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Abstract

In this paper, a three-step discretization (numerical)
formula is developed for direct integration of second-order
initial value problemsin ordinary differential equations. The
development of the method and analysis of its basic properties
adopt Taylor series expansion and Dahlquist stability test
methods. The results show that the method is consistent,
zero-stable and convergent. The computer implementation of
the method with two sample problems shows that the method
is quite suitable for direct solution of second-order
differential equations without reformulation as first-order
systems.

1.0 Introduction

Direct discretization of second-order initial valpeblems of ordinary differential equations in
the form

y' =f(x,y,¥), y(@)=V,, Y(@)=yasx<b....... (1.1)

involves the determination of an approximatigntq the theoretical solution y(xof equation (1.1) using
some previously calculated estimates's, j = 0 (1) without reformulation as first-ordeystems. This
approach plays an important role in the field ofmevical analysis of real life problems such as stalal
mechanics, electrical network, radio-active procgamsonic, airflow and traverse motion just tontien a
few.

Many techniques of this type exist in Literaty@, [5] but because they involve reformulation of
the differential equation as first-order systerhsytare inefficient and cumbersome to implement.

These reasons perhaps motivated [6], [4], [2]] [b6adopt the direct discretization method for
integration of special second-order differential@ipns of the form

y' =1(y), Y(0)=Y,, Y(0)=2Z, ......cc00eeen..n. (1.2)

In this paper we consider a three-step numerarahdila of the form

yn+3 = aoyn + a:1.yn+1 + a2 yn+2 + hz(ﬂoy'r: + /Bly'r:ﬂ + Bzy'r;+2 + BSy'r:'+3) " (13)
for direct solution of equation (1.1). The paragnst gs andf;'s, j = 0 (1)3 are determined as to ensure
that the resultant formula is consistent, zerolstahd convergent. Taylor series expansion obbdes,
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Yy oy oy and their derivatives are used to generate theersysf algebraic equations from
n+3 n+2 n+l

where the values of the unknown paramegﬂrsal,az,ag,lg IB B, B are (generated) determined
0 1 2 3

while the basic stability property of the metho@xamined using Dahlquist stability model equation.
y' =y
1.4
The result showed that the formular is weakly fpistdout accurate. Numerical application shows
that the method is accurate and is suitable foutewi of ODES. The advantages of the method

include good efficiency and accuracy.

2. Derivation of the Method
The unknown parameters, &, &, Po, B1, B2 andps are determined from the system of
algebraic equations generated from the adoptiohagfor series expansions ofp.y Yn+2 Yn+3 and

their derivatives Y ,,,Y".,, Yr.5 as given in the local truncation error equation

Tn+3 =Y TAYn TAY i T &Yn T hz(ﬂoy + :81yn+1 + ,Bzyn+2 + lgsyn+3)

(2.1)
Thus, substituting

Yo = Z(3h) Yy (x,)

r=o r!
2 = ziyr (Xn)
h
n+1 z( )
v, z (3h) Yoo

" 2h r+
Vi = z( )

0

yn+1 Z yEIZ

into (2.1) yields a
T, = Z(s)y(x) a, y(x,) - aiZ yx,) - azZ

r=o

(h)

y'(x,) = Bh%Y' (x,) =

ﬂlhzzﬁy”z(xn) —ﬂzhzz@ y©2(x,) —ﬂﬁZ@ VAT ¢ 8 I 22)

Combining terms in equal powers of h in (2.2) téadi
T = (-3, -8,)y (x,) + @3- —2a,)hy'(x, )+(%—%ar262-ﬁ =B~ B = BINY'(X,)

27 8 81 1
+[6—a61—6a2—ﬁ1—2ﬁ2—3ﬂ3jh3y )+ Sy~ o KA -4 2 Y,
243 1 32
+ B, -23p, |n°y5
(120 120% 1207 FATERT ﬂ3j Y50,
729 1 64
(720 720 720 RCE T )
Imposing accuracy of order 5 on,.Jto have the system of equation
Ht1+ta— 1=0 (I)
a+23-3=0 (ii)
4 9
Sila,tf v BB B =0 (i)
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& 8arpe2p+35-2 0 (iv)
iq.@ +1lp 44 += —ﬂ':o (V)
24" 24 Ateh 2ﬁ3 24
a vip 42l 243 (vi)
12C 12caz sArelt 'g 3 12c
A, Y- E:o (vi)
72C 72caz 624 24[3 2 ﬁ 72C
In matrix nota‘uon, it becomes
1112 o000 O |, 4 - _
a, 1
12 000 O a 3
% 4% 111 1 a, %
% &% 0 1 2 3 B, 29 (2.4)

