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Abstract 
 

This paper investigates the condition leading to the onset of 
stationary convection in a low Prandtl number horizontal fluid layer 
in a porous medium heated from below with internal heat source.  
The internal heat source is taken as directly proportional to the 
temperature leading to a sinusoidal temperature gradient in the fluid 
layer. The effects of heat generation, porosity parameter and 
different Prandtl numbers, Pr are presented. The results show that 
the onset of stationary instability is hastened by increasing values of 
the internal heat generation as well as increments in the Prandtl 
number. Further, increases in the porosity parameter delayed the 
onset of stationary instability. 
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1.0  Introduction 

Buoyancy effect can become a major mechanism during a possible convective instability for a 
horizontal fluid layer in a porous medium heated from below and cooled from above. The instability of 
convection driven by buoyancy is referred to as the Rayleigh-Bernard convection. This phenomenon has 
wide range of applications in geophysics, engineering, and astrophysics. Among its engineering 
applications include material processing, crystal growth, cooling systems in nuclear reactors, cooling of 
electronic equipments and solar energy collections. In order to understand the physics of the onset of 
convection in a fluid layer heated from below, numerous theoretical and experimental studies have been 
carried out since Bernard demonstrated the onset of thermal instability in his early experiment in 1900. 
Comprehensive account of the various aspects of the determination of the criterion for the onset of 
Rayleigh-Bernard instability of this problem and its extensions could be found in [2], [4], [11] and [12].  

 Equally, the problem of thermal instability induced by internal heat sources has been extensively 
investigated due to its importance in atmospheric studies and convection of the mantle, to mention but a 
few. The presence of internal heat generation leads to nonlinear temperature distribution in the system and 
hence convection may occur whether the top boundary temperature is lower or higher than the bottom 
temperature as long as a negative temperature gradient of sufficient magnitude is maintained somewhere 
within the fluid. Various aspects of the problem of thermal convection in horizontal fluid layer have been  
carried out for different boundary conditions with uniform internal heat sources by [5], [7], [14], [15], [16], 
[17], [19] and [20]. For example, [17] studied analytically the problem of thermal instability of an 
internally heated fluid as well as heated from below, with various boundary conditions and showed that 
with increasing heat generation rate the fluid is prone to instability; while [16] studied the same problem 
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and found that the critical wave number for the onset of convection decreases as the internal Rayleigh 
number increases. [6] reported the conceptual design of a  
 

  
downward convecting solar pond filled with water – saturated porous medium in which the internal heat 
source varied exponentially with depth.  [13] studied the same problem with the effect of varying gravity in 
the vertical direction using the energy method. Their study revealed the possibility of subcritical 
convection.   

However, in most of these studies the conditions which lead to the onset of instability in a porous 
layer depend on two nondimensional parameters, namely the external Rayleigh number and the internal 
Rayleigh number. Recently, an impressive progress has been made in the understanding of thermal 
convection in Rayleigh-Bernard problem, namely the Rayleigh number, Ra and Prandtl number, Pr. This is 
particularly important in astrophysical environments where the Prandtl number of stars could be as low as 
10-8 as pointed out by [3]; and in the flow of liquid metals which have been used for rapid cooling of 
nuclear reactors Pr 1<< ([10] and [18]). The stability of buoyant – thermocapillary – driven flows have 
been studied for low Prandtl number fluids by [9] and, the characteristics and stability of buoyant – 
thermocapillary – driven flows in finite shallow cavities by[1]. Israel – Cookey [8] considered the problem 
of the effect of radiation absorption on thermal convection of a low Prandtl number horizontal fluid layer in 
a porous medium heated from below. 

Most of the previous work on the effect of internal heat sources on the onset of thermal instability has 
focused on the linear stability analysis of convective flows infinitely extended layers when the heat source 
is constant. The aim of this paper is to study the onset of thermal instability in a low Prandtl number fluid 
layer in a porous medium with internal heat source when the heat source is proportional to the temperature. 
We focus on the situation in which the basic state temperature and the basic temperature gradient in the 
fluid are sinusoidal with respect to the vertical displacement. The Prandtl numbers in the range 

1.0Pr001.0 ≤≤  are used for the case of two free-free boundaries.  
 
