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Abstract

This paper investigates the condition leading to the onset of
stationary convection in a low Prandtl number horizontal fluid layer
in a porous medium heated from below with internal heat source.
The internal heat source is taken as directly proportional to the
temperature leading to a sinusoidal temperature gradient in the fluid
layer. The effects of heat generation, porosity parameter and
different Prandtl numbers, Pr are presented. The results show that
the onset of stationary instability is hastened by increasing values of
the internal heat generation as well as increments in the Prandtl
number. Further, increases in the porosity parameter delayed the
onset of stationary instability.
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1.0 Introduction

Buoyancy effect can become a major mechanism dusingossible convective instability for a
horizontal fluid layer in a porous medium heateshfrbelow and cooled from above. The instability of
convection driven by buoyancy is referred to asRagleigh-Bernard convection. This phenomenon has
wide range of applications in geophysics, engimggriand astrophysics. Among its engineering
applications include material processing, crystaingh, cooling systems in nuclear reactors, coolifig
electronic equipments and solar energy collectidnsorder to understand the physics of the onset of
convection in a fluid layer heated from below, numes theoretical and experimental studies have been
carried out since Bernard demonstrated the onsétesfmal instability in his early experiment in 190
Comprehensive account of the various aspects ofd#iermination of the criterion for the onset of
Rayleigh-Bernard instability of this problem ansl éxtensions could be found in [2], [4], [11] aA@]]

Equally, the problem of thermal instability inddcey internal heat sources has been extensively
investigated due to its importance in atmosphertidies and convection of the mantle, to mention éut
few. The presence of internal heat generation lgad®nlinear temperature distribution in the sys&nd
hence convection may occur whether the top bounteEmperature is lower or higher than the bottom
temperature as long as a negative temperatureegitadf sufficient magnitude is maintained somewhere
within the fluid. Various aspects of the problentiermal convection in horizontal fluid layer heheen
carried out for different boundary conditions withiform internal heat sources by [5], [7], [14]5]1[16],
[17], [19] and [20]. For example, [17] studied anlally the problem of thermal instability of an
internally heated fluid as well as heated from belaith various boundary conditions and showed that
with increasing heat generation rate the fluid ieng to instability; while [16] studied the samelgem
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and found that the critical wave number for theedrnsf convection decreases as the internal Rayleigh
number increases. [6] reported the conceptual daxig

downward convecting solar pond filled with watesaturated porous medium in which the internal heat
source varied exponentially with depth. [13] stutlihe same problem with the effect of varying dyan

the vertical direction using the energy method. iTretudy revealed the possibility of subcritical
convection.

However, in most of these studies the conditioniclvttead to the onset of instability in a porous
layer depend on two nondimensional parameters, Iyathe external Rayleigh number and the internal
Rayleigh number. Recently, an impressive progress Ibeen made in the understanding of thermal
convection in Rayleigh-Bernard problem, namely Rag/leigh number, Ra and Prandtl number, Pr. This is
particularly important in astrophysical environnmemthere the Prandtl number of stars could be asabw
10® as pointed out by [3]; and in the flow of liquidetals which have been used for rapid cooling of
nuclear reactord?r << 1([10] and [18]). The stability of buoyant — therrapdlary — driven flows have
been studied for low Prandtl number fluids by [9idathe characteristics and stability of buoyant —
thermocapillary — driven flows in finite shallowwiaes by[1]. Israel — Cookey [8] considered thelgem
of the effect of radiation absorption on thermahweection of a low Prandtl number horizontal fluigyér in
a porous medium heated from below.

Most of the previous work on the effect of interhaht sources on the onset of thermal instabifiyy h
focused on the linear stability analysis of coniecflows infinitely extended layers when the heatirce
is constant. The aim of this paper is to studyahset of thermal instability in a low Prandtl numifieid
layer in a porous medium with internal heat sowrben the heat source is proportional to the tentpera
We focus on the situation in which the basic stataperature and the basic temperature gradiertein t
fluid are sinusoidal with respect to the verticabpthcement. The Prandtl numbers in the range

0.001=Pr< 01 are used for the case of two free-free boundaries.