Yo W2 0 % % % ,31 = %
24

Yoo %0 0 ¥ 8 2% B 920
72

Yoo %20 O You 1954 s B 720

O O O O O o

By adoption of Gaussian method, the solution ofaheve equations is
(%, a.! &! BO Bl, Bz, B3) = ( 11 _31 3’ _}/21-%21%21%2) (25)
Substituting (2.5) into (1.3) yields a three-stepthod of the form

Y3 = 3dhez = b1+ Yo + (yn+3 +9Y1 = — yn)

(2.6)
with order of accuracy 5 and error constaft & }/24C'
In order to use formula (2.6), it is necessarkriow the previous values,.y, j = 0(1)2 of
y and f at x;, j = 0, 1, 2 and the step length h > 0. Thesklvalues can be generated by the fifth
order one step formula
yn+2
1+y,,,(2k + 3k, +4k,)

yn+3 =

(2.7)
developed in [19].
In(2.7), k=hg(x, z) , k=hg (x+%h, z+%k)
ks = hg(x,, z, + %hks) with g(x,,z,) =-Z:f(x,,y,) and

2= 2

In order to use formula (2.6), four important gdeobs arise, namely (i) the need to have

the starts values,y, j = 0(1)3 and their corresponding derivativesuwssly"”'’j "j=0(1)3

(ii) the choice of appropriate stepsize h and
(iii) the need to solve the implicit system of etioas (2.6), now

h?
yn+3 = A+ g(yn+3)

(2.8)
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Where

A =3yn+2 i 5yn+1 * yn
g(yn+3) = y'r’1+j l+ 9yn+2 _9yn+1 - yn

(2.9)

and (iv) finally the accuracy of the approximatigns.
The actual realization of the fomula (2.6) regsithe solution of implicit equation (2.8) rewnitte

as;
F (3 =0
(2.10)

2
Where F (}:3) = Yz — A - :ng(ymg)

This can be achieved by the adoption of quasi Ne\wt&vation scheme

2
[y = ypal-elyn 1 - (2.11)
12
Where A = aig(yms("‘)), m=0,1,2
6yn+3
The convergence condition is that
Yoo —y™
= [Fn+3 T3

< Tolerance
m m-
yn+3 - yn+3

(2.12)

3. The Basic Properties of the Method

In view of the process of derivation of the formalad computer implementation it is obvious that
the use of the method for solution of second-o@BESs is error proved. In order to be ascertain of

the accuracy and suitability of the method, thelysims of its basic properties such as consistency,
zero-stability and convergence are undertaken.

3.1 Order of Accuracy and Error Constant

The local truncation error,I; can be rewritten as
Tors = C, +Cihy(x,) + Czhzy"(xn) + Cshsys(xn) + C4h4y$)n) + CshSY((i:) + CehGY((Sn))
+0(h")

Where

G=at+tata-1
Ci=a+23-3
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4
Co= 2t a Bt B+ By B

8 27
C,=%+2a,+f+2p,+3-%

................. 3.1.1)
C.= %gﬂaz HB+ 2Bt By

5_13210 24 ﬁl ﬂ2 *& f:g

6_% 72ca2 fil ﬂﬁz 7'33 ;E?

Using the values of the parametgssandp;s as contained in (2.5) in (3.1.1), we have

C,=1-3+3-1=0
C,=-3+6-3=0

-3.12 1 9 9 1 9
C,=—+= i+ =+ =-Z=
2 2 12 12 12 12 2
- 3 8x3 9 9 3 27
C, = — +——-—-=
6 6 12 2(12} 12 6
-3 16 1 _81
G, = +—Q)+ ] ] -
24 24 2\12) 24

—3 9% 9 72 27 _243 _
120 120 72 72 72 120
_ -3 192 9 144 81 729
720 288 72 288 288 720
-3 384 9 288 243 2187_ 1
G = 540 504 1440 1440 1440 1440 240
SinceG=C =G, =G =G =G =G =0 but G# 0, then the order p of accuracy of the method

is 5 while its error constant ,G = 1
24C

C. =

6 —

3.2 Symmetry of the method

A linear multistep method such as (2.6) is symmdttD] if its parameters aj's arfyj’s satisfy
conditions of the form
g = &
B =Bkj» j=0(1)k/2 for even K
and
q - -a(-j . .
B =Bk =0(1)kifkis odd.
Now k = 3 is odd and

H=-1=-a
& =3=-3
x=1=-a

Hence, the proposed formula is symmetric.

