal to the emissivity of the matter, one would expect a corresponding emissivity term. The change in 
intensity would then be: 

   abs emitdI dI dIλ = +       

 (2.3) 
The depletion due to absorption would be: 

   ( )abs absdI K B T ds= −       

 (2.4) 
Where: B(T) is Planck’s function. The RTE for the absorbing medium will then be: 

   ( )abs

dI
K B I

ds
λ = −       

 (2.5) 
This equation is known as Schwarzchild’s Equation and is the most fundamental description of radiative 
transfer in a non-scattering medium [5]. 
 
 Radiative Transfer with Absorption and Scattering 
 
The equation of transfer with scattering and absorption recognizes that depletion of the radiation occurs due 
to both absorption and scattering. Therefore, it is extinction coefficient that must appear in the depletion 
term rather than absorption. Moreover, one needs to add a source term that describes the contribution of 
radiation scattered into the beam from other directions. Thus: 
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   ext emit scadI dI dI dIλ = + +      

 (2.6) 
Where: 

   ext extdI K I dsλ= −       

 (2.7) 
Therefore, in a scattering atmosphere, the complete and general three-dimensional form of the equation of 
radiative transfer for un-polarized incident radiation is: 

( ) ( ) ( ) ( ) ( )

( ) ( )
ext abs B.

sca

4

dI r .r K r I r ,r K r I r ,r

K
I r .r g r ,r rd

4

λ λ λ

λ
π

Ω
π

= − +

+ ∫

r r r r r) ) )

r r) ) )                         

(2.8) 
      

 
The differential form of the equation in the z-direction is: 

                   ( ) ( ) Ω′′++−= ∫ dgI
K

KTIKI
dz

dI sca
absBext φθ

π π
λλλ

λ ,
4 4

,                        

(2.9)                 
Where: 

The intensity of the incident radiation at a given wavelength is λI  

The blackbody radiation intensity at a given wavelength as a function of the temperature (T) is λ,BI  

The notation used here for the scattered intensity is λI ′  but scaI  can also be used to denote the same. 

The gain of the radiative transfer is( )φθ ,g , while the element of back-scattering solid angle is Ω′d  

The total rate at which energy is radiated by a source is called the flux and denoted by: Φ  with the unit in 
watts. The flux of the radiation transfer in the atmosphere is given by the equation:  

                 ( )
( )

( ) ( ) ( )

( ) ( )
ext ext

I r ,r , ,t1 1
r . I r ,r , ,t

K r c t K r

I r ,r , ,t J r ,r , ,t

λ
λ

λ λ

∂
+ ∇ =

∂

− +

r ) r r) )
r r

r r) )
                

 (2.10)               

Where r
)

 is a unit vector in the direction of scattered radiation, ( )r
ρ

 is the position vector, J is the radiation 

source function and I is the radiation intensity. extK  is the radiation extinction coefficient and is related to 

the extinction cross-section by: 

                                            extext NCK =                                                      

(2.11)   
Similar relationships exist for the scattering and absorption coefficients. The last term of the R.H.S. of 
equation (2.10) is the scattering source function vector. The first term is an attenuation term and represents 
the attenuation of the incident wave due to absorption and scattering of the radiation beam as it propagates 
through the atmosphere. The radiation beam in the case of solar radiation results from photons being 
scattered from the path of propagation in all directions. It is the presence of the scattering source function 
term that ensures that the propagation field is a function of the entire atmospheric radiation field and thus 
ensures transport over a large distance [6]. Figure 1 shows the approximate geometry of radiative transfer 
for the incident radiation in the atmosphere: 
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Figure1: Radiative Transfer Geometry for an incident Radiation 
1.4 Plane-Parallel Atmosphere 
In the atmosphere, for the solution of the Radiative Transfer Equation, the atmosphere is approximated as 
vertically stratified and horizontally homogeneous. It is then possible to reduce the spatial dimension from 
three to one and thus find solutions as a function of altitude only. In doing this, one replaces the position 
vector r