2.0 Mathematical formulation

We consider a radiative absorbing porous layeratit h heated from below and confined

. h «_h
between two horizontal parallel surfaces locate@ a& _E andz = E The lower and upper surfaces

are maintained at temperaturds and T, respectively. The fluid is assumed to be Newtonidth

constant physical properties (kinematic visco#ity,thermal diffusivity, K7 , and densityp ) except for

the density in the buoyancy term, which in the Biussq approximation, depends linearly on the
temperature as follows

P =Pl BT -Ty)]
2.1)
where /3 is the thermal expansion coefficierli, the temperatureT, = (T, +T,)/2 and p, is the

density of the fluid at temperaturk,, such thatl;, > T, is the reference temperature. Further, the interna

heat source is represented by the introductiohetermQ, (T* —T,) in the energy equation, whefg,
is some constant of proportionality. Let us introella Cartesian rectangular coordinate system dwath t

the z -axis is directed vertically upwards and — and y* — axes along the horizontal plane. The origin

of the coordinates is located at equal distancem fthe horizontal boundaries of the layer. Thus, th
convective motion is governed by the Navier-Sto&gsation coupled to an energy equation. Using the

scales h,h?/v,v/h, p,(v/h)® for length, time, velocity and pressure, respedyivtogether with
T=(T" -T,)/T, -T,) for non-dimensionalization of the temperature, gogerning equations governing
take the form
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ov =0

(2.2)
%—\::—Dp+Ger+AV—){2V
(2.3)
oT 1
2+ (VO)T == AT +QT
ot VD Pr Q
(2.4)

The dimensionless variables are the velocity veéter (U,V, W), the pressurep. The nondimensional
parameters
arising from the scaling of the equations are thas@of number, Gr = ggn®(T, - T,)/v?, the Prandtl

number Pr=v/k;, the internal heat sourceQthQo/(pOCp), the porosity parameter

)(2 =h?/K K the permeability of the porous medium dnid the unit in the vertical direction and the

direction of the acceleration due to gravitg. Also, the operators[]= iig and
Ox 0y 0z
9> 9>  0°
=—_ _+___+_—_ arethe gradient and Laplace operators in Cartesian coordinapestingdy.
x> oy> 9z
The boundary conditions are
w=0T=%1/2 at z=pl1/2
(2.5)

Equations (2.2) — (2.4) together with the boundary d¢mwdi (2.5) admits the following basic
(stationary) solution

V=0T,=- 1a8'naz, p, = GraCosaz'a=\/QPf
ZSinE 2a3'n5

(2.6)
where T, and p, are the basic temperature and pressure distribution of stensyrespectively. It should

be noted that the basic temperature distribuligris sinusoidal as a result of the fact that the internal heat
source is proportional to temperature.

3.0 Basic State and Linear Stability Analysis

We now investigate the linear stability of the basic staté waspect to infinitesimal disturbances
which are periodic in th& andy directions. Following the standard normal mode proced@jesnd [4],
we write the perturbed quantities as

V=0+(Uuv,w), T, +6, p,+p
(3.1)
where 8 << T,, P << p,. Upon substituting these perturbations into the dimeressrequations (2.2) —

(2.4), using the basic state solutions (2.6) and negtethia products of the disturbances, we obtain the
linearized perturbation equations

tv=0
(3.2)

%:—Dp+Gr6k +0°%v - x°v
(3.3)
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Pr%—f = (D2 + PrQ)6’+ Pra,w
(3.4)
with the boundary conditions

w=0 6=0 atz=%1/2

(3.5)
0°w
>~ =0 on afree surface
0z
(3.6)
where, = (a) Cos(a7) s the basic temperature gradient.
°® \2)sSn(al2)

Taking the normal modes of the form [4]
w=W(2)f(x,y)e*, 8=0(2)f(x y)e"
(3.7)
where 0 = @ +i@, is complex amplification rate and, &, are real numbers. Substitution of (3.7)

into system (3.2) — (3.4) and the boundary conditidh$ @nd 3.6), eliminating the pressure and the
velocity componentss and v from the resulting equations, we obtain a system of linkerential
equations with constant coefficients

(D?-a*)(D*-a’ - y*-o)W =Gra’0o
(3.8)
(D?-a*PrQ-Pro)0@ =-a,Prw
(3.9)
The above equations (3.8) — (3.9) are to be solved subjéa bmundary conditions

W=0=0 at z=%1/2

DAW =DW =...=0 on a free surface
(3.10)

