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Abstract

Critical flows may occur at more than one depth nivers with flood

plains. The possibility of multiple critical depthaffects the water-surface
profile calculations. Presently available algorittrendetermine only one of
the critical depths which may lead to large erroilsis the purpose of this
paper to present an analytical formulation of a cgmund-channel

Froude number which correctly identifies the occumnce of points of
minimum specific energy (Critical points) for flovin rivers with flood

plains. A compound-channel Froude number (Eq.16) sidbeen derived
and has been shown to accurately predict the catipoints in rivers with

flood plains. The proposed compound-channel (froudamber) can be
used in conjunction with existing computer progranier water surface
profile computations.
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Channel)
Notation
The following symbols are used in this paper:
A= total cross-section area; = kinetic energy flux correction coefficient;
a= subsection area,; Ap = increment of wetted perimeter;
E= specific energy; Ay = increment of depth; and
F= Froude number; 0l,02,0 3, = subsection parameters of compound-channel Froude
number.
Fe=  compound-channel Froude number; y = depth of flow;
F = subsection Froude number; x = distancerg channel;
F=  weighted Froude number;

FQ = Froude number with kinetic energy flux correnti
= Darcy-Weisbach friction factor;

fi=  subsection friction factors;
g = acceleration of gravity:
=  total cross-section conveyance:
ki,=  subsection conveyance;
n=  Manning's n value;

=  subsection n value;

subsection wetted perimeter:
total cross-section discharge;
average measured discharge;
subsection discharge;

Reynolds number;

subsection hydraulic radius:
slope of energy grade line;

bed slope of channel or flume;
total cross-section top wide
Subsection top wide
= total cross-section mean velocity;
mean velocity associated with incrementehadA :
subsection mean velocity;
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1.0 Introduction

Analysis of open flow by the application of the emeprinciple is often examined and supported by
the concept of specific energy, which was introduby Bakmeteff [1] in 1912. Critical depth in open-
channel flow occurs when the flow changes from sneeal to subcritical or vice-versa. The comgiga
of critical flow is required for application in sesal situations. For example

(&) Channels are designed so that the flow is eat oritical depth for long distances, since flaw i
unstable near critical depth.

(b) Gradually varied flow calculations usually bew unstable near the critical depth, thereby,
necessitating special precautions to avoid it.

(c) Critical depth may be starting point or “coritrior computing the steady gradually varied flow
water surface profiles.

Okoli [14] has shown that the determination oficat depth in channels with overbank or flood-plain
flow (compound channels) can be troublesome. Cumtpmefinitions of the Froude number generally do
not indicate critical depth at the point of minim@pecific energy. In addition, there are some camge
channel geometrics, which produce specific-eneiiggrams with two point of minimum specific energy.
It is the purpose of this paper to present an dicalyformulation of a compound-channel Froude namb
which correctly identifies the occurrence of poiataninimum specific energy for flow in compoundesp
channels. The proposed compound-channel Froudeerurah be used in conjunction with existing compute
programs for water surface profile computationsif$, 16] and is necessarily limited by the samep#ifyiing
assumptions that are associated with the conveiljorused, one-dimensional equation of steady,
gradually varied flow [17].

The results of an experimental investigation irokalbory flume are also presented, demonstrating the
existence of two points of minimum specific energgd identifying these points by the proposed
compound-channel Froude number.

2.0 Froude Number-Flow Regime Discrepancies
For a simple channel of nonrectangular section wmitbrm cross-sectional velocity distribution, the
Froude number F is defined by

2 \"2

E - [(SA Taj @.1)
whereQ = water dischargel = the top width of the water surface; g = acceleratlae to gravity; and

A = the cross-sectional area of flow. For a compourahphl it is customary to include the kinetic energy

flux correction coefficients, in the definition of specific energy. As a resittappears as follows in the

definition of the Froude number assuming constant with depth:

a1\
F, = (0; j] 22)

For natural channels with overbank flow, it is oftessumed that the major contributionotds the
large difference in mean velocity between main cledand overbank sections. By comparison the non-
uniformity of the velocity distribution within eacgubsection can be neglected.

Two major problems arise in the computation of dimaensional, steady, gradually varied flow
profiles in compound channels, as a result of ufiegFroude numbers F of.First, incorrect solutions
are generated when numerical methods are usedv® e gradually varied flow equation written in a
form involving the Froude numbeg FSecond, incorrect solutions may be accepted wheestandard step
method is used to compute water-surface profiles cétical depth. These difficulties are the résfl
neglecting the variation af with depth in compound-channel flows.

Consider the equation of gradually varied flowhe following form:
d_S-S (2.3)
dx 1-F’a
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in which dy /dx = the rate of change in depth of flow with respiectiistance along the channgl;= the
bed slope of the channel; aBd= the slope of the energy grade line. Prasad [10pbhgsosed a numerical
solution procedure for Eq. (2.3) which can be aapto natural channels. In addition to the asswonptat

a is constant, the assumptions involved in obtainideg (2.3) include: no lateral flow, a hydrostatic
pressure distribution, a constant bed slope, angtraght, very wide channel, or alternatively, an
approximately prismatic channel [17]. Because thgation ina with depth and thus with distance along
the channel has been neglected, application ofE8) to a gradually varied flow in a compound ci&n
will lead to incorrect water-surface elevationseTdenominator of the term on the right-hand sideqn(2.3).
arises from a consideration of the variation ot#jgeenergy with depth, a portion of which is doechanges in
with variation of specific energy with depth, a fian of which is due to changes m with depth in
compound-channel flow. Furthermore, the use po€&n cause the right-hand side of Eq. (2.3) to imeco
indefinite at a depth that does not correspontieécattual critical depth.

As an alternative to Eq. (2.3), water-surface pesfiare compound in natural channels by the
standard step method [6] in which the specific gmas computed explicitly. In this case, Hoes not
appear in the equation to be solved, but it is usestead to indicate whether the solution is in the
supercritical or subcritical flow regime. For comyoal channels, neither F noy Eorrectly indicates the
flow regime. Thus, incorrect solutions of the engmguation can be accepted when the depth is
near critical depth.

Compound-Channel Froude Number

Previous Investigations: Previous investigations of the problems associatétth defining the Froude
number in compound-channel flow have been undentdiat the focus of these experiments
has been the quantification of changes in the bamynshear stress distribution resulting from momnent
exchange between the main channel and floodpldie. Hederal agencies which maintain and use water-
surface profile programs recognizes the Froude eumifficulties in compound channel as describethi
previous section of this paper, and they examiresehdifficulties in their user's manuals. The Soil
Conservation Service (16), e.g warns of differeat@s much as 0.7m between Eq. (2.1) and the aritic
depth determined by F and the critical depth ddtexdhby minimum specific energy.

The American Corp of Engineers presented an alguarib solve for the depth corresponding to
minimum specific energy is compared with the peoflepth to check the flow regime rather than utieg
froude number as a check.

The United States Geological Survey (USGS) proptise use of an index Froude number based
on the Froude number of subsection carrying thatgst discharge. The index Froude cross-sectidrit bu
is also recognized better reflect the flow regino@sider the index Froude number to be a true Froude
number, but rather a warming flag that identifiesgible flow-regime problems. A later version oé th
USGS Water Surface Profile Program incorporatesudire to determine the depth of minimum specific
energy.

Chaundhry and Bhallamudi [9] have proposed ahdisge-weighed Froude number without
experimental corroboration in order to eliminatee ttomputational problems associated with the
occurrence of two points of minimum specific energy compound-channel flows. Although their
proposed Froude number succeeds in doing this entifging only one value of critical depth, it is
nevertheless somewhat arbitrary and is divorcemh titte concept of minimum specific energy.

Clearly, the Froude number should be formulatedetftect the specific energy curve under
consideration and should indicate critical deptthatpoint (or points) of minimum specific ener@uch a
Froude number would produce correct numerical Ematof the gradually varied flow Equation; Eq.3R2.
and would eliminate the need for time-consumingin@s used to solve for the depth of minimum specif
energy in standard step water-surface profile cdatfmns.

Derivation and Formulation. — The specific energ¥, for a one-dimensional compound-channel flow is igive
by

aQ’ (2.4)
2gA?

in whichy = the depth of flow. The kinetic energy flux cottien coefficient,a, is defined as

E=y+
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j VdA

(2.5)
ViA

a =

in which v = the velocity through the element ofaidA; andV = the mean cross-sectional velocity (3,6).
Alpha is thus a measure of the non-uniformity @f tlelocity distribution. For computational purpqsfeswy

is conventionally divided into channel and overbanksections by appropriately located verticaldindnich
are assumed not to transmit shear stress fromamtm®s of flow to another, and which do not conttéto
wetted perimeter. Wright and Carstens [15] havegsstgd that the wetted perimeter of the subsection
dividing line be retained for the main channel, &éimat the shear stress applied by the main-chdlovel
section on the overbank section be considered. rRlega of the manner in which the main flow-flood-
plain interaction is treated, the basic assumpiictihe computation o, as previously mentioned, is that
the contribution of the non-uniformity of the veitycdistribution within each subsection is negligiln
comparison to the variation mean velocity between subsections. If Eq. 2.5 @iag with this assumption
to a compound channel, which has been divided subsections, the kinetic energy flux correction

= —i ! ( )

in whichk; = the conveyance of thth subsectiong, = the area of théh subsection; an = Zkl = the

conveyance of the total cross section (3.6). TlEsection conveyance is computed from the Manning’s
equation as follows:

2/3
« = AR
ni
K :i:QS_IZ

2.7)

in which, n = Manning’s Coefficient, = hydraulic radius = a/p and p = wetted perimeter.

The point (or points) of minimum specific energy abtained by differentiating Eq. 2.4 with
respect toy and setting the derivative equal to zero. Becawdbh d and area are functions of depth, the
differentiation produces [14]

2 2
dE _, aQ dA, Q da_, (2.8)
dy gA® dy 2gA° dy
Noting thatdA/dy = T, and that by rearranging terms, the following exgimsis obtained:
2
aQT _ Q da_, (2.9)
gA®  2gA? dy
The left-hand side of Eqg. 2.9 is unity at the pahtminimum specific energy; therefore, a compound-
channel Froude numbeg €an be defined from Eq. 2.9 as

1/2
Fo[aQT_ Q da (2.10)
¢ 20/ dy

At the point of minimum specific energy Will have a value of 1.
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Fig. 1 Definition Sketch for Evaluation of dgdy rate of change in the wetted perimeter with pest to

depth of flow in the subsection

With the exception ofla/dy, all of the terms on the right-hand side of EQ.2at€ routinely,
determined in water-surface profile computationsliation ofda/dy can be achieved by differentiating Eq. 2.6
with respect tgy. As shown in Appendix I, the derivative becomes

da _ Ao, + o [2AT _ Ao, (2.11)
dy 2ga? °

K® K*

i ai

o, = z(kz] (2.13)

o, zﬂ:][st ~n ‘ZF;H 214)

In Egs. 12-141; = the top width of théth subsection; and dpi/dy = the rate of change étted

inwhichg, - 3 l(kiﬂai i ZF; ﬂ (2.12)

perimeter with respect to depth of flow in the #lbsection. Evaluation afp; /dy is simplified by the fact
that the cross-section lines. The definition sketchig.1 (which is a portion of a right overbanksection)

shows the water-surface intersecting the segn@@t This line makes a contribution aAp to the

subsection rate in wetted perimeter. The rate aihgh in wetted perimeter with respect to depth is a

constant. Therefore can be evaluated as

@:%
dy Ay
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(2.15)

n=0.08
' n=0.03 ' n=0.08
| |
i 18m
200m
_ 24m | (a)
1 1
n=0.08 : :
! ' n=008
] ]
! n=0.03 ' ¢
200m 18m
P 24m (b)

Fig. 2. Channel Cross sections for evaluation ofegjific energy and Froude Numbers (a) Cross Section
A: (b) Cross Section B.

The termsAp and Ay are generally determined when computing the gedcnptoperties of a
cross section for use in a water-surface profitpam. It should be noted that if the water surfac point
e, dp /dy should be evaluated for the line segmélgt, but if the water surface is at poitdp/dy should be

evaluated for the line segmead. In situations where the water surface does notrsets the wetted
perimeter of a subsection (e.g., the boundary batviiee main channel and overbank stadg)/dy is the

sum of Ap; /Ay for each of the banks.

The working equation for the compound-channel Feomdmber can be obtained by substituting
Eq. 2.11 into Eq. 2.10 and simplifying:

2 2
F :LQKa [a;(as _Ulﬂ (16)
g

If the Manning'sn value is considered to vary with depth of flow inyasubsection,0, and

0, can be written to reflect the variation:

g, = ZI(K]z[StI - 2ri % _amJ] (217)
P& dy n dy

o, = ZKKIE’“ o P _adniﬂ (218)
~\& dy n dy

in whichdn, /dy = the rate of change in n, with respect to deptitoof.
3.0 EVALUATION

The behavior of the compound-channel Froude nunihenmnay be evaluated by examining the
specific-energy diagrams of two idealized, symratross sections, each conveying 142°mCross section
A (Fig. 2(a)) is from [9]. In Fig. 3, the specifemergy curve of flow cross section reveals two tgoof
minimum specific energy at depths of flow apprd¥72m and 1.62 m. These points are indicatedtgn@ G,
respectively, in Fig. 3.

F. for this cross section is plotted in Fig. 4 alomith F and F, . As expected, all three equations
produce the same curve below top of bank (simpsacll situation), but only Eq. (2.16) fog €orrectly

locates G, the upper depth of minimum specific energy 2.0&nal connects with the lower curve at the top of
bank depth.
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Fig. 3. Specific Energy for Cross Section A Conveyil40nt/s

The shape of the Froude number curve is indepémdehe discharge, and the fiducial point €
1) can be shifted left or right by varying the tiagye. This means that oncgi$-plotted for a particular cross
section and discharge, points of minimum specifiergy for other discharges may be determined withou
the necessity of constructing new specific-eneriggrms. In effect, the variable:FQ provides a universal
horizontal scale for Fig. 4 which depends only lo@ tonveyance and geometric properties of thecpéati
cross section. Thus, for a given depth of flow, thigical dischargeQ., can be computed by taking the
reciprocal of the corresponding valueFof/ Q, becausd- ./ Q f or the given depth equalsQ{ for the
critical condition.

Cross section B is presented in Fig.2 (b) ancdiffrom cross section A only in that the flood
plains have a 100:1 slope toward the channel. pieific-energy diagram cross section B (Fig. S)gals a
single point of minimum specific energy below tdibank at the same depth of flow as for cross sad

(point G,).

33

3.0

2.7

23

Depth of Flow in Meters

20 [— ]

1.7

2.0
Froude Number in Meters
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Fig. 4.—Froude Numbers for Cross Section a Conveyibg0ni/s

The three Froude number curves shown in Fig. @rfoss section B are again identical below top okba
but Feach indicate another point of minimum above topaoik at depths of flow of 1.98m and 2.07m,
respectively.

The occurrence of these false points of minimuncigigeenergy is a more serious deficiency of
Egs. 2.1 and 2.2 than the errors in crucial deptiws in Fig. 4.

It is evident from these two examples that the Beooumbers generated by Eqgs. 2.1 and 2.2 are
not acceptable for use in the gradually varied fleguation Eq. 2.3. Neither definition of Froude tem
faithfully reflects the specific-energy diagram overbank flow situations, and either would produce
divergence from a correct profile solution. It guelly evident that Egs. 2.1 and 2.2 are not satisfy for
checking the flow regime in the standard step netlnly . in Eq. 2.16 accurately reflects the specific-
energy diagram and indicates the correct flow regifrhe experimental investigation into the occureen
of two points of minimum specific energy in theléaling portion of this paper offers guidance foe th
interpretation of the flow regime between the tvaings of minimum specific energy, Cl and C2, ingg0
section A (Fig. 3).

40 Experimental Investigation

The experimental investigation consisted of meagupoint velocities in a compound-channel
cross section which was formed by constructing rglsi rectangular overbank section in a laboratory
flume. Sufficient point velocity measurements wemade at eight different depths of flow (at
approximately the same discharge for each deptbpmapute the discharge, mean velocity, Kinetic gyer
flux correction coefficient, and specific energy feach complete details of the experimental procedte
given by the writer.

The experiments were conducted in a tilting steshé (24.38 m) long, (10.7m) wide, and (0.46
m) deep. The flume was provided at William Fraidé¢ydraulic Laboratory of the University of
Strathclyde, Glasgow. Uk. This flume was also usgfl4] and details of its construction is giverdve
The overbank section was constructed of 27cm ier@xt plywood and two-by-six fir framing lumber,
resulting in the channel dimensions shown in Fig\ll.wooden components were coated with sand
sealer and exterior acrylic-latex paint. The oveKosection was attached to the flume with silicdhesive.

Point velocities were measured with a (1.83-mmjsidet diameter pitot-static tube operated in
conjunction with a differential pressure transducBata collection, reduction, and analysis were
accomplished with an HP9825A desktopmputer controlling a digital voltmeter which meesd the
voltage output from the pressure transducer andngpéfier. Point velocity measurements were made at
station 19.81m downstream of the flume entranceliRinary measurements were made at a station
18.29m downstream. Comparison of dimensionlesslgsodf velocity between the two stations indicated
that the flow was fully developed.

33 |
3.0

2.7

2.3

20 [

Depth of Flow in Meters

1.7 [~

0 03 07 10 13 17 20 23 27 3.0 33 37 40 43 47 50

Specific Energy, inmeters
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Fig. 5. Specific Energy for Cross Section B Conweyil40ni/s

The preliminary experiments indicated that a disgdaf (0.048 riis) would produce a specific-energy
curve with two points of minimum specific energyn &stimate of the error in setting the discharge to
(0.048 nils) included the calibration error of the Ventugter used to measure the discharge and also include
an estimate of the error introduced by observettifhtions in the Venturi-meter manometer duringctherse
of an experimental run. The estimated error intdisge was of the order of £3%, which was the sange
of error observed between individual dischargeerdgned from the Venture meter and the discharges
determined by integration of the point velocity s@@ments.

Establishing a truly uniform flow profile for thexperimental runs proved impossible. Any
discharge flowing near the depth corresponding toimum specific energy, as these were, could be
expected to be inherently unstable. The instabilihs exacerbated by the variations in the overbank
surface, which were of the order of (0.3 cm). Stagdvaves in and a cross-hatched water surfackein t
channel thwarted efforts to achieve a uniform wateface profile. As a result, the adopted expentaie
procedure was to establish a profile as close toumn as possible such that the desired depthoof fivas
obtained where the point velocities were to be mmes The maximum observed change in depth for
overbank-flow runs was approx (1.5 cm) betweerctr@nnel entrance and the measuring station where th
flow depth was (17.3 cm). For larger depths of flthe water-surface profiles tended to be moreletabd
more nearly uniform. A profile at a depth of floW (21.3 cm) was established to demonstrate that a
uniform profile could be obtained in the downstreaeach of the flume if the depth of flow was
sufficiently greater than the depth correspondinginimum specific energy.

3.3

3.0

2.7

2.3

Depth of Flow in Meters

2.0

1.7

Froude Number
Fig. 6.—Froude Numbers for Cross Section B Conveyihg0On¥s

5.0 Results And Discussion

Table 1 presents the values of area, dischargeti&ienergy flux correction coefficient, and spiecif
energy computed from experimental measurementsdohn of the eight reported runs. Runs 5 and 6 are
not reported in the table because of operatiorfitalties during each run. It is apparent from tiesults
presented in Table 1 that as the depth increasethése experimental runs with overbank flow, the
proportion of the total discharge in the overbagétion increased. It should also be noted thav#hees
of a for the main channel alone are measurably latgen 1.0 because of the narrowness of the main
channel section.

Observations of the water surface for the four @rpental runs with overbank flow indicated greater
instability as the depth of flow decreased. Theewatirface instability was manifested by standirayes
in the overbank section and a choppy, cross-hatefatdr surface in the channel section. Beginning at
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the upper depth of minimum specific energy (rurayl continuing with decreasing depth, the standing
wave fronts in the overbank section were perpetaido the mean flow direction and then were bent
downstream into a cross-hatched pattern in ther@iasection characteristic of supercritical flovher
surface instability continued to increase for tkpegimental runs as depth decreased below topr.ba
The fact that, the water surface was

unstable for experimental runs 7 and 8, the first tuns below top of bank in Table 1, suggeststtiat
upper point of minimum specific energy could besidared the limit of subcritical flow for situatisfin
which two points of minimum specific energy occumiater-surface profile computations.

Overbank Section

wos°o

A

0.172m

0.837m >e— 0325m —»
1.162m >

A A

Fig. 7.—Cross Section of Flume and Overbank Section, LookinDownstream

The experimental specific-energy data in Tableel @otted in Fig8(a). Although the variation in
discharge from run to run causes some scattereirplbt, there is evidence of two points of minimum
specific energy. The experimental valuesagblotted in Fig. 8(b) show little scatter and inde&ahat
(alphaa) is primarily a function of depth of flow. This sérvation suggests that a specific-energy
diagram for a single value of discharge can betcocted by substituting the average discharge gtitei
runs 0.048 riis into Eq. 2.4 while using the experimental daiadl other variables. Fig. 9 presents the
resulting average specific-energy diagram. The pamits of minimum specific energy are more clearly
apparent in this figure.

The concept of computing a Froude number for the fin a subsection of a compound channel has
already been mentioned with regard to the USGSxirel@ude number [12]. The subsection Froude
numbers (computed with Egs. 2.1 and 2.2) for theearmental data of this investigation are preseirted
Table 2. The Froude number of the channel (Colr 8 of Table 2) is the index Froude number of these
experimental runs because the channel is the sidnsedth the largest discharge. All four depthsflofv
above top of bank are subcritical based on thexitteude number, but as shown in Fig. 9, the tweelo
overbank depths are not subcritical. For this drpemtal investigation, the index Froude number doats
correctly indicate the flow regime of compound-afelrflow.

Table 1: Values of Area, discharge, kinetic energylow correction coefficient and specific energy coputed from

experimental measurements.

Run | Y,(m) S E,in Ain Qin a Ain Qin a Ain Qin (13)
1) 2) €) (m) m? m*/sec 7 m? m¥sec | (10) | m* | m¥sec| «a
(4) ©) (6) (8) 9) 11) | (12
1 0.1983| 0.001018 0.2190 0.0589 0.0386 1.0840 @.020.0117| 1.108 0.0863 0.0503 1.192
4 0.1907| 0.001128 0.2142 0.0558 0.0393 1.083 0.020%093 | 1.132 0.0782 0.0486 1.198
2 0.1830f 0.001485 0.2135 0.544 0.0424 1.082 0.0188060 | 1.169 0.0701 0.0489 1.2p4
3 0.1730f 0.00209q 0.2142 0.0514 0.04b1 1.088 0.00080006 | 1.340 0.0592 0.0476 1.238
10 0.1425| 0.003300 0.2105 0.0424 0.04p6 1.096 - 0.0424| 0.0466| 1.096
7 0.1525| 0.002118 0.2135 0.0454 0.04r5 1.087 - 0.0454| 0.0475| 1.08}
8 0.1425| 0.003300 0.2105 0.0424 0.0466 1.096 - 0.0424| 0.0466| 1.096
9 0.1321| 0.004455 0.2142 0.0393 0.04)74 1.1p0 - 0.0393( 0.0474| 1.100
[9] apply the concept of a subsection Froude nurtdebtain their weighted Froude numbser,
which is given by
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Far (5.1)

in which g, = the subsection discharge; and F, = the subsetmumde number computed by Eq. 2.1. Values
of F, for the experimental data are presented ih Tof Table 2. As in the case of the index Froude
number, the weighted Froude number does not cbriiedicate the flow regime.

Analysis

The proposed compound-channel Froude number charditectly determined from the experimental
data. Attempts to use Eq. 2.10 fail because itifficdlt to determineda/dy from the limited number of
experimental data points. Eq. 16 fails becausesthge of the energy grade line is not preciselyvkmo
which means that the subsection resistance cagffiand thus the conveyankg, cannot be determined from
the experimental data. If it had been possiblestaldish a uniform flow condition for each run, #mergy
gradient would parallel the flume slope, and thevayance for each subsection could be computed from
the experimental data alone. The compound-chanr@idé number can only be determined indirectly
through an independent prediction of the experiaieasults.

Working in the same flume as used in the presesisitigation, [14] experimentally determined a
friction-factor relationship for smooth rectangutéiannels of the form

1 _

" =

in which f = the Darcy-Weisbach friction factor;chR = the Reynolds number. If it is assumed that5E2)

is valid when applied independently to each chasnkséection, the friction factdy, can be determined for
theith subsection. The mean velocity inithesubsection, y is then given by

v :(89239] (5.3)

203log(R,/f) - 130 52

in which r;= the hydraulic radius of the ith subsection; and=Sthe slope of the energy grade line.
Because the values fifandyv; obtained from Eqgs. 5.2 and 5.3 must be such higastibsection discharges
sum to the average measured disch@geof (0.048 n¥s), the following equation must be satisfied:

sz (5.4)

REENN

It has been implicitly assumed tl&tis the same for all subsections. Eqgs. 5.2, 5.3,5Adcan be
solved iteratively for the friction factor and veity in each subsection for a given total dischamgd
depth. The iterative solution procedure is givedetail by [2] and [9]. The velocities;, were calculated by
the procedure just described for the mean measlisetiarge of @ (0.048 ni/s). It was assumed that the
imaginary vertical boundary between the main chhame overbank section made no contribution to
wetted perimeter. Furthermore, the friction factdetermined for each subsection were converted to
Manning’sn values because the formulation for the compoundidegaumber, & is in terms oh. Then
values so obtained exhibited a slight variatiorhwdiépth; however, to facilitate the computatiorms)stant
n values of 0.03 and 0.08 were adopted for the cHaame overbank sections, respectively. From the
velocities andn values for each subsection, the specific energy @ardpound Froude number were
computed for a series of depths within the rangene&sured depths In the computation of the specific
energy and~, it was assumed that Alpha of each subsection had the value 1.0 rather themeasured
value. Inthis way, the computational procedure remained geddent of the measured data and was
executed in the same manner as would be expected détermining Ffor a natural river channel in the
course of a water-surface profile computation.

The predicted specific-energy diagram is shownim EO (a), and two depths of minimum specific
energy are apparent, although each depth is appataly 0.0067m smaller than the corresponding depth
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in Fig. 8(a) or Fig. 9. The entire specific-enemyve in Fig. 10 (a) is skewed slightly downwardi da
the left when compared with the measured curvegn8{a) or the average curve in Fig. 9.

Table 2: Froude Numbers for Experimental Data

Channel Overbank Weighted
y, in metre F F. F F, F
Run 2) (Eq. 1) (Eq. 2) (Eq. 1) (Eqg. 2) (Eq. 19)
()] (©)) 4) ©®) (6) 4
1 0.650 0.471 0.490 0.721 0.759 0.529
4 0.625 0.508 0.529 0.821 0.873 0.586
2 0.600 0.583 0.606 0.925 1.001 0.629
3 0.567 0.675 0.704 1.017 1.177 0.692
I I I I T 1 1 T
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Fig. 8- Specific Energy and Kinetic Energy Flux Crection Factor from Experimental Data
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The predicted compound-channel Froude number dari#g.10 (b) exhibits the behavior typical
for two points of minimum specific energy, and nscorrespondence with the predicted specific-energy
curve as expected.

To investigate the role that neglecting the transfelinear momentum to the overbank section
plays in the skew of the predicted specific-enarggve, the correction suggested by (15) was coreside
Although the correction improved the agreement betwthe measured and computed discharges in the
overbank section, especially at the larger depthes,effect on the computed specific-energy curve wa
minimal because of the relatively small changes which resulted from the correction.

0.25

) 7
S S
[} ()
@ 02 v o020 [ ]
€ €
£ c — ]
~ s Top of bank
3 o017 5] :
2 o o017
:': : | O channel ]
o o
= = b
=] overlank
% 0.15 da_ 0.15 | —]
[}
o o | U _|
b
0.15 0.15 — \ 1
l | | | 1
0.230 0.235 0.240 0.250 0.230 0.270 0.300 0.330 0.370

(a) Specific Energy in meters
(b) Specific Energy in meters

Fig. 10.—(a) Predicted Specific Energy in Experimer Flume for 0.047n%/s (b) Compound Channel
Froude Number for Fig. 10(a)

The skew in the specific-energy curve is most pumeed below top of bank depth where transfer of
linear momentum to the overbank does not occur.skiev in this portion of the curve can be attrillute
to selecting subsection a values of unity in coimguspecific energy. It should be noted that thetlie
of flow in the flume were small compared to deptfislow normally found in field situations. For #hi
reason, the velocity head in the flume makes aelaedptive contribution to specific energy, and any
adjustment to velocity head (such as subsect)onas far more effect on specific energy in thenitu
than it would in the field.

The same analysis can be applied to subcritical sanpebreritical flow regimes in field situations
where kinetic energy correction coefficients canasemuch as 1.4 or more in the main channel. For
subcritical flow where the velocity head is smal, adjustment to velocity head would be insignifica
For supercritical flow, the velocity head can be&®0r more of the depth, and anadjustment to
velocity head would have a significant effect oedfic energy. This reasoning explains the incregsi
leftward shift in Fig. 10(a) as the depth of flowadeases, and the implication is that predictedipe
energies and Froude numbers in field channels usdbkcritical flow conditions would be closer to
measured values.
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Conclusions

Existing formulations of the Froude number Egs2ntl 2.2 do not accurately reflect the specific-
energy curve for flow in a compound open channel @m not correctly locate points of minimum specifi
energy. A compound-channel Froude number Eq.2.1@eitved and is shown to accurately reflect the
specific-energy curve of flow in a compound opeartiel by correctly locating points of minimum sfieci
energy. When applied to a simple channel with uniforelocity distribution, the compound channel
Froude number is identical to Eq. 2.1, the conesati definition of Froude number.

The compound-channel Froude number is appropaatesé with the gradually varied flow equation E@
and provides the proper check of the flow regimemiised in conjunction with the standard step noetiio
water-surface profile computation. The proposedifieonumber is subject to the same assumptions that
apply to the equation of gradually varied flow coomty employed in water-surface profile computations

For some compound-channel geometries charactebiyedide, level flood plains, two points of
minimum specific energy can be computed for certdistharges. Laboratory investigation of a one-
dimensional flow demonstrates that this phenomexaonin fact occur, and indicates that the uppentpufi
minimum specific energy may be considered the primit of subcritical flow.

Appendix |. Derivation ofda/dy

K[ -
a_KBZ(aZiJ (A1

and differentiating with respect ygoroduces

da_ dk. dea
e a4l
HOEe ve
—la% | K'dy K® dy
Noting thatda/dy = t;, dA/dy = T, and dK/dy = z (dki/dy), the following is obtained:
da _ A? k ) dk kY’
WKZH] & ”[”
k%) 2AT 3A?
Rl (A3)
Sl ()

Evaluatedk/dy by writing Eq. 2.7 as
5/3
ki [149J & (A4)
n

Writing EqQ. 2.6 as

2/3

P
and differentiate with respect to y to obtain

a0k
dy {n JL3\p) d 3(p) dy (A5)

Again noting thatla,/dy = t,, and multiplying and dividing bg, the following is obtained:
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% = l[k']|:5tl — 2ri dp':|
dy 3(a dy (A6)

Substituting Eq. A6 into Eq. A3 and simplifyingstdts in Eq. 2.11.
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