Journal of the Nigerian Association of Mathematical Physics
Volume 16 (May, 2010), pp 253 — 264
© J. of NAMP

On A Two-Stage Supply Chain Model In The Manufacturing Industry

'Bakare Emmanuel Afolabi, ?Ogban Gabriel |yam and *Chima R. Nwozo

'Department of Computer and Information Science,
Lead City University,Ibadan,Nigeria
“Department of Mathematics and Statistics
Cross River University of Technology, Calabar,Nigea
®Department of MathematicsUniversity of Ibadan,
Ibadan, Nigeria
Corresponding author: emaiinmabak2000@yahoo.carfiel. +2348034867587

Abstract

We model a two-stage supply chain where the upstream stage (stage
2) always meet demand from the downstream stage (stage 1).Demand
is stochastic hence shortages will occasionally occur at stage 2.Stage
2 must fill these shortages by expediting using overtime production
and/or backordering. We derive optimal inventory control policies
under Decentralized, Coordinated and Centralized control. The
centralized control model is applied to a manufacturing
industry(Associated Match I ndustry,| badan).

1.0 Introduction

In this research work, we study a two-stage suppain where the upstream facility always meets
demand from the downstream facility. We assumedbeand is stochastic, and hence, shortages will
occasionally occur at the upstream facility. Iderto fill these shortages, the upstream facitityst
employ either overtime production or backorderife study this supply chain under the centralized
control where a single controller makes all theiglens for both facilities.

In traditional supply chain situations, downstredauilities make decisions about their order
guantities without regard to the actual inventovgiible upstream. If the Upstream facilities da n
have enough inventory on hand to fill the order$s bften assumed that the downstream facility wil
take what it can get and backorder the rest. dieroto avoid these shortages, the upstream fasiliti
have traditionally set their inventory level higmoaigh so that the likelihood of not meeting
downstream demand is low. However, the shift talwaean inventory has caused a reduction in
inventories, possibly increasing the likelihoodtbése shortages. Moreover, the cost of premium
freight (already high, though hard to estimate)céstainly not decreasing in today’s competitive
markets. Therefore, many facilities use variousnto of expediting to meet supply requests when
shortages occur.

We have modeled our problem after the actual irorgrntontrol problems faced by a large match
industry in Ibadan, which we refer to as “Assodiatdatch Industry”. Associated Match Industry
produces matches. The associated Match Indussrthinee branches (NMC, Safa and Chambon)
which work together to produce matches. Backondgis considered an option in both facilities.

In our model, we have attempted to capture thenessef the interaction between NMC and Safa.
We feel that our model may apply to the Computet Blectronics Industries as well, where many
manufacturers have reduced or even eliminated tbgirirements for warehousing and receive parts in
just-in-time fashion.
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Finally we feel that our results yield new insighto a common assumption in the inventory
literature. In most single location inventory misjeét is assumed that supply requests upstream are
always met without

considering how and at what cost. Our results sthatvsupply requests can always be met upstream
using some form of expediting, but that may be nlask expensive for the system if the downstream
facility is sensitive to the inventory situationstgeam and adjusts supply requests accordingly.

We have determined the optimal policies for thepdpuphain under centralized control when both
options for filling shortages are available. Howegvior clarity of exposition, we will consider gnl
one of the two mathematically equivalent optiongrdime production, throughout most of this paper.
The results are the same if we consider only batgkarg. We include the slightly more complicated
optimal policies and proofs.

We consider the situation where the two stagesietally part of a single firm and are controlled
by a single manager. That manager has completeniation from both stages, makes all the
decisions and attempts to minimize the total systests. This manager knows the inventory levels at
both stages and makes the different decisions coimceproduction at stage 1, regular production at
stage 2 and overtime production at stage 2.We dpuble relaxed version of our problem. We also
derive the optimal inventory control policy for geal under the relaxed conditions. We show that
stage 1 will occasionally “under-order” to avoid thxpedition at stage 2 but will force expediting a
stage 2 if the system inventory is very low. Wewthat the optimal inventory control policy foreth
entire system is base-stock under the relaxed tiondi We prove that the optimal relaxed policies
are actually the optimal policies for the originllly constrained problem and we list the optimal
policies for both stages and the system. We imchatkordering as an expediting option. Finallg, w
conclude and discuss managerial insights for thérakzed model.