ρ
    by the scalar directional unit z to achieve what is called plane-parallel geometry [7]. The unit 

vector is then replaced by the  
 
 

natural plane-parallel coordinates (the spherical polar angles Φ,θ ). Thus equation (2.10) is simplified to: 

                        
( ) ( ) ( ), ,

cos , , , ,
ext

dI z
I z J z

K dz

θ φ
θ θ φ θ φ= +            

 (2.12)                                 
In order to take into effect the optical properties of the atmosphere, an alternate vertical coordinate system 
is introduced: 

                             ( )ext ext

z

d
K z K dz

dz

τ τ
∞

′= − ⇒ = ∫                        

 (2.13) 
Where τ is called the optical depth. The optical depth is a measure of transparency and is defined as the 
negative logarithm of the fraction of radiation that is scattered or absorbed as it propagates through a 
medium. For incident radiation wave propagating through the atmosphere: 

                             =
I

I sca                                                      

 (2.14)                             
In the earth's atmosphere, a tilted path is observed and the optical depth is defined by: 
                                    ττ m=′                                                  
 (2.15) 
Where: m is called the air mass factor. For the approximated plane-parallel atmosphere, therefore: 

                         µθ
θ

==⇒=
m

m
1

cos
cos

1
                             

 (2.16) 
At the top of the atmosphere τ =0 and it increases with decreasing altitude. The optical depth for the 
atmosphere is usually measured by a sun photometer. 
Using equation (2.14) & (2.16) in (2.13): 

dA2 

dA1 

r
ρ

dΩ 

θ1 

θ2 

1r
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( ) ( ) ( )ϕµτϕµτ

τ
ϕµτµ ,,,,
,,

JI
d

dI −=                    

 (2.17) 
 
The change in sign is as a result of the negative sign in the definition of the optical depth (τ ). 
 
3.0   The Radiative Transfer Equation (RTE) for the Dust Aerosol Layer 
 
 The dust aerosol layer is assumed to have a total height h consisting of layers of irregularly spaced 
spherical dust particles as shown in the diagram, figure 2. Scattering is limited to the directions of reflected 
and transmitted radiation with the same incidence angle (θ ): A wave with intensity I2 incident from above 
the dust aerosol layer would be transmitted, absorbed or reflected, while the angle of incidence in air 
remains constant.  
The down-welling wave, therefore gives rise to a transmitted wave in the same direction and a reflected 
wave in the direct opposite up-welling direction. 
 
  
 
 
 
 
 
 
 
 
 
 
 
         

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Scattering by a dust aerosol layer 
One can then formulate two interacting transfer equations for the up-welling and down-welling intensities 
I1(z) and I2 (z): 

   

( )

( )

1
1 2 1

2
2 1 2

abs abs

abs sca

dI
K I K I I

dz
dI

K I K I I
dz

↑ + = − + −

↓ − = + −
    

 (3.1) 
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Here, the term with the integral in the RTE (2.8) has been replaced by the coupling terms: 2scaK I  and 

1scaK I  and emission has been omitted.  

  ( )1 2I I− =k is the scattering reduction term. 

Another pair of coupled equation can be obtained by using the transformation sum 1 2J I I= +  to obtain: 

   ( )2abs sca

dJ
K K k

dz
= − +      

 (3.2) 
And: 

   abs

dk
K J

dz
=        

 (3.3) 
Where J is the total intensity and k is the net radiation in the upward direction whose change is not affected 
by scattering. The second equation corresponds to the flux equation. 
All the equations can be solved analytically by solutions of the type: 

   ( ) ( )2 2exp exp ; 1,2j j jI A z B z jγ γ= + + − =    

 (3.4) 
 
Where: Aj and Bj are coefficients that can be determined from boundary conditions. Illumination is 

assumed to be from above, thus defining the incident radiation as: 0 2I I=  (at the top of the dust aerosol 

layer) and the damping coefficient is: 

   2
2 2abs abs scaK K Kγ = +      

 (3.5) 
While, its inverse value is the effective penetrating depth given by: 
 
  

   
2

1
d

γ
=        

 (3.6) 

For an infinite layer: Bj=0 and I1 and I2 within the layer are proportional to exp( )2zγ− . This means that 

the intensities diminish exponentially with thickness of the dust aerosol layer. Boundary conditions [8] for 
the dust aerosol layer between z=0 and z=h are: 

   
( ) ( ) ( )
( ) ( )

1 2 2

1 2

0 0; 0 . ;

.

I z I z t I z h

I z h r I z h

= = = = =

= = =
    

 (3.7) 
Where: I2 (z=h) is the incident radiation.  
The reflectivity and transmitivity of the dust aerosol can then be computed to yield the results: 

   

2
0

0 2 2
0 0

2
0

0 2 2
0 0

1

1

1

1

t
r r

r t

r
t t

r t

−=
−

−=
−

       

 (3.8) 

Where: 0t (exponential transmission function) and 0r (reflectivity at infinite h) are defined by: 
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( )0 2

0
2

exp

sca

sca abs

t h

K
r

K k

γ

γ

= −

=
+ +

      

 (3.9) 
For a thick aerosol layer, only the topmost interface would contribute to reflection. Matzler [10] plotted the 
reflectivity (Figure 3) and transmitivity (Figure 4) using equation (3.8) for four absorption coefficients: 

 
Figure 3: Reflectivity versus layer thickness of a volume scattering medium 

 
Figure 4: Transmitivity versus layer thickness (Matzler, 2000) 

 
 
 
4.0   Reflectivity for a dust aerosol layer using (CIS) model 
 

Radiative Transfer in Isotropic scattering media is extensively discussed in Chandrasekhar [9]. 
Following the  solution of the RTE for isotropic scattering, a model was developed using MATLAB 
functions. The computer programme using the numerical MATLAB computation functions developed by 
Matzler (2008) [10] has been used following the equations of reflectivity. The model computes the 
reflectivity of down-welling radiation in plane-parallel atmosphere for various observation directions (θ ) 
given by the zenith angle. Computations have been made for a dust layer composed of (a): high quantity of 
hematite (a strongly absorbing dust aerosol constituent) with approximate single scattering albedo of 0.52. 
(b): dust aerosol with undetermined constituents with representative single scattering albedo of (0.80) and 
(c): dust composed of mainly clay minerals (illite, kaolinite and montmorillonite with single scattering 
albedo of 0.95). 
 
5.0 Discussion of Results 
 

In all the three cases, one notes an increasing reflectivity with increasing angle of incidence. For a high 
hematite constituent dust aerosol, reflectivity at low incidence angle is much lower than for an 
undetermined dust aerosol and dust aerosol composed of greater amount of clay minerals. This is usual 
since hematite is highly absorbing and one should expect that its reflectivity would be correspondingly low. 
Dust aerosol containing a high amount of clay mineral constituent exhibit higher reflectivity for all incident 
angles. This is because the representative single scattering albedo used in the computation is close to 
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1(0.95). A single scattering albedo of 1 means high reflectivity.     
     

 

 
 

 
Figure 5: (a) Dust aerosol with high hematite content (b) dust aerosol of mixed constituent 

(c) High clay mineral constituent 
 
6.0  Conclusion 
 

The Radiative Transfer Equation (RTE) as a model of analysis of interactions that occur in the 
atmosphere has been discussed. Its role in the description in description of the scattered radiative field was 
also explored. Its application to a dust aerosol layer has been analyzed and using a RTE model 
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(Chandrasekhar Isotropic Scattering) model, reflectivity for three types of dust aerosol layer was computed 
for down-welling radiation in a plane-parallel atmosphere for different incident angles. Results show that 
for all three cases, there is an increasing reflectivity with increasing angle of incidence. Dust aerosols high 
in clay mineral constituent have the highest reflectivity. 
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