2.0    Mathematical formulation  

 
We consider a radiative absorbing porous layer of height h  heated from below and confined 

between two horizontal parallel surfaces located at 
2

* h
z −=  and 

2
* h

z = . The lower and upper surfaces 

are maintained at temperatures 1T  and 2T  respectively.  The fluid is assumed to be Newtonian with 

constant physical properties (kinematic viscosity,ν , thermal diffusivity, Tκ , and density,ρ ) except for 

the density in the buoyancy term, which in the Boussinesq approximation, depends linearly on the 
temperature as follows 

)](1[ 0
*

0 TT −−= βρρ     

 (2.1) 

where β  is the thermal expansion coefficient, *T  the temperature,  2/)( 210 TTT +=  and 0ρ  is the  

density of the fluid at temperature 0T , such that 21 TT > is the reference temperature.  Further, the internal 

heat source is represented by the introduction of the term )( 0
*

0 TTQ −  in the energy equation, where 0Q  

is some constant of proportionality. Let us introduce a Cartesian rectangular coordinate system such that 

the *z -axis is directed vertically upwards and −*x  and −*y  axes along the horizontal plane. The origin 

of the coordinates is located at equal distances from the horizontal boundaries of the layer. Thus, the 
convective motion is governed by the Navier-Stokes equation coupled to an energy equation.  Using the 

scales 2
0

2 )/( ,/ ,/ , hhhh νρνν  for length, time, velocity and pressure, respectively together with 

)/()( 210
* TTTTT −−=  for non-dimensionalization of the temperature, the governing equations governing 

take the form 
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0. =∇ V         
 (2.2) 

  VVk
V

   2χ−∆++−∇=
∂
∂

TGrp
t

      

 (2.3) 

  QTTT
t

T +∆=∇+
∂
∂

Pr

1
).(V       

 (2.4) 
The dimensionless variables are the velocity vector ),,( wvu=V , the pressure, p. The nondimensional 

parameters  
arising from the scaling of the equations are the Grashof number,  2

21
3 /)( νβ TThgGr −= , the Prandtl 

number Tκν /Pr = , the internal heat source, )/( 00
2

pcQhQ ρ= ,  the porosity parameter 

Kh /22 =χ , K  the permeability of the porous medium and k is the unit in the vertical direction and the 

direction of the acceleration due to gravity, g. Also, the operators 









∂
∂

∂
∂

∂
∂=∇

zyx
,,  and 

2

2

2

2

2

2

zyx ∂
∂+

∂
∂+

∂
∂=∆  are the gradient and Laplace operators in Cartesian coordinates, respectively. 

The boundary conditions are 
                2/1  ,0 ±== Tw   at   2/1µ=z     

 (2.5) 
 Equations (2.2) – (2.4) together with the boundary conditions (2.5) admits the following basic 
(stationary) solution 

    ,

2
2

1
  ,0 zSin

Sin
Tb αα−==V   zCos

Sin

Gr
pb ααα

2
2

= , PrQ=α   

 (2.6) 

where bT  and bp  are the basic temperature and pressure distribution of the system, respectively. It should 

be noted that the basic temperature distribution bT  is sinusoidal as a result of the fact that the internal heat 

source is proportional to temperature. 
 
3.0     Basic State and Linear Stability Analysis 
  

We now investigate the linear stability of the basic state with respect to infinitesimal disturbances 
which are periodic in the x and y directions. Following the standard normal mode procedures [2] and [4], 
we write the perturbed quantities as 

  ppTwvu bb +++=   ,  ),,,( θ0V      

 (3.1) 

where .  , bb ppT <<<<θ  Upon substituting these perturbations into the dimensionless equations (2.2) – 

(2.4), using the basic state solutions (2.6) and neglecting the products of the disturbances, we obtain the 
linearized perturbation equations 
  0. =∇ v         
 (3.2) 

  vvk
v 22 χθ −∇++−∇=

∂
∂

Grp
t

      

 (3.3) 
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  ( ) wQ
t 0

2 PrPrPr αθθ ++∇=
∂
∂       

 (3.4) 
with the boundary conditions       
  0   ,0 == θw   at 2/1±=z       

 (3.5) 

  0
2

2

=
∂
∂

z

w
 on a free surface      

 (3.6) 

where 
)2/(

)(

20 α
ααα

Sin

zCos







=  is the basic temperature gradient. 

Taking the normal modes of the form [4] 
  tt eyxfzeyxfzWw σσ θ ),()(   ,),()( Θ==      

 (3.7) 

where IR iωωσ +=  is complex amplification rate and IR ωω  ,  are real numbers.  Substitution of (3.7) 

into system (3.2) – (3.4) and the boundary conditions (3.5 and 3.6), eliminating the pressure and the 
velocity components u and v from the resulting equations, we obtain a system of linear differential 
equations with constant coefficients 
  Θ=−−−− 222222 ))(( GraWaDaD σχ     

 (3.8) 
  WQaD Pr)PrPr( 0

22 ασ −=Θ−−      

 (3.9) 
The above equations (3.8) – (3.9) are to be solved subject to the boundary conditions 

   2/1at         0 ±=Θ== zW  

   0...42 === WDWD       on a free surface   
 (3.10) 