3.3. Consistency

A linear multistep formula (2.6) is consistent [B]it has the following properties:
0] its order 0 > 1
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Kk
(ii) Ya=0
j=o

(iii) p M= p@F)=0frr=1
vy p'(r)y=2'8()=0atr=1
Where o (r) and & (r) are respectively called the first and secoharacteristics polynomials of

the formula [15].
Since the order P of accuracy of the method ikén condition (i) is satisfied.
Also since

k
Za}. —gtata+ta=1-3+3-1=0
j=o

then condition (ii) is satisfied.

Now, the characteristic polynomial equation of thethod is

h2
I(r, h) = - 3.3.1
(r,h) = p(r) 125(r) (3.3.1)
where,
p(r)=r-3F+3r-1 (3.3.2)
3(r) = 1—12(r3 +or2—or -1) (3.3.3)

are respectively the first and second charactenistiynomial of the scheme.
Now,
p (N=3°F-6r+3
Atr=1
PA)=-31M+31)-1=0=p"*(1) =3 1§+ (1) +3.
Thus 1V =p*1)=0atr=1
Similarly,

b'(r):l—]'z(r3+9r2 -or —1)

3(1) :le((1)3 +9()2-9(1)-1) =0

Therefore p *(1)= 2!5(1) = 0
Hence, the method is consistent.

3.4. Zero-stability

A multistep discretization method like (2.6) is ddb be zero-stable if no root r of its first
characteristic polynomial
P(r)=r-3F+3r-1
has modulus greater than one and every root witthulng one must be simple [5].
From the first characteristic equation (3.3.2),hase
p(n=(r-1§=0.
withrootsr=1,1,1
Showing that all the roots of the characteristioagpn lie within a unit circle. Hence the method
is zero-stable.
3.5 Convergence
Since the formula has been shown to be consistehtero-stable, therefore it is convergent [5].

4.0 Implementation
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As mentioned earlier, the actual realization ofnfata (2.8) requires the iterative solution of
equation (2.6) rewritten in the compact form

F(yd = 0 (4.1)

where,

2

h
F(yn+3) =Ynes~ 3yn+2 + 3yn+1 ~Yn~ T

2[fn+3+9fn+2 _9fn+l_fn] (42)

and y.3 is the approximation to the solution of initiallwa problems (1.1) evaluated at X maX
and F is an analytic function involving the valwdy and y" at the current and previous steps.

To solve equation (4.1) for,y; the values ofy',:ﬂ- , 1 =0 (1) 3 are required and they are estimated

by using the predicted iterates,.yj = 0 (1) 3 generated by formula (2.7). Thus eigua(4.1) is
solved by quasi-Newton iteration scheme.

WS = -F(y', s=0,1,2

n+3~n+3 n+3?

(4.3)

Where

s+l) _— ,(S+1) s
d§|+3) - yr('|+3) - yr('|+)3

h? df
W(S) =] -—= (s)
o1 )|
h2
F Y2 ) = Vs = 3o * 3o~ Ve -E[F(yﬁi’a +OF (Yn2) =9F (Voer) = F (V)]
The algorithm is achieved by adoption of predictorrector mode denoted by PEC

meaning Predict, Evaluate and Correct.

The values may be sensitive to error in the paktes; hence the current approximation
requires correction.

Thus, the idea is to first calculate the estimafgsand its derivative at the points
Xnj =% +jh,j=0(1)3.
Using the predictor formula (2.7) to serve as mofram where the iteration will begin.

There are two basic ways of implementing the ptedie corrector algorithm, namely, repeate
stages two and three until a prescribed error ¢mmdis met. The ultimate solution is the
approximation y,; to the exact solution yfx) of equation (1.1). The mode is called iteratton
convergence ([14]; [15]; [5] and [1]). Its stabjlis essentially that of the corrector formularedoThe
second option is to repeat stages two and thredi¥ed numbers m times to yield approximation

y(m) where 2<m < 5. The entire process is implemented in P(E@Gpde.

n+3

In this paper, the first approach, that is, PEC eniscadopted because it is cheaper to realize . The
mode is described as

P: W J =0(1)3, using formula (2.7)
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E: y'ryw-l = y" (Xn+j, yn+j)l j: 0(1)3

2

fv2)+ 9 (y,.0) - 9f (v,) - £ (v, )}

h
C :yn+3 = 3yn+2 - 3yn+1 + yn - 12

The error estimate is obtained from

) _
Error = M (4.4)
S, s-1
Yotz = Yo

The iteration is terminated whenever
Error < Tolerance (4.5)
5. Numerical Experiments

In order to assess the applicability and accurddhe method, the formula was computerized in
Fortran Programming Language and implemented ofceooomputer with some sample initial value
problems adopting double precision arithmetic. pgesformance was checked by comparing the
approximate solution with the exact solution of #guations using two second-order initial value
problems. Its accuracy is determined via the efzéhe discretization error estimateg abtained by
subtracting the approximate solution from the esponding exact solution of the problems.