. 0 . : .
In the above equation® = 0_ Dﬁ f =-a’f . Also, a? is a horizontal wave number arising from the
Zz

separation variables arﬂﬁ is the Laplace operator with respect to the horizontal cooedindte above
equations (3.8) — (3.10) constitute an eigenvalue prokder@if with the parameters PQ, a, ¥ and T ;
and the critical value oBr for the onset of instability is its minimum as B, a, ¥, 0, anda are
varied. Next, we proceed with the study of all possible isiuwces for all wave numbers by eliminating

© from the eigenvalue problem (3.8) — (3.10) to obtain éhsixbrder linear differential equation with
constant coefficient

(D? -a*)(D? -a* - y*)(D? —a* + PrQ-Pro)W = —a, Pra’W
(3.11)
subject to the following boundary conditions
W=DW=DW=..=0 atz=%1/2
(3.12)

4.0 Results and Discussion

For an idealized free — free boundaries, we assume a trial sdioti(®11) characterizing the lowest
mode of the form ([2] and [4])
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W =w,Sn7mz
(4.1)
where W, is a constant.
Substituting (4.1) into (3.11) and simplifying theat#n for Grashof number as a function of ®r, Y,
a andO:
G = ( +a°)(r* +a% + y* + o) (i’ +a’ —-PrQ + Pro)
a,Pra’

(4.2)
For the case of the onset of stationary instability, wegsetO, a = a,and Gr = Gr, in (4.2),
we obtain
o = T+ +al +x*)(r +al ~PrQ)
¢ a, Pra’

(4.3)

whereGr, and a, are the critical Grashof number and critical wave number, regpctiThe critical
wave number is obtained by minimizing (4.3). The modif@éshof number given in (4.3) reaches its
minimum wherdGr, /6ac2 =0. Consequently, we obtain a sixth — order polynomiaingiven by

2al + (3 + x> -PrQ)a; - (i° + ' (x> -PrQ) - x*m*PrQ) =0 (4.4)
Using the solutions of (4.4) together with (4.3), we e to determine the critical Grashof numKsif, ,
which will determine the stability of the system. Accordtoghe usual classification, the system is stable
wheneverGr < Gr, and unstable wheneveir > Gr, . Since we are interested in computing the critical

wave number, Now, solving the characteristic polynomial) (Autnerically using the symbolic software
“mathematica” we obtain six roots for which only one reasifpee root exist as the critical wave

number@, . Using this root we obtain the critical Grashof numi§er, for the onset of instability. For the
analysis that follows, we consider the fact tait, attains its minimum at the centre of the channel and

since \/PrQ <<1 asg, - 1.

Numerically computed values of the critical wave numbers aritatriGrashof numbers for
various values of the parameters@r,and ¥ are summarized in Tables 1 — 2. It observed from these
tables that in the absence of
the internal heat paramet€),and the porosity parametgy, that is, wheny =0 andQ = 0, the critical
Rayleigh number is given bjrRa,,; = Gr,; Pr=657.511anda, = 7712 . These results are in good

agreement with those of [2]. Further, increases in the Bramehber, Pr and the internal heat parameer,
lead to decrease in the critical wave number and critical Grasmolbaru This in essence implies that
increases in Pr an@ hasten the onset of instability. On the other hand arfsestability is delayed with
increases in the porosity paramejgrjrrespective of the values of Pr a@d

Tables 3 - 5 show the variation of Grashof num@#r(a) on the wave numbea, for different values
of the parameter®, Pr andy . Table 3 shows a slight decrease in the valugsibfasQ increases. This

implies that increase i6) hastens the onset of instability in the system. In otleeds, the presence of the

internal heat sources destabilizes the system. Further, inineRs@astened the onset of instability (Table
4); while the presence gf delayed the onset of instability (Table 5).

Table 1: Computed values of critical wave number, and critical Grashof numbefsr_ for
Pr = 0.001 and various values@fand Y
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a, Gr, a, Gr, a, Gr,
X Q=0 Q=0 Q=1 Q=1 Q=2 Q=2
0.0 2.22144 | 657511 2.22140 657440 2.22137 657368
0.2 2.22294 | 659287 2.22290 659216 2.22286 659144
0.4 2.22740 | 664611 2.22736 664539 2.22732 664466
0.6 2.23469 | 673468 2.23465 673395 2.23462 673322
0.8 2.24466 | 685837 2.24462 685763 2.24458 685688
1.0 2.25707 | 701689 2.25703 701613 2.25699 701536

Table 2: Computed values of critical wave number@, and critical Grashof number, Gr_for

Pr =0.1 and various values ofQ and Y
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0.0 2.22144 | 6575.11 | 2.21767 | 6503.50 | 2.22386 | 6432.27

0.2 2.22294 | 6592.87 | 2.21916 | 6521.09 | 2.21535 | 6449.68

0.4 2.22740 | 6646.11 | 2.22360 | 6573.80 | 2.21977 | 6501.88

0.6 2.23469 | 6734.68 | 2.23088 | 6661.51 | 2.22703 | 6588.73

0.8 2.24466 | 6858.37 | 2.24082 | 6783.99 | 2.23694 | 6710.01

1.0 2.25707 | 7016.89 | 2.25320 | 6940.96 | 2.24928 | 6865.44

Table 3: Variation of Grashof number, Gr with the wave number,a for Y = 0.2, Pr=0.001 and
various values ofQ
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1.0 1288870 1288780 1288430
1.2 1008060 1007990 1007730
1.4 847409 847356 847142
1.6 752490 752444 752260
1.8 697463 697422 697257
2.0 668895 668857 668705
2.2 659346 659310 659165
24 664521 664486 664345
2.6 681899 681865 681726
2.8 710017 709983 709843
3.0 748075 748039 747898
3.2 795708 795672 795526
34 852855 852818 852667
3.6 919670 919630 919473
3.8 996466 996425 996260
4.0 1083680 1083640 1083470
4.2 1181870 1181820 1181640
4.4 1291640 1291590 1291390
4.6 1413700 1413650 1413440
4.8 1548810 1548750 1548530
5.0 1697790 1697730 1697490

Table 4 Variation of Grashof numbeGr with the wave numbeg for ¥ = 0.2,Q = 1.0 and various

values ofPr
a Gr Gr Gr
Pr=0.001 Pr=0.01 Pr=0.1
1.0 1288780 128723.0 12717.80
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1.2 1007990 100681.0 9950.50
14 847356 84639.4 8368.02
1.6 752444 75161.7 7433.75
1.8 697422 69668.2 6893.03
2.0 668857 66817.3 6613.47
2.2 659310 65865.9 6521.74
2.4 664486 66385.4 6575.56
2.6 681865 68124.0 6750.13
2.8 709983 70935.6 7031.05
3.0 748039 74740.2 7410.49
3.2 795672 79501.7 7884.92
3.4 852818 85214.0 8453.80
3.6 919630 91892.3 9118.70
3.8 996425 99568.2 9882.78
4.0 1083640 108286.0 10750.50
4.2 1181820 118099.0 11727.20
4.4 1291590 129071.0 12819.10
4.6 1413650 141271.0 14033.30
4.8 1548750 154775.0 15377.30
5.0 1697730 169665.0 16859.30

Table 5: Variation of Grashof number, Gr with the wave number,a for Pr= 001,Q =10 and
various values Y

0.8

X =0.2 X =04 X
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1.0 128723.0 130139.0 135802.0
1.2

100681.0 101746.0 106004.0
14

84639.4 85495.1 88917.8
1.6

75161.7 75885.0 78778.3
1.8

69668.2 70304.0 72847.1
2.0

66817.3 67393.7 69699.5
2.2

65865.9 66401.8 68545.3
2.4

66385.4 66893.8 68927.3
2.6

68124.0 68614.4 70576.0
2.8

70935.6 71415.1 73333.4
3.0

74740.2 75214.5 77111.7
3.2

79501.7 79975.2 81869.1
3.4

85214.0 85690.3 87595.4
3.6

91892.3 92374.5 94303.2
3.8

99568.2 100059.0 102022.0
4.0

108286.0 108787.0 110793.0
4.2

118099.0 118614.0 120671.0
4.4

129071.0 129600.0 131717.0
4.6

141271.0 141816.0 143999.0
4.8

154775.0 155338.0 157593.0
5.0

169665.0 170249.0 172582.0

5.0 Conclusion

The obtained numerical results illustrate the onset of thlemmstability in a horizontal low Prandtl
number fluid layer with internal heat source heated fromwvialsing the linear stability analysis for
idealized free boundaries. The results illustrate that increas imternal heat source parameter and
Prandtl number lead to destabilization of the system; whéneesase in the porosity parameter led to
stabilization of the system.
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