In the above equations ,
z

D
∂
∂≡  fafh

22 −=∇ . Also, 2a  is a horizontal wave number arising from the 

separation variables and 2h∇  is the Laplace operator with respect to the horizontal coordinates. The above 

equations (3.8) – (3.10) constitute an eigenvalue problem for Gr with the parameters Pr, Q, a, χ  and σ ; 

and the critical value of Gr for the onset of instability is its minimum as Pr, Q, a, χ , σ ,  and a   are 

varied. Next, we proceed with the study of all possible disturbances for all wave numbers by eliminating 
Θ from the eigenvalue problem (3.8) – (3.10) to obtain a sixth – order linear differential equation with 
constant coefficient 
  

WaWQaDaDaD 2
0

2222222 Pr)PrPr)()(( ασχ −=−+−−−−   

 (3.11) 
subject to the following boundary conditions 

  0...42 ==== WDWDW    at 2/1±=z     
 (3.12) 
 
4.0    Results and Discussion 

 
For an idealized free – free boundaries, we assume a trial solution for (3.11) characterizing the lowest 

mode of the form ([2] and [4]) 
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  zSinwW π0=         

 (4.1) 

where 0w  is a constant. 

Substituting (4.1) into (3.11) and simplifying the relation for Grashof number as a function of Pr,Q , ,χ  

a  and σ : 

  
2

0

2222222

Pr

)PrPr)()((

a

Qaaa
Gr

α
σπσχππ +−+++++=    

 (4.2) 

 For the case of the onset of stationary instability, we set0=σ , caa = and cGrGr =  in (4.2), 

we obtain 

  
2

0

2222222

Pr

)Pr)()((

c

ccc
c

a

Qaaa
Gr

α
πχππ −++++

=     

 (4.3) 

 where cGr   and ca are the critical Grashof number and critical wave number, respectively. The critical 

wave number is obtained by minimizing (4.3). The modified Grashof number given in (4.3) reaches its 

minimum when 0/ 2 =∂∂ cc aGr .  Consequently, we obtain a sixth – order polynomial in ca  given by 

  0)Pr)Pr(()Pr3(2 222464226 =−−+−−++ QQaQa cc πχχππχπ  (4.4) 

Using the solutions of (4.4) together with (4.3), we are able to determine the critical Grashof number,cGr , 

which will determine the stability of the system. According to the usual classification, the system is stable 

whenever cGrGr <  and unstable whenever cGrGr > . Since we are interested in computing the critical 

wave number, Now, solving the characteristic polynomial (4.4) numerically using the symbolic software 
“mathematica” we obtain six roots for which only one real positive root exist as the critical wave 

number, ca . Using this root we obtain the critical Grashof number, cGr  for the onset of instability. For the 

analysis that follows, we consider the fact that cGr  attains its minimum at the centre of the channel and 

since 1Pr <<Q  as 10 →α .  

Numerically computed values of the critical wave numbers and critical Grashof numbers for 
various values of the parameters Pr,Q , and χ  are summarized in Tables 1 – 2. It observed from these 

tables that in the absence of  
the internal heat parameter, Q and the porosity parameter,χ  that is, when 0=χ  and Q = 0, the critical 

Rayleigh number is given by 511.657Pr == cricri GrRa and 2/π=ca . These results are in good 

agreement with those of [2]. Further, increases in the Prandtl number, Pr and the internal heat parameter, Q 
lead to decrease in the critical wave number and critical Grashof number. This in essence implies that 
increases in Pr and Q hasten the onset of instability. On the other hand onset of instability is delayed with 
increases in the porosity parameter,χ  irrespective of the values of Pr and Q. 

Tables 3 - 5 show the variation of Grashof number )(aGr on the wave number, a, for different values 

of the parameters Q, Pr andχ .  Table 3 shows a slight decrease in the values of Gr  as Q increases. This 

implies that increase in Q  hastens the onset of instability in the system. In other words, the presence of the 

internal heat sources destabilizes the system. Further, increase in Pr hastened the onset of instability (Table 
4); while the presence of χ delayed the onset of instability (Table 5). 

 
 
Table 1: Computed values of critical wave number, ca and critical Grashof number, cGr for  

    Pr = 0.001 and various values of Q and χ  
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χ  

ca  

Q = 0 

cGr  

Q = 0 

ca  

Q = 1 

cGr  

Q = 1 

ca  

Q = 2 

cGr  

Q = 2 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

2.22144 

2.22294 

2.22740 

2.23469 

2.24466 

2.25707 

657511 

659287 

664611 

673468 

685837 

701689 

2.22140 

2.22290 

2.22736 

2.23465 

2.24462 

2.25703 

657440 

659216 

664539 

673395 

685763 

701613 

2.22137 

2.22286 

2.22732 

2.23462 

2.24458 

2.25699 

657368 

659144 

664466 

673322 

685688 

701536 

 