The two sample problems and their computed reatétss shown below.
Problem 1:
The first problem considered is the second-ordeblem

y'-x(y)* =0,y(0)=1,y (0)= %

whose exact solution is

y(x) = 1+/J/2|n(2+ kj
2-x

Problem 2:

The other second — order initial value problem solved is:
y'+y=0,y(0)=0,y(0)=1

with exact solution
y(x) = sin x

These problems are solved with fixed stepsize Y= The results are as shown in tables 1 and 2.
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Table 1: Numerical solution of Peohb 1, with stepsize h &,,.

N | X, y(Xn) Yn

0 | 0.000000000 1.000000000 1.000000000 0.000000000
1 | 0.025000000 1.012500644 1.012500644 0.000000000
2 | 0.050000000 1.025005221 1.025005221 0.000000000
3 | 0.075000003 1.037517548 1.037513733 0.00000381%
4 | 0.100000001 1.050041676 1.050026178 0.000015447
5 | 0.125000000 1.062581539 1.062542558 0.000038981
6 | 0.15000000 1.075141072 1.075062871 0.000078201
7 | 0.17500000 1.087724328 1.087587118 0.00013721(

8 | 0.20000000 1.100335360 1.100115299 0.00022006(

9 | 0.2250000 1.112978220 1.112647414 0.00033080¢

10 | 0.2500000 1.125657201 1.125183463 o.ooos7sossr
11 | 0.2750000 1.138376474 1.137723446 0.000653028
12 | 0.3000000 1.151140451 1.150267303 0.000873089
13 | 0.3250000 1.163953424 1.162815213 0.00113821(

14 | 0.3500000 1.176820040 1.1752366998 0.001453042
15 | 0.375000060 1.189744830 1.187922716 0.001822114
16 | 0.400000000 1.202732563 1.200482368 0.002250195
17 | 0.42500000 1.215788126 1.213045955 0.002742171
18 | 0.45000000 1.228916645 1.225613475 0.003303170
19 | 0.47500000 1.242123008 1.238184929 0.003938079
20 | 0.50000000 1.255412817 1.250760317 0.00465250
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Table 2: Numerical solution of Prob2mith stepsize h 3,

Xn y(%n) Yn
0 | 0.000000000 0.000000000 0.000000000 0.000000000
1 | 0.025000000 0.024997396 0.024997396 0.000000000
2 | 0.050000000 0.049979169 0.649979169 0.000000000
3 | 0.075000000 0.074929707 0.074945316 0.000015609
4 | 0.100000000 0.099833421 0.099895835 0.000062414
5 | 0.125000000 0.124674730 0.124830723 0.000155993
6 | 0.1500000000 0.149438143 0.149749979 0.000311837
7 | 0.175000000 0.174108148 0.174653605 0.000545457
8 | 0.200000000 0.198669344 0.199541599 0.000872254
9 | 0.225000000 0.223106384 0.224413961 0.001307577
10 | 0.250000000 0.247403994 0.249279692 0.001866698
11 | 0.275000000 0.271546960 0.274111807 0.001564847
12 | 0.300000000 0.295520246 0.298937321 0.003417075
13 | 0.325000000 0.319308817 0.323747218 0.004438400
14 | 0.350000000 0.342897662 0.348541498 0.005643636
15 | 0.375000000 0.366272599 0.373320162 0.007047564
16 | 0.400000000 0.389418393 0.398083210 0.008664817
17 | 0.425000000 0.412320852 0.422830641 0.010509789
18 | 0.450000000 0.434965611 0.442562456 0.012596846
19 | 0.475000000 0.457338517 0.472278655 0.014940143
20 | 0.50000000 0.479425579 0.496979237 0.017553657

6. Conclusion
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7.

10.

11.

12.

13.

14.

15.

16.

17.

In this paper, a three-step numerical formula is developed,saubfnd used to solve two sample
second-order initial value problems of ordinary differentigliations. Theoretical analysis show that
the method is consistent, zero-stable and convergent whiteriaal experiment shows that the
scheme is quite accurate. The method will therefore be sufablgirect numerical solution of
second-order differential equations arising in physicanistey, biology and economics.
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