The literature on supply chain with expediting et-sp costs upstream is limited. [3] consider
supply chains with stochastic demand, constant taads, and with set-up costs under centralized
control. [7] consider an m + 1 stage supply chalirere decisions must be made at each echelon about
how many products to ship by regular means (whaites one period) and how many to expedite
(which occurs simultaneously). Each expedited mmgitirs a per unit cost higher than the per urst co
of regular shipping. They show that a “top-dowrisb-stock” policy is optimal where the upstream
managers ignore downstream decisions.[9] considércastage system with one warehouse and
several retailers. They assume modified one-fer{®1, S) policies for both regular and expedited
orders and develop a procedure to find optimalgygliarameters.

Although our paper is related to those just memtihnour paper is related to papers where
outsourcing is used to meet shortages, but outtsestill differ. One reason is that we includeixed
cost when shortages occur, whereas most outsouasisigmptions only include a per unit cost. For
example, in [4] the cost of outsourcing is the saasdt is from within the supply chain. In [8], the
author transform their outsourcing units into badeo penalties, effectively allowing negative
inventory levels upstream, even though supply reguare always met.

Finally, in our proof of the centralized model, wse the results discussed by the following
authors: [10], [12], [2] and [11], [5] and [6]. Ehang’s paper, he shows that (s,S) policies atienah
given that the expected one period cost functiogquiasi convex, which we show using a
result from [10]. We use this result to prove dpgimal policy for the system inventory. The téxt
Bertsekas has several useful propositions; spatlificone proposition states that if the optimal
function satisfies Bellman’s equation under assiongtwe show to be true in our model. Finally we
assume that our demand distribution is log concave.

The rest of this paper is organised as follows:

In section 2, we define our model, develop costfioms, substitute system variables for supplier
variables and relax two constraints. Under thedaxed conditions, we determine the optimal
inventory control policy for stage 1, we show tleiage 2 occasionally “under-order” to avoid
expediting at stage 2 but will forced expeditingtage 2 if the system inventory is very low int&et
3. In section 4 again under the relaxed conditives show that the optimal inventory control policy
for the entire system is base-stock. We provettieabptimal relaxed policies are actually the i
policies for the original, fully constrained prolbiieand we list the optimal policies for both staged
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the system. We include Backordering as an expeditiption. Finally in section5, we conduct a
numerical computation and discuss Management itsi@ection 6 concludes the paper.

1.1 Basic Concepts And Definitions

A supply network or chain for a product (services or total solution to cansu needs) consists
of several companies that are involved in the maetufing and delivery of the production from raw
material to its end consumer.

Holding Cost/Carrying Cost: This is the cost incurred in the process of kegmn item of
inventory in the store.

Inventory: An inventory is any resource that has value oisfsation of future needs e.g. raw
materials, finished goods, loosed tools and conbissatc. It is a detailed list of all items incko

Inventory Control: An inventory control is concerned with decisiongls as when to order or
produce, how much to order or produce, what tygesontrol system should be in place to minimize
total inventory cost.

Set-up Cost(Ordering Cost)This is the cost incurred in making stock availalnlehe present
location. If the goods are purchased from outsigwpbkers, those costs are called Ordering Costs. If
the items are produced in the company, they amresf to as Set-up Costs i.e. the costs are ircturre
from the time the request is made for the itemmftbe stores to the time the request are retumted i
the stores.

Policy: A policy is a rule that determines a decision give

Backordering Cost: This is incurred when a customer's demand canmofulfilled because
inventory is completely depleted. For a firm indngra temporary shortage in supplying its supplying
its customer’s goodwill due to delay.

