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Abstract

The Adomian’s decomposition method is a powerful thrad which

considers the approximate solution of a nonlineagueation as an

infinite series usually converging to the accurateolution. It is

shown in literature that Adomian’s decomposition thed gives
better results than any other computational techn&s. We use this
method to tackle simple heat equation and compare tesult with

the closed form solution of the giving problem.

Keywords: Adomian decomposition method; accuracy; nonlirezpration;
closed form solution.

1.0 Introduction

In recent decades, the Adomian decomposition meftlagdoeen shown to be extremely efficient and
has substantial advantages in solving a wide ctdsslgebraic, differential, and partial differertia
equations without linearization or smallness asgiomp. This method leads to computable, accurate,
approximate convergent solutions to linear and inear deterministic and stochastic operator eqnatio
(see, [1-2]).

The Adomian decomposition method has been apptiedwide class of stochastic and deterministic
problems in many interesting mathematics and pbyaieas(see, [3-7]). This method has some signtfica
advantages over numerical methods. It providesytioalverifiable, rapidly convergent approximation
which yields insight into the character and theawédr of the solution just as in the closed forrntusion.
Adomian gave a review of the decomposition metmgside,[6,]). Several authors have compared the ADM
with some existing techniques in solving differémpes of problems. In [5], theljave compared the
Adomian’s decomposition method and the perturbatemhnique are used in solving random non-linear
differential equations. Particularly, [8jompared Adomian’s decomposition method and Rung#daK
methods for approximate solutions of some predatey model equations. [6] proposed a new appraach t
develop a non-perturbative approximate solution tf Thomas—Fermi equation. He showed that the
Adomian’s decomposition method minimizes the corapanal difficulties of the Taylor series in thait
components of the solution are determined elegdmtlysing simple integrals. Moreover, he showed tha
the Adomian’s decomposition method is fast convetrgand it attacks non-linear problems in a similar
manner as linear problems.

In this paper, we use the Adomian’s decompositiethwd to solve simple heat equation and compare
the result with the closed form solution. In secti@ we give general description of Adomian’s
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decomposition method and in section 3 we solve leihpat equation and we consider the result oldaine
to analytic result of the problem.

2.0 Adomian’s decomposition method

According to [1], we consider the nonlinear equatif the form

f(y)=0, (2.1)
which can be written as the following canonicahfor
y=b+R(y), (¥R) (2.2)

whenR is a nonlinear function and b is a constant.
The Adomian’s decomposition method consists ofesgnting the solution of (2.2) as a series

y=>Y,
n=0

: (2.3)
and the nonlinear function as the decomposed form
R(Y) = > B,,
n=0 (2.4)

whereB, (n =0, 1, 2, ) are the Adomian polynomials @f W, Vo, ..., ¥» given by

B, = - /l'y,ﬂ , h=012...
nl v {F{Z 0 (2.5)

Upon substltutmg (2.3) and (2 4) into (2.2) yields

Zyn—b +ZB

The convergence of the series in (2.6) gives tisirek relation

(2.6)

{yo =b
yn+1 =Bn’ n= 07172’ (2.7)

The polynomialsB, are generated for all kind of nonlinearity by Adami[3]. The first few
polynomials are given by

B, = R(Y,)
B,= y;R'(Y,)

I 1 "
BZ = y2 R(yo)+5 y12 R (yo)

(2.8)
It should be pomted out th& depends only ogo, B, depends only ok, andy;, B, depends only on
Yo, Y1, and ¥, and so on.
Hence we may also wri, asB,, (Yo, Y1, Y2, .-+, ¥)-
Let Sh=Yotyityat ...+ Y
Then S, =b + By +By+... + B,,.1 in the(m+1) term approximation of y. Such,®an serve as a
practical solution in each iteration.

Journal of the Nigerian Association of Mathematicé&hysics Volumel6 (May, 2010) 301 — 304Adomian’s
Decomposition Method in Solving Nonlinear PDE Olanrewaju, Eegunjobi and Oke Jof NAMP



3.0 lllustrations with examples
We want to solve the heat equation of the form

:i u% with the initial condition u(x, 0) = x.
ox\  0x

To obtain the solution, we use the recursivatiah in (2.8) by takingl, = x. The first Adomian
polynomial isBy = x. Therefore, we have, = t andB; = t. Finally, u, = 0 which follows that

u, (x, t) = Ofor all n greater or equal to 2. Putting these individuaingein (2.6) orS,, one gets the
exact solution.

Similarly,
U, :i(ia—uJ with the initial conditionu(x, 0)=—
ou\ udx X
The exact solution for the heat equation{x, t) :it'
For Adomian’s decomposition method, we use t);lerse'wzml relation again to obtain
Uy :i, A = %( Ul:%- A:—%, uz:t);, Az:—t)j3 and so on. In this manner the rest

of the terms of the decomposition series have batulated using MAPLE. Substituting these inditiu
terms we have

], t 2t
U(Xt) = U (X +u(xd+ u(xdh+.. ,U(X,t)=— 1+—+—2+—+...

x| x x* X
which gives the exact solution in the closed form.

Note that we used section 2 in order to solve problems igection 3 for better
understanding.

Conclusions

We have utilizes the Adomian’s decomposition mettmobeat equations and we established that it has
higher accuracy because it gives the same restiitthe analytic results. Many researchers havezeudil
this method to several nonlinear equations in Fllyidamics (see,[7,9,10])
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