 

 

 

 

 

 

Table 2: Computed values of critical wave number, ca and critical Grashof number, cGr for   

    Pr = 0.1 and various values of Q and χ  

 

 

χ  

ca  

Q = 0 

cGr  

Q = 0 

ca  

Q = 1 

cGr  

Q = 1 

ca  

Q = 2 

cGr  

Q = 2 
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0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

2.22144 

2.22294 

2.22740 

2.23469 

2.24466 

2.25707 

6575.11 

6592.87 

6646.11 

6734.68 

6858.37 

7016.89 

2.21767 

2.21916 

2.22360 

2.23088 

2.24082 

2.25320 

6503.50 

6521.09 

6573.80 

6661.51 

6783.99 

6940.96 

2.22386 

2.21535 

2.21977 

2.22703 

2.23694 

2.24928 

6432.27 

6449.68 

6501.88 

6588.73 

6710.01 

6865.44 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Variation of Grashof number, Gr with the wave number, a for 001.0Pr  ,2.0 ==χ  and 

various values of Q 

a Gr 

Q = 0.5 

Gr 

Q = 1.0 

Gr 

Q = 3.0 
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1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

4.2 

4.4 

4.6 

4.8 

5.0 

1288870 

1008060 

847409 

752490 

697463 

668895 

659346 

664521 

681899 

710017 

748075 

795708 

852855 

919670 

996466 

1083680 

1181870 

1291640 

1413700 

1548810 

1697790 

1288780 

1007990 

847356 

752444 

697422 

668857 

659310 

664486 

681865 

709983 

748039 

795672 

852818 

919630 

996425 

1083640 

1181820 

1291590 

1413650 

1548750 

1697730 

1288430 

1007730 

847142 

752260 

697257 

668705 

659165 

664345 

681726 

709843 

747898 

795526 

852667 

919473 

996260 

1083470 

1181640 

1291390 

1413440 

1548530 

1697490 

Table 4: Variation of Grashof number, Gr with the wave number, a for 0.1 ,2.0 == Qχ  and various 

values of Pr 

a Gr 

Pr = 0.001 

Gr 

Pr = 0.01 

Gr 

Pr = 0.1 

1.0 1288780 128723.0 12717.80 
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1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

4.2 

4.4 

4.6 

4.8 

5.0 

1007990 

847356 

752444 

697422 

668857 

659310 

664486 

681865 

709983 

748039 

795672 

852818 

919630 

996425 

1083640 

1181820 

1291590 

1413650 

1548750 

1697730 

100681.0 

84639.4 

75161.7 

69668.2 

66817.3 

65865.9 

66385.4 

68124.0 

70935.6 

74740.2 

79501.7 

85214.0 

91892.3 

99568.2 

108286.0 

118099.0 

129071.0 

141271.0 

154775.0 

169665.0 

9950.50 

8368.02 

7433.75 

6893.03 

6613.47 

6521.74 

6575.56 

6750.13 

7031.05 

7410.49 

7884.92 

8453.80 

9118.70 

9882.78 

10750.50 

11727.20 

12819.10 

14033.30 

15377.30 

16859.30 

 

Table 5: Variation of Grashof number, Gr with the wave number, a for 0.1 ,01.0Pr == Q  and 

various values χ  

a Gr 

χ =0.2 

Gr 

χ  = 0.4 

Gr 

χ  = 0.8 
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1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

4.2 

4.4 

4.6 

4.8 

5.0 

128723.0 

100681.0 

84639.4 

75161.7 

69668.2 

66817.3 

65865.9 

66385.4 

68124.0 

70935.6 

74740.2 

79501.7 

85214.0 

91892.3 

99568.2 

108286.0 

118099.0 

129071.0 

141271.0 

154775.0 

169665.0 

130139.0 

101746.0 

85495.1 

75885.0 

70304.0 

67393.7 

66401.8 

66893.8 

68614.4 

71415.1 

75214.5 

79975.2 

85690.3 

92374.5 

100059.0 

108787.0 

118614.0 

129600.0 

141816.0 

155338.0 

170249.0 

135802.0 

106004.0 

88917.8 

78778.3 

72847.1 

69699.5 

68545.3 

68927.3 

70576.0 

73333.4 

77111.7 

81869.1 

87595.4 

94303.2 

102022.0 

110793.0 

120671.0 

131717.0 

143999.0 

157593.0 

172582.0 

5.0       Conclusion 
  
The obtained numerical results illustrate the onset of thermal instability in a horizontal low Prandtl 

number fluid layer with internal heat source heated from below using the linear stability analysis for 
idealized free boundaries. The results illustrate that increases in the internal heat source parameter and 
Prandtl number lead to destabilization of the system; whereas increase in the porosity parameter led to 
stabilization of the system.  
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