(s,S) Policy: This is a 2-parameter decision rule where s=iragntevel at which an order is
placed and S= inventory level to which to order.

1.2 DEFINITION OF VARIABLES

D, = the exogenous demand during period t

X1,t = the stage 1 inventory position at the start afquet

Z1,1 = the stage 1 production quantity during period t

y1,t = the stage 1 inventory level after productionimiyiperiod t

%. 1 = the stage 2 inventory position at the startexiqul t.

Z,, ¢ = the stage 2 regular production quantity duriagqd t

Y»,+ = the stage 2 inventory level after regular praiducduring period t

X, ¢ = the stage 2 inventory position at the start adrtimne after receiving demand from stage 1

during period t

2, + = the stage 2 overtime production quantity dupegod t

Yo, + = the stage 2 inventory level after overtime piaiaun during period t

During the production processes at each stageyusadosts are incurred. At stage 1, linear costs
are assessed for production){cholding (h) and backordering (h At stage 2, linear costs are
assessed for productionJCholding (), and backordering ¢h Overtime production incurs linear
(Co) plus fixed (Kg) costs. These costs are assumed to be discoenveey period by a factor af with
O<a < 1. Throughout this paper, we utilize the folloginotation:

X" =|xifx>0 X =| xifx<0 O(x) = xifx>0
0 otherwise otBerwise 0 othemvis
1.3 MODEL ASSUMPTIONS:

(A)O<a<1
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(A,) Demand is discrete, stationary, non-negativelagetoncave
(Ag) Forallt,0<u<o

(Ag) <G

(As) b > (1-0) C;

(Ae) by > (1-0a) Ci + (Gla - &)
(A7) h<a(hy +(1-a) Cy)

A function F (w) is said to be log concave in %o (F(x) is concave in X i.e. the assumption
means that we require our demand distribution t@ lasmooth shape with at most one mode). For
the discrete distribution that we counter, we ugenice properties of log concave functions: the

fraction F(X+12‘) F(X) is non-increasing in x and the convolution of agjiconvex function with a
F(x
log concave demand distribution remains quasi conve

2.0 THE SUPPLY CHAIN MODELS

We model a two-stage supply chain where the upstistage (stage 2) always meet demand from
the downstream stage (stage 1).Demand is stochesiice shortages will occasionally occur at stage
2.Stage 2 must fill these shortages by expeditsigguovertime production and/or backordering.We
derive optimal inventory control policies under Batralized, Coordinated and Centralized
control.The centralized control model is applied aomanufacturing industry (Associated Match
Industry, Ibadan).

2.1 DECENTRALIZED CONTROL

Under decentralized control, stage 1 ignores s2agad follows a simple base-sock policy. Stage
2 also follows a simple base-stock policy if theseno set-up cost for regular production. When we
include this set-up cost at stage 2 two decisioastrhe made: how much to produce during regular
production and how much to produce during overtpnaduction. We show that the optimal regular
production policy is an (s, S) policy and that timal overtime production policy depends on the
cost parameters.

2.2 COORDINATED CONTROL

To coordinate the two stages, we develop two cotgrdoth contracts depend on a two-tiered
wholesale cost and a linear transfer payment. @ontk achieves system optimality but requires the
two stages to share cost information. Without sttargost information contract B achieves near-
optimality for the system (optimality for the avgeacost case).Under both contracts an appropriate
transfer payment may be negotiated that benefits ftages.

2.3 CENTRALIZED CONTROL

Under centralized control which is where we focydbd two stages work together to minimize
system costs. By substituting system variablestage 2 variables and relaxing some constraints. We
show that the optimal policy at stage 2 has tweptp-to levels and depends on the available system
inventory. We also show that the optimal policy &iage 2 is to ensure the system base-stock is
achieved.

2.4 OPTIMAL POLICIES
We are interested in finding the optimal polimyout of all possible admissible polici€sand
hence the optimal total discounted cost over thiaita horizon f(>).This function will exist according
to proposition 1.1 of page 3 of Bertsekas if g igefk” variables)= 0. We seek to solve the optimal
cost function f* () = min f; (xo) whererE I in order to
determine the optimal inventory control policies.
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2.5 THE RELAXED PROBLEM

In this problem, the centralized manager makesthezisions at once about production at the
two stages. So for the one period experienced dgttire system are

een (X1, Y1, X2,Y2,D) = KoB((Y1-X1) - Xo) + Co((Y1-Xa) - X2) ™+ ho(Xo- (Y1

x2)) "+ A(Cy (YaXa) + &Yz~ (X2 = (1-X2))") + Mu(y1-D)” + by (y1- D))

With y; <X and ¥ > (%2 — (Y-X1)) "

The first two terms are overtime production coste, third term is the holding and backordering
costs at stage 2. The further term is the prodnatost at stage 1, the fifth term is the produrctiost
at stage 2, and the last two terms are holdingbaa#tordering costs at stage 1. Note that we assume
there is a fixed cost for regular production ateitstage for the remainder of the paper. Clegly(.)
> 0 and hence the Optimal cost functigqn(k;,X,) satisfies

f* cen (leXZ) = min ED(gcen (XlaylaXZvyZvD) +a f*cen ((yl'D)v yZ))

Y= X1
Y2 (%o — (Ya-Xq))"

The argument that minimizes this equation is thénwgd inventory control policy which we
seek. Moving the a ¢;x; back to the preview period asie,(y;-D) and rearranging terms. We get:

een,m (X1, Y1,X2,Y2,D) = a(1- @) Cry1+02C;D+Kod ((Yi-X1) — %) +Co((Y1-X1) — %) +

(he-a G) (Xo-(y1-X1)) " + a(Cayz+ a (hy (y1-D)"+by (y1-D)) (2.1)

Under the same restriction. Note that f*cenX® = -0 ¢ X+ ffcen,m (%,X,). We originally
tried to solve this problem in terms of stage 1 atafje 2 variables but found that the solution lent
itself more easily to stage 1 and system variablgsfine the system inventory position asx{+x,
and the system inventory information,s) and (%,Xs). We substitute these variables and rewritg g

m(.) as
GeenM (X, XsY1,Ys D) =0 (1- 1) Crys+ 0°ciD + o (hy (y2-D)+ by (y1-D))+ kod (ya-Xg) +
(Co-aCy) (Ya-Xs) "+ho(Xsy1)™ +0cy (Y1-Xo) (2.2)

with y;=x; and ¥ = y;+(Xsy1)+. Note that the seconds restriction is equiviaiery; =max (y,xs).Also,
we can rewrite @, m(.) as

GeenM(X1,Y1,Xs YD) = L1 (Y1,D) + La(Y1,Xs) + ACx(Y1-Xs)

Where L (y1, D) represents the terms on equation (2.1) afigh X)) represents the terms on equation
(2.2).

We can now rewrite the fully constrained optimastctunction which we would like to solve
namely

fcenm (Xlaxs) =min ED [gcenm(xlvylyXSaySa D) + f’kcen;m (yl'D) (ys'D)]

iz Xq
¥s2 max (%,Y1)

To solve this equation, we relax some of the cainds; later we show that these constraints are
always met by the optimal solution to the relaxeabfem and thus solve the original fully constraine
problem.

First we drop the constraints thatys.For later reference we label the relaxed assumgtio

(R1) y2=2x; and

(Rp) Ys2y1, when y>xg

After relaxing the constraints, our relaxed cost period has the same costs as, gi(.) but
with only one constraint;

Oeens(Y1:XsYsiD) = L1 (Y1,D)+ La(y1,Xs) + ACx(YsXs)

With yexg.

THEOREM 2.1 geen (Y1, Xs1Ys D)=20
Proof: Every term of @, r (Y1,Xs:Ys: D) iS non-negative except possibly the first téfrgn< 0
Geen r(Y1.XsYs: D)2 0 (1-0) C1,Y; - abyy; + abyEp(D)
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=a ((1-a)cy-by)ys+abyu=0
Because gn(Y1,Xs:YsD)=20, proposition 1.1 of Bertsekas holds and the edlasptimal cost
function f*..,r satisfies

* cen (X)) = Min B(Qeenr(Y1:Xs,Ys D) + 0f* cenr(Ys-D)
2.3

Y1,YS2XS
=min (B (L1 (Y1, D)) + Li (Y1,X9) + aCx(YsXs) + Ep (f*cenl(ysD)
)ﬁ-ygxs
Here it is important to notice that under the rethxondition y1 has o effect on eithgioy the costs

to go,aEp (f*cenr(YsD)). Thus
f* cenr (Xs) = min(ED(Ll(yl, D) + LZ( ylyxs)) + GCZ(ys'Xs) + GED(f* cenr (ys'D))
Y=Xs

;I’Zin (m (%) + acy(ys-xs) + OEp(f* cenr(ys-D)))

Where m (¥) = min {Ep(L4(y1, D)) + Ly(y1,%9)}. Finding the optimal inventory policy for stage
1 has become a myopic problem which we solve inntiwet section. For later reference, we also
define the related function'nfxs) = m(xy) - a2cu where m(xs) represents all of the system costs that
are not due to production. For convenience, wdysim(x) below but test our final result in terms of
m'(Xs).

3.0 STAGE 1 RELAXED OPTIMAL POLICIES:

In this section, we determine the optimal inventpojicy for stage 1 for the relaxed problem.
We study the function m {xand show that the stage 1 policy depends onlthersystem inventory
level x. Define Ny(y;) and N(y,) as:
And NH(y2)=( a(1-a)ci-hp)ys+aEp (ac,D+hy(y1-D) +by(y1-D))
n
NL(y2)=( a(1-0)ci-Co-0cp) y+aEp(ac,D+hy(y1-D) +by(y,-D))
The function Ny(y,) corresponds to the stage 1 costs whgxyand the function Ny;) corresponds
to the stage 1 costs whepys. We now have that
m(xs) = min (B (L1(y1D)) + La(y1Xs)
Y
=min { Ep (Ly(y1D))+ he (XsY1)
% { Ep (La(y1, D) +kot(Coraco)(y1-Xs)
= min - { s+ min(Ny(y1)

Y1 XEXS
{ Ko(co-ac)xs+ min {N(y.)}
y1>Xs

Before continuing our study of mJxwe derive properties for{/,))

1. N (Y1) and Ny(y,) are convex iny

2. 0< Y Sy

Returning to our study of m {xand defining N(¥ = Ep(L1(xs,D)), we have that

m(Xs) = min | BXs*Ny(yH) if &yn
NG if 1< X < Vi
Be(Co-aC2)XsNL(YL) if X<t

Define the as the smallest w such that N, — (Gy-acy) w+N; (y;. We get that
m(xg) = W if yH
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Xs ift < Xs < Yn
Ly if <ty

Proof: By the definition of m(X

4.0 SYSTEM RELAXED OPTIMAL POLICY

In this section, we determine the relaxed optin@icy for the system. Given m {)x we now
have the optimal relaxed cost functions in termsystem variables only, we have

f* cenr(xs) = mln(m()%) +GC2(ys'Xs)+ GED(f* cen,l(ys'D))

We move the m (x and acoxs terms back to the previous period @a®s(ys-D) and asc, (ys-D)
respectively and get

f* cens (Xs) =min G(l'a) C2ys+aED(m(ys'D)

= min %en s (ys)+ GZCZP-"'GED(f* cen S(ys'D)) }

Y2Xs
Where Gen Ys) = a(1-0)CystaEp(M(ys-D))
We need to justify two steps next. First we carventhe two terms back a period and.g¥.)
will have the same optimal policy asd(.)
We have that

* cenr(Xs) = M(X)-0CXsH* cons(Xs)

THEOREM 4.1. For the relaxed problem, the optimal inventoonteol policy for the system
inventory is a base-stock policy.
Proof: Consider g@,s(Ys):
Gcens(ys) :G((l-C() Cayst m(ys'D)
=a((1-a) (cyscD+eD)+m(ys-D))
=a((1-0) :D+g'(ysD))20
Where the inequality holds because g#{.) Note from Lemma 3 that g+(.)is a quasiconvex
function with a minimum point. Now considetds(Ys):
Geens(Ys) = aEp ((1-a)cystm(ys-D))
= a((1-a)cEp(D) + Eo(g+(ysD)))
The first term is a constant, and the second terandonvolution of a quasiconvex function (g+(y
D)) and a log concave probability distribution bgstymption(A2). Thus Gcen,s(.) is a quasiconvex
function according to [10] and [1].

4.1 FULLY CONSTRAINED OPTIMAL POLICIES

In this section, we show that the optimal inventooytrol policy that solves the relaxed problem
also solves the original fully constrained probleRmom section 2 we have that

* cen (Xl,Xz) = -0Cy X +* cenm(xly Xs)

From the previous section, we have that

* cenr(Xs) = M(Xs) -0CXsH* cens(Xs)

The missing piece of the puzzle is to show that

f* cenm(Xlixs) = f*cenr(xs)

By doing so, we verify that the optimal policiestéid in section 3 and 4 are truly optimal. We
must show that the optimal policies fords(xs) minimize f*,,m(X1,X) and that both (R1) and (R2)
are met.

Theorem 4.2:
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* cenm(X1,Xs) = T cenr(Xs)
Proof: The optimal policies for §&, (xs) minimize the costs for £&,m(X1,%s) because both relaxed
constraints are met and goes not affectyor the costs to go.

For the original, fully constrained problem, we nkmow the optimal policies for stage 1, stage 2,
and for the system.

Wi ifXs= Yy
Yeen1= % ift < X<Yn
yoooifx<t
X if % > S*cen
Y*cens =

S*en if X < S*.enand

y*cen,zz y*cens - y*cen,l

Now, under the assumption that the initial systementory is less than the system base-stock
level, x<S*.., we can further calculate £, (x;,Xs)

f* cen,](xlaxs)

=-0C X+ Feenm (X1,%9)

= -0CyXyt M- ACXstMin @(1-0)CzYst AEp(M(YeD))+ a’Coptt AEp(f* cenS(3-D)))
-C(C1X1+m(Xs) -GCZXS+G(1- cx)CZS*cen"' cxED(m(S*cen'D))'|' GZCZI-'H' GED(f* cens(S*cen'D))
-C(C1X1+m(Xs) - cxszs'm((]-'C()CZS*cen'|'ED(m(S*cen'D)) + GCZIJ)(1+C()

-C(C1X1+m(X1) - OCoXst ((1'G)CZS*cen+ED(m(S*cen'D))+ C(sz)

a
1-a

= -0Cy X tm (Xs) + cxCZ(S*cen'Xs) + (ED(m(S*cen'D)) + c;(((-'\14'(:2)'"l

4.3 OPTIMAL POLICIES WITH BACKORDERING
In this section, we study the problem where botartitme production and Backordering are viable
options. We follow the analysis from the previdie sections but add additional comments and
proofs when necessary. In this problem, the awertproduction decision is a real decision. If a
shortage exists, the manager must choose how nfuitte shortage to fill with overtime production
and how much to fill with backordering. We wiltéast show that it is optimal to pick one of the athe
expediting options, but never both. We modify asstion (A6)
(A9) bi=(1-0cy)+b,
(A10) ke=ab,
(A11) g=a(by+cy)
Using the same notation as before, we now devéleparious cost equations:
Ocen (X1,Y1,X2,Y2,22,D) = Kod(Zo+hp (Xo-(Y1-X1)+22)+
+ADO((X2-(Y1-X1) +22)) + by (Xo-(Y1-X1)+2Z + OC1(Y1 - Xo)
+0C; (Y2 (X2-(Y1-X0)+22))+ a(hy (y1-D) +by (y2-D)

Under the same restriction, substituting systerabéas, we get
Qenm(Xl,YLXS,yS,Z,D?
a(l-a)cyys+a(ac,D+hy (yi-D)++by (y1-D)-) (4.1)
+Kod (22)+(Co-0C)Zo+hy (Xsy1+22)+ (4.2)
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+beO((XS-y1+25)-)+ ACP(XS-Yi+2) (4.3)
+0Cz (YsXs)

with y;>X4,2,20, and y&y;+(XsY1,+2)+ = max {y;,xstz;}. We can rewrite g,m(.) as

gcenm(XlaylaXs:YS-ZZa D) = I—1 (yluD)+|—2 (yZuXS:ZZ) + acs (ys'xs)

Where L; (y;, D) represents the terms on the equation (4.1)Lar(gh,Xs,2,) represents the terms
on equations(4.2) and (4.3)

Again, we relax some constraints. First we drapdbnstraint thatgx;. Second, we relax the
constraint on the system inventory position so tmy y=>x.. For later reference, we label the relaxed
assumptions as:

(Rl) M2X1 [R1=Relaxed assumption 1] and [R&axed assumption 2]
(R2) y=max (%,Xstzs, D) = L1 (y1,D) + o Cy(ysxs)
With z,>0 and y=xs. The function g.,(.) can be shown to be non-negative by analysigasino
Lemma and we can thus use the same result frorséd@s for the optimal cost functionds,
f*cenr(xs)
=min Egcenf(YLXSayS.Zz, D)+ a fx cenr(ys'D)) (4-4)

YSE)_(S, 220y,
=min aLll(yl! D))+L2(yl!XSaZZ)
Y>XsZ:20,y1 | +0C(Ys-Xe)+ AEp(f* cenl(Ys-D))

Again, it is important to notice that under theasedd conditions yyand z, have no effect on either
ys or the cost to gayEp (f* cenr(ysD) Thus,

f* cen r(XS)
=min (BL1(y1,D))+ La(y1,%1,22)}
2>0,y;
HCy(YsXs) HAED(F* cen (YsD))

Where m (x)=Min {EpL(y1, D)} + La(Y1,X22)}. Finding the optimal inventory policy for stade
has become a myopic problem that now depends, @mg 2. Now consider m(¥ under two cases.
When stage 1 does not order more than the systeemtiory on hand (¥xs) and when stage 1 does
order more than the system inventory on hanpelxy. In the first case, we get that

Lo(Y1,XsZ2) = Kod(2Z2) + (C-0C2) Zo+hy (XsY1+22)
= kd(22) + (hptCo-0Co) Zo+hy (XsY1)

Which is minimized when,z0 and thus L (Yy1,Xs2)=hs (XsY)+0CoXs when y<xs.

In other words, if there is not a shortage don& asertime production.

In the second case, there are options.

Ly (Y1.XsZ2)=

abt+ab; (yi-xg) If =0
ktab. + (G-a(b+cy))zo+ab; (Yi-Xs) If 0<z,<y1-Xs
Kot (Co-01C2)(Y1-Xs) If Z=y1-Xs
Kot (he+Co-0Co)Zo+hy (XsYa) If Z>y1-Xs

Before returning to m ¢ define Nm(y) as

Nim(yD)= a{(1-a)ci+bs} y 1 +aEp(ac;D+hy (y1-D) +by (y1-D))

Define y,=argmin {Ny(y1) is convex and we havef, <y, <yy<wo

[O<y,by assumption (A6) ