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Abstract 

 
Critical flows may occur at more than one depth in rivers with flood 
plains. The possibility of multiple critical depths affects the water-surface 
profile calculations. Presently available algorithms determine only one of 
the critical depths which may lead to large errors. It is the purpose of this 
paper to present an analytical formulation of a compound-channel 
Froude number which correctly identifies the occurrence of points of 
minimum specific energy (Critical points) for flow in rivers with flood 
plains. A compound-channel Froude number (Eq.16) has been derived 
and has been shown to accurately predict the critical points in rivers with 
flood plains. The proposed compound-channel (froude number) can be 
used in conjunction with existing computer programs for water surface 
profile computations. 
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Notation 
The following symbols are used in this paper: 
A =        total cross-section area;             a    =    kinetic energy flux correction coefficient; 
a =        subsection area;                                                              p∆    =   increment of wetted perimeter;  

E =       specific energy;                                                               ∆ y   =    increment of depth; and 
F =       Froude number;                                                         ,3,2,1 σσσ = subsection parameters of compound-channel Froude 

number. 
Fe =      compound-channel Froude number;                                       y =   depth of flow; 
Fi =      subsection Froude number;                                                     x =   distance along channel; 
Fr =      weighted Froude number; 
Fα =   Froude number with kinetic energy flux correction; 
f =       Darcy-Weisbach friction factor; 
f i =      subsection friction factors; 
g  =      acceleration of gravity:  
K =      total cross-section conveyance:  
ki,=      subsection conveyance; 
n =      Manning's n value; 
n,=      subsection n value; 
pt =     subsection wetted perimeter: 
Q =     total cross-section discharge;  
Qm=    average measured discharge; 
qt =     subsection discharge; 
R =     Reynolds number; 
r, =     subsection hydraulic radius:  
S, =    slope of energy grade line; 
S0 =    bed slope of channel or flume; 
T =    total cross-section top wide 
/,. =   Subsection top wide 
V =   total cross-section mean velocity; 
v =    mean velocity associated with incremental area, dA : 
v, =   subsection mean velocity; 
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1.0   Introduction 
 

Analysis of open flow by the application of the energy principle is often examined and supported by 
the concept of specific energy, which was introduced by Bakmeteff [1] in 1912. Critical depth in open-
channel flow occurs when the flow changes from supercritical to subcritical or vice-versa. The computation 
of critical flow is required for application in several situations. For example 

(a) Channels are designed so that the flow is not near critical depth for long distances, since flow is 
unstable near critical depth. 

(b) Gradually varied flow calculations usually become unstable near the critical depth, thereby, 
necessitating special precautions to avoid it. 

(c) Critical depth may be starting point or “control” for computing the steady gradually varied flow 
water surface profiles. 

Okoli [14] has shown that the determination of critical depth in channels with overbank or flood-plain 
flow (compound channels) can be troublesome. Customary definitions of the Froude number generally do 
not indicate critical depth at the point of minimum specific energy. In addition, there are some compound-
channel geometrics, which produce specific-energy diagrams with two point of minimum specific energy. 
It is the purpose of this paper to present an analytical formulation of a compound-channel Froude number 
which correctly identifies the occurrence of points of minimum specific energy for flow in compound open 
channels. The proposed compound-channel Froude number can be used in conjunction with existing computer 
programs for water surface profile computations [5, 13, 16] and is necessarily limited by the same simplifying 
assumptions that are associated with the conventionally used, one-dimensional equation of steady, 
gradually varied flow [17].  

The results of an experimental investigation in laboratory flume are also presented, demonstrating the 
existence of two points of minimum specific energy and identifying these points by the proposed 
compound-channel Froude number. 
 

2.0  Froude Number-Flow Regime Discrepancies 
For a simple channel of nonrectangular section and uniform cross-sectional velocity distribution, the 

Froude number F is defined by 
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where Q = water discharge; T = the top width of the water surface; g = acceleration due to gravity; and 
A = the cross-sectional area of flow. For a compound channel it is customary to include the kinetic energy 
flux correction coefficient, α, in the definition of specific energy. As a result, it appears as follows in the 
definition of the Froude number assuming α is constant with depth: 
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For natural channels with overbank flow, it is often assumed that the major contribution to α is the 
large difference in mean velocity between main channel and overbank sections. By comparison the non-
uniformity of the velocity distribution within each subsection can be neglected. 

Two major problems arise in the computation of one-dimensional, steady, gradually varied flow 
profiles in compound channels, as a result of using the Froude numbers F or Fα. First, incorrect solutions 
are generated when numerical methods are used to solve the gradually varied flow equation written in a 
form involving the Froude number Fα. Second, incorrect solutions may be accepted when the standard step 
method is used to compute water-surface profiles near critical depth. These difficulties are the result of 
neglecting the variation of α with depth in compound-channel flows. 

Consider the equation of gradually varied flow in the following form: 
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in which dy /dx = the rate of change in depth of flow with respect to distance along the channel; Se = the 
bed slope of the channel; and St = the slope of the energy grade line. Prasad [10] has proposed a numerical 
solution procedure for Eq. (2.3) which can be applied to natural channels. In addition to the assumption that 
α is constant, the assumptions involved in obtaining Eq. (2.3) include: no lateral flow, a hydrostatic 
pressure distribution, a constant bed slope, and a straight, very wide channel, or alternatively, an 
approximately prismatic channel [17]. Because the variation in α with depth and thus with distance along 
the channel has been neglected, application of Eq. (2.3) to a gradually varied flow in a compound channel 
will lead to incorrect water-surface elevations. The denominator of the term on the right-hand side in Eq (2.3).  
arises from a consideration of the variation of specific energy with depth, a portion of which is due to changes in α 
with variation of specific energy with depth, a portion of which is due to changes in α with depth in 
compound-channel flow.  Furthermore, the use of Fα can cause the right-hand side of Eq. (2.3) to become 
indefinite at a depth that does not correspond to the actual critical depth. 
 As an alternative to Eq. (2.3), water-surface profiles are compound in natural channels by the 
standard step method [6] in which the specific energy is computed explicitly. In this case, Fα does not 
appear in the equation to be solved, but it is used instead to indicate whether the solution is in the 
supercritical or subcritical flow regime. For compound channels, neither F nor Fα correctly indicates the 
flow regime. Thus, incorrect solutions of the energy equation can be accepted when the depth is 
near critical depth. 
 
Compound-Channel Froude Number 
 
Previous Investigations: Previous investigations of the problems associated with defining the Froude 
n u m b e r  i n  c o m p o u n d - c h a n n e l  f l o w  h a v e  been undertaken, but the focus of these experiments 
has been the quantification of changes in the boundary shear stress distribution resulting from momentum 
exchange between the main channel and floodplain. The Federal agencies which maintain and use water-
surface profile programs recognizes the Froude number difficulties in compound channel as described in the 
previous section of this paper, and they examine these difficulties in their user’s manuals. The Soil 
Conservation Service (16), e.g warns of difference of as much as 0.7m between Eq. (2.1) and the critical 
depth determined by F and the critical depth determined by minimum specific energy. 

The American Corp of Engineers presented an algorithm to solve for the depth corresponding to 
minimum specific energy is compared with the profile depth to check the flow regime rather than using the 
froude number as a check.  
 The United States Geological Survey (USGS) proposes the use of an index Froude number based 
on the Froude number of subsection carrying the greatest discharge. The index Froude cross-section, but it 
is also recognized better reflect the flow regime consider the index Froude number to be a true Froude 
number, but rather a warming flag that identifies possible flow-regime problems. A later version of the 
USGS Water Surface Profile Program incorporates a routine to determine the depth of minimum specific 
energy. 
  Chaundhry and Bhallamudi [9] have proposed a discharge-weighed Froude number without 
experimental corroboration in order to eliminate the computational problems associated with the 
occurrence of two points of minimum specific energy in compound-channel flows. Although their    
proposed Froude number succeeds in doing this by identifying only one value of critical depth, it is 
nevertheless somewhat arbitrary and is divorced from the concept of minimum specific energy.  

 Clearly, the Froude number should be formulated to reflect the specific energy curve under 
consideration and should indicate critical depth at the point (or points) of minimum specific energy. Such a 
Froude number would produce correct numerical solutions of the gradually varied flow Equation; Eq. (2.3) 
and would eliminate the need for time-consuming routines used to solve for the depth of minimum specific 
energy in standard step water-surface profile computations. 
 Derivation and Formulation. — The specific energy. E, for a one-dimensional compound-channel flow is given 
by  
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in which y = the depth of flow. The kinetic energy flux correction coefficient, α, is defined as 
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in which v = the velocity through the element of area, dA; and V = the mean cross-sectional velocity (3,6). 
Alpha is thus a measure of the non-uniformity of the velocity distribution. For computational purposes, flow 
is conventionally divided into channel and overbank subsections by appropriately located vertical lines which 
are assumed not to transmit shear stress from one section of flow to another, and which do not contribute to 
wetted perimeter. Wright and Carstens [15] have suggested that the wetted perimeter of the subsection 
dividing line be retained for the main channel, and that the shear stress applied by the main-channel flow 
section on the overbank section be considered. Regardless of the manner in which the main flow-flood-
plain interaction is treated, the basic assumption in the computation of α, as previously mentioned, is that 
the contribution of the non-uniformity of the velocity distribution within each subsection is negligible in 
comparison to the variation in mean velocity between subsections. If Eq. 2.5 is applied with this assumption 
to a compound channel, which has been divided into subsections, the kinetic energy flux correction 
coefficient becomes 
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in which ki = the conveyance of the ith subsection; ai = the area of the ith subsection; and K = ∑ ik = the 

conveyance of the total cross section (3.6).  The subsection conveyance is computed from the Manning’s 
equation as follows:  
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 in which, n = Manning’s Coefficient, γ2 = hydraulic radius   = a/p and p = wetted perimeter. 
 The point (or points) of minimum specific energy is obtained by differentiating Eq. 2.4 with 
respect to y and setting the derivative equal to zero. Because both α and area are functions of depth, the 
differentiation produces [14] 
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Noting that dA/dy = T, and that by rearranging terms, the following expression is obtained: 
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The left-hand side of Eq. 2.9 is unity at the point of minimum specific energy; therefore, a compound-
channel Froude number Fc can be defined from Eq. 2.9 as 
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At the point of minimum specific energy Fc will have a value of 1. 
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Fig. 1 Definition Sketch for Evaluation of dpi/dy rate of change in the wetted perimeter with respect to 

depth of flow in the subsection 

With the exception of dα/dy, all of the terms on the right-hand side of Eq.2.10 are routinely, 

determined in water-surface profile computations. Evaluation of dα/dy can be achieved by differentiating Eq. 2.6 

with respect to y. As shown in Appendix I, the derivative becomes  
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In Eqs.  12-14, t1 = the top width of the ith subsection; and dpi/dy = the rate of change in wetted 

perimeter with respect to depth of flow in the ith subsection. Evaluation of dpi /dy is simplified by the fact 

that the cross-section lines. The definition sketch in Fig.1 (which is a portion of a right overbank subsection) 

shows the water-surface intersecting the segment de . This line makes a contribution of p∆  to the 

subsection rate in wetted perimeter. The rate of change in wetted perimeter with respect to depth is a 

constant. Therefore can be evaluated as 
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Fig. 2. Channel Cross sections for evaluation of specific energy and Froude Numbers (a) Cross Section 
A: (b) Cross Section B. 

The terms p∆  and y∆  are generally determined when computing the geometric properties of a 

cross section for use in a water-surface profile program. It should be noted that if the water surface is at point 

e, dp /dy should be evaluated for the line segment de , but if the water surface is at point d, dp/dy should be 
evaluated for the line segment cd. In situations where the water surface does not intersect the wetted 
perimeter of a subsection (e.g., the boundary between the main channel and overbank stage), dpi,/dy is the 

sum of  ip∆ / y∆ for each of the banks. 

The working equation for the compound-channel Froude number can be obtained by substituting 
Eq. 2.11 into Eq. 2.10 and simplifying: 
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If the Manning's n value is considered to vary with depth of flow in any subsection, 1σ  and 

3σ can be written to reflect the variation: 
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in which dn, /dy = the rate of change in n, with respect to depth of flow. 
 
3.0 EVALUATION 

 
The behavior of the compound-channel Froude number, Fc, may be evaluated by examining the 

specific-energy diagrams of two idealized, symmetric cross sections, each conveying 142 m3/5. Cross section 
A (Fig. 2(a)) is from [9]. In Fig. 3, the specific-energy curve of flow cross section reveals two points of 
minimum specific energy at depths of flow approx 2.07 m and 1.62 m. These points are indicated by C1 and C2, 
respectively, in Fig. 3. 

Fc for this cross section is plotted in Fig. 4 along with F and αF . As expected, all three equations 

produce the same curve below top of bank (simple channel situation), but only Eq. (2.16) for Fc correctly 
locates Cl, the upper depth of minimum specific energy 2.07m, and connects with the lower curve at the top of 
bank depth. 
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Fig. 3. Specific Energy for Cross Section A Conveying 140m3/s 

 The shape of the Froude number curve is independent of the discharge, and the fiducial point (Fc = 
1) can be shifted left or right by varying the discharge. This means that once Fc is plotted for a particular cross 
section and discharge, points of minimum specific energy for other discharges may be determined without 
the necessity of constructing new specific-energy diagrams. In effect, the variable FC/Q provides a universal 
horizontal scale for Fig. 4 which depends only on the conveyance and geometric properties of the particular 
cross section. Thus, for a given depth of flow, the critical discharge, Qc, can be computed by taking the 
reciprocal of the corresponding value of F c / Q ,  because F c / Q  f or the given depth equals I/Qc for the 
critical condition. 
 Cross section B is presented in Fig.2 (b) and differs from cross section A only in that the flood 
plains have a 100:1 slope toward the channel. The specific-energy diagram cross section B  (Fig. 5) reveals a 
single point of minimum specific energy below top of bank at the same depth of flow as for cross section A 
(point C2).  

 

 

  

 

 

 

 

 

 

S p e c i f i c  Energy,  in meters 

3.3 

3.0 

2.7 

2.3 

2.0 

1.7 

1.3 

D
e

p
th

 o
f 

F
lo

w
 i

n
 M

e
te

rs
 

0 0.3  0.7  1.0  1.3  1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 4.3 4.7 5.0 

Top of bank C1 

C2 

3.3 

3.0 

2.7 

2.3 

2.0 

1.7 

D
e

p
th

 o
f 

F
lo

w
 i

n
 M

e
te

rs
 

0  1  2 3 

Top of bank 

C2 

Fc  

Fα 
C1 

Froude Number in Meters 

3.3 

3.0 

 

2.7 

 

2.3 

1 

2.0 

1.7 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 347 – 362       
Computations Of Critical Depth In Rivers With Flood Plains            Okoli C. and George Fleming          J of 
NAMP 

Fig. 4.—Froude Numbers for Cross Section a Conveying 140m3/s  

 
The three Froude number curves shown in Fig. 6 for cross section B are again identical below top of bank, 
but F each indicate another point of minimum above top of bank at depths of flow of 1.98m and 2.07m, 
respectively. 

The occurrence of these false points of minimum specific energy is a more serious deficiency of 
Eqs. 2.1 and 2.2 than the errors in crucial depth shown in Fig. 4. 

It is evident from these two examples that the Froude numbers generated by Eqs. 2.1 and 2.2 are 
not acceptable for use in the gradually varied flow equation Eq. 2.3. Neither definition of Froude number 
faithfully reflects the specific-energy diagram in overbank flow situations, and either would produce 
divergence from a correct profile solution. It is equally evident that Eqs. 2.1 and 2.2 are not satisfactory for 
checking the flow regime in the standard step method. Only Fc in Eq. 2.16 accurately reflects the specific-
energy diagram and indicates the correct flow regime. The experimental investigation into the occurrence 
of two points of minimum specific energy in the following portion of this paper offers guidance for the 
interpretation of the flow regime between the two points of minimum specific energy, Cl and C2, in cross 
section A (Fig. 3). 
 

4.0 Experimental Investigation 
The experimental investigation consisted of measuring point velocities in a compound-channel 

cross section which was formed by constructing a single rectangular overbank section in a laboratory 
flume. Sufficient point velocity measurements were made at eight different depths of flow (at 
approximately the same discharge for each depth) to compute the discharge, mean velocity, Kinetic energy 
flux correction coefficient, and specific energy for  each complete details of the experimental procedure are 
given by the writer. 

The experiments were conducted in a tilting steel flume (24.38 m) long, (10.7m) wide, and (0.46 
m) deep. The flume was provided at William Fraiser Hydraulic Laboratory of the University of 
Strathclyde, Glasgow. Uk. This flume was also used by [14] and details of its construction is given below. 
The overbank section was constructed of 27cm in exterior plywood and two-by-six fir framing lumber, 
resulting in the channel dimensions shown in Fig.7. All wooden components were coated with sand 
sealer and exterior acrylic-latex paint. The overbank section was attached to the flume with silicon adhesive. 

Point velocities were measured with a (1.83-mm) outside diameter pitot-static tube operated in 
conjunction with a differential pressure transducer. Data collection, reduction, and analysis were 
accomplished with an HP9825A desktop computer controlling a digital voltmeter which measured the 
voltage output from the pressure transducer and preamplifier. Point velocity measurements were made at a 
station 19.81m downstream of the flume entrance. Preliminary measurements were made at a station 
18.29m downstream. Comparison of dimensionless profiles of velocity between the two stations indicated 
that the flow was fully developed. 
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Fig. 5. Specific Energy for Cross Section B Conveying 140m3/s 

 
 

The preliminary experiments indicated that a discharge of (0.048 m3/s) would produce a specific-energy 
curve with two points of minimum specific energy. An estimate of the error in setting the discharge to 
(0.048 m3/s) included the calibration error of the Venturi-meter used to measure the discharge and also included 
an estimate of the error introduced by observed fluctuations in the Venturi-meter manometer during the course 
of an experimental run. The estimated error in discharge was of the order of ±3%, which was the same range 
of error observed between individual discharges determined from the Venture meter and the discharges 
determined by integration of the point velocity measurements. 

 Establishing a truly uniform flow profile for the experimental runs proved impossible. Any 
discharge flowing near the depth corresponding to minimum specific energy, as these were, could be 
expected to be inherently unstable. The instability was exacerbated by the variations in the overbank 
surface, which were of the order of (0.3 cm). Standing waves in and a cross-hatched water surface in the 
channel thwarted efforts to achieve a uniform water-surface profile. As a result, the adopted experimental 
procedure was to establish a profile as close to uniform as possible such that the desired depth of flow was 
obtained where the point velocities were to be measured. The maximum observed change in depth for 
overbank-flow runs was approx (1.5 cm) between the channel entrance and the measuring station where the 
flow depth was (17.3 cm). For larger depths of flow, the water-surface profiles tended to be more stable and 
more nearly uniform. A profile at a depth of flow of (21.3 cm) was established to demonstrate that a 
uniform profile could be obtained in the downstream reach of the flume if the depth of flow was 
sufficiently greater than the depth corresponding to minimum specific energy. 
 

 

 

 

 

 

 

 

Fig. 6.—Froude Numbers for Cross Section B Conveying 140ms/s 

5.0    Results And Discussion  
 

Table 1 presents the values of area, discharge, kinetic energy flux correction coefficient, and specific 
energy computed from experimental measurements for each of the eight reported runs. Runs 5 and 6 are 
not reported in the table because of operational difficulties during each run. It is apparent from the results 
presented in Table 1 that as the depth increased for those experimental runs with overbank flow, the 
proportion of the total discharge in the overbank section increased. It should also be noted that the values 
of α for  the main channel alone are measurably larger than 1.0 because of the narrowness of the main 
channel section. 

Observations of the water surface for the four experimental runs with overbank flow indicated greater 
instability as the depth of flow decreased. The water-surface instability was manifested by standing waves 
in the overbank section and a choppy, cross-hatched water surface in the channel section. Beginning at 

3.3 

3.0 

2.7 

2.3 

2.0 

1.7 

1.3 

D
e

p
th

 o
f 

F
lo

w
 i

n
 M

e
te

rs
 

0  1  2 3 

Top of bank 

C2 

Fc  

Fα 

Froude Number 

F

  



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 347 – 362       
Computations Of Critical Depth In Rivers With Flood Plains            Okoli C. and George Fleming          J of 
NAMP 

the upper depth of minimum specific energy (run 2) and continuing with decreasing depth, the standing 
wave fronts in the overbank section were perpendicular to the mean flow direction and then were bent 
downstream into a cross-hatched pattern in the channel section characteristic of supercritical flow. The 
surface instability continued to increase for the experimental runs as depth decreased below top of bank. 
The fact that, the water surface was  

 
 

unstable for experimental runs 7 and 8, the first two runs below top of bank in Table 1, suggests that the 
upper point of minimum specific energy could be considered the limit of subcritical flow for situations in 
which two points of minimum specific energy occur in water-surface profile computations. 

 

 

 

 

 

 

 

The experimental specific-energy data in Table 1 are plotted in Fig. 8(a). Although the variation in 
discharge from run to run causes some scatter in the plot, there is evidence of two points of minimum 
specific energy. The experimental values of α plotted in Fig. 8(b) show little scatter and indicate that 
(alpha α) is primarily a function of depth of flow. This observation suggests that a specific-energy 
diagram for a single value of discharge can be constructed by substituting the average discharge of eight 
runs 0.048 m3/s into Eq. 2.4 while using the experimental data for all other variables. Fig. 9 presents the 
resulting average specific-energy diagram. The two points of minimum specific energy are more clearly 
apparent in this figure. 

The concept of computing a Froude number for the flow in a subsection of a compound channel has 
already been mentioned with regard to the USGS index Froude number [12]. The subsection Froude 
numbers (computed with Eqs. 2.1 and 2.2) for the experimental data of this investigation are presented in 
Table 2. The Froude number of the channel (Col. 3 or 4 of Table 2) is the index Froude number of these 
experimental runs because the channel is the subsection with the largest discharge. All four depths of flow 
above top of bank are subcritical based on the index Froude number, but as shown in Fig. 9, the two lower 
overbank depths are not subcritical. For this experimental investigation, the index Froude number does not 
correctly indicate the flow regime of compound-channel flow. 

Table 1: Values of Area, discharge, kinetic energy, flow correction coefficient and specific energy computed from        

                 experimental measurements. 

 

[9] apply the concept of a subsection Froude number to obtain their weighted Froude number F r ,  
which is given by 

Run 
(1) 

Y,(m) 
(2) 

So 
(3) 

E,in 
(m) 
(4) 

A in 
m2 
(5) 

Q in 
m3/sec 

(6) 

α 
(7) 

A in 
m2 
(8) 

Q in 
m3/sec 

(9) 

α 
(10) 

A in 
m2 

(11) 

Q in 
m3/sec 
(12) 

(13) 
α 

1 0.1983 0.001018 0.2190 0.0589 0.0386 1.0840 0.0274 0.0117 1.108 0.0863 0.0503 1.192 
4 0.1907 0.001128 0.2142 0.0558 0.0393 1.083 0.0215 0.0093 1.132 0.0782 0.0486 1.198 
2 0.1830 0.001485 0.2135 0.544 0.0424 1.082 0.0158 0.0060 1.169 0.0701 0.0489 1.224 
3 0.1730 0.002096 0.2142 0.0514 0.0451 1.088 0.0078 0.0006 1.340 0.0592 0.0476 1.238 
10 0.1425 0.003300 0.2105 0.0424 0.0466 1.096 - - - 0.0424 0.0466 1.096 
7 0.1525 0.002118 0.2135 0.0454 0.0475 1.087 - - - 0.0454 0.0475 1.087 
8 0.1425 0.003300 0.2105 0.0424 0.0466 1.096 - - - 0.0424 0.0466 1.096 
9 0.1321 0.004455 0.2142 0.0393 0.0474 1.100 - - - 0.0393 0.0474 1.100 

0.172m 

0.325m 

0
.5

cm
 Overbank Section 

Fig. 7. —Cross Section of Flume and Overbank Section, Looking Downstream  
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in which qt = the subsection discharge; and F, = the subsection Froude number computed by Eq. 2.1. Values 
of F, for the experimental data are presented in Col. 7 of Table 2. As in the case of the index Froude 
number, the weighted Froude number does not correctly indicate the flow regime. 
 
Analysis 

 
The proposed compound-channel Froude number cannot be directly determined from the experimental 

data. Attempts to use Eq. 2.10 fail because it is difficult to determine dα/dy from the limited number of 
experimental data points. Eq. 16 fails because the slope of the energy grade line is not precisely known, 
which means that the subsection resistance coefficient and thus the conveyance, k i ,  cannot be determined from 
the experimental data. If it had been possible to establish a uniform flow condition for each run, the energy 
gradient would parallel the flume slope, and the conveyance for each subsection could be computed from 
the experimental data alone. The compound-channel Froude number can only be determined indirectly 
through an independent prediction of the experimental results. 

Working in the same flume as used in the present investigation, [14] experimentally determined a 
friction-factor relationship for smooth rectangular channels of the form 

30.1)log(03.2
1 −= fR
f

     (5.2) 

in which f = the Darcy-Weisbach friction factor; and R = the Reynolds number. If it is assumed that Eq. 5.2 
is valid when applied independently to each channel subsection, the friction factor, fi, can be determined for 
the ith subsection. The mean velocity in the ith subsection, v i, is then given by 
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in which ri= the hydraulic radius of the ith subsection; and Se = the slope of the energy grade line. 
Because the values of f, and vi obtained from Eqs. 5.2 and 5.3 must be such that the subsection discharges 
sum to the average measured discharge, Qm, of  (0.048 m3/s), the following equation must be satisfied: 
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       It has been implicitly assumed that Se is the same for all subsections. Eqs. 5.2, 5.3, and 5.4 can be 
solved iteratively for the friction factor and velocity in each subsection for a given total discharge and 
depth. The iterative solution procedure is given in detail by [2] and [9]. The velocities, v i,  were calculated by 
the procedure just described for the mean measured discharge of Qm (0.048 m3/s). It was assumed that the 
imaginary vertical boundary between the main channel and overbank section made no contribution to 
wetted perimeter. Furthermore, the friction factors determined for each subsection were converted to 
Manning’s n values because the formulation for the compound Froude number, Fe, is in terms of n. The n 
values so obtained exhibited a slight variation with depth; however, to facilitate the computations, constant 
n values of 0.03 and 0.08 were adopted for the channel and overbank sections, respectively. From the 
velocities and n values for each subsection, the specific energy and compound Froude number were 
computed for a series of depths within the range of measured depths In the computation of the specific 
energy and Fc, it was assumed that α- Alpha of each subsection had the value 1.0 rather than the measured 
value. In this way, the computational procedure remained independent of the measured data and was 
executed in the same manner as would be expected when determining Fc for a natural river channel in the 
course of a water-surface profile computation.     

The predicted specific-energy diagram is shown in Fig. 10 (a), and two depths of minimum specific 
energy are apparent, although each depth is approximately 0.0067m smaller than the corresponding depths 
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in Fig. 8(a) or Fig. 9. The entire specific-energy curve in Fig. 10 (a) is skewed slightly downward and to 
the left when compared with the measured curve in Fig. 8(a) or the average curve in Fig. 9.  

 
 

Table 2: Froude Numbers for Experimental Data  

Channel  Overbank  Weighted   
 

Run 
(1) 

 
y, in metre 

(2) 
F 

(Eq. 1) 
(3) 

 

Fα 
(Eq. 2) 

(4) 

F 
(Eq. 1) 

(5) 

Fα 
(Eq. 2) 

(6) 

Fr 
(Eq. 19) 

(4) 

1 
4 
2 
3 
 

0.650 
0.625 
0.600 
0.567 

0.471 
0.508 
0.583 
0.675 

0.490 
0.529 
0.606 
0.704 

0.721 
0.821 
0.925 
1.017 

0.759 
0.873 
1.001 
1.177 

0.529 
0.586 
0.629 
0.692 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8- Specific Energy and Kinetic Energy Flux Correction Factor from Experimental Data 

  (a) Specific energy, in (b) Alpha.   
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The predicted compound-channel Froude number curve in Fig.10 (b) exhibits the behavior typical 
for two points of minimum specific energy, and is in correspondence with the predicted specific-energy 
curve as expected.  

To investigate the role that neglecting the transfer of linear momentum to the overbank section 
plays in the skew of the predicted specific-energy curve, the correction suggested by (15) was considered. 
Although the correction improved the agreement between the measured and computed discharges in the 
overbank section, especially at the larger depths, the effect on the computed specific-energy curve was 
minimal because of the relatively small changes in α which resulted from the correction. 

 

 

 

 

 

 

 

  

 

 

 
 
The skew in the specific-energy curve is most pronounced below top of bank depth where transfer of 

linear momentum to the overbank does not occur. The skew in this portion of the curve can be attributed 
to selecting subsection a values of unity in computing specific energy. It should be noted that the depths 
of flow in the flume were small compared to depths of flow normally found in field situations. For this 
reason, the velocity head in the flume makes a large relative contribution to specific energy, and any 
adjustment to velocity head (such as subsection α) has far more effect on specific energy in the flume 
than it would in the field. 

The same analysis can be applied to subcritical and supercritical flow regimes in field situations 
where kinetic energy correction coefficients can be as much as 1.4 or more in the main channel. For 
subcritical flow where the velocity head is small, an adjustment to velocity head would be insignificant. 
For supercritical flow, the velocity head can be 50% or more of the depth, and an α-adjustment to 
velocity head would have a significant effect on specific energy. This reasoning explains the increasing 
leftward shift in Fig. 10(a) as the depth of flow decreases, and the implication is that predicted specific 
energies and Froude numbers in field channels under subcritical flow conditions would be closer to 
measured values. 
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Fig. 10.—(a) Predicted Specific Energy in Experimental Flume for 0.047m2/s ( b )  Compound Channel 
Froude Number for Fig. 10(a) 
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Conclusions 

Existing formulations of the Froude number Eqs.2.1 and 2.2 do not accurately reflect the specific-
energy curve for flow in a compound open channel and do not correctly locate points of minimum specific 
energy. A compound-channel Froude number Eq.2.16 is derived and is shown to accurately reflect the 
specific-energy curve of flow in a compound open channel by correctly locating points of minimum specific 
energy. When applied to a simple channel with uniform velocity distribution, the compound channel 
Froude number is identical to Eq. 2.1, the conventional definition of Froude number. 

 
The compound-channel Froude number is appropriate for use with the gradually varied flow equation Eq. 2.3 

and provides the proper check of the flow regime when used in conjunction with the standard step method of 
water-surface profile computation. The proposed Froude number is subject to the same assumptions that 
apply to the equation of gradually varied flow commonly employed in water-surface profile computations. 

For some compound-channel geometries characterized by wide, level flood plains, two points of 
minimum specific energy can be computed for certain discharges. Laboratory investigation of a one-
dimensional flow demonstrates that this phenomenon can in fact occur, and indicates that the upper point of 
minimum specific energy may be considered the proper limit of subcritical flow. 
 
Appendix I. Derivation of dα/dy 

 
Writing Eq. 2.6 as  
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and differentiating with respect to y produces 
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Noting that dai/dy = ti, dA/dy = T, and dK/dy = ∑i
(dki/dy), the following is obtained: 
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Evaluate dki/dy by writing Eq. 2.7 as 
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 and differentiate with respect to y to obtain 
2 / 3 5\3

1.49 5 2

3 3
i i i ai i

i i i

dk a da dp

dy n p dy p dy
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 Again noting that dα,/dy = t,, and multiplying and dividing by an the following is obtained: 
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1
5 2

3
i i i

i i
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dk k dp
t r

dy a dy

   
= −   

         (A6)

 

Substituting Eq. A6 into Eq. A3 and simplifying, results in Eq. 2.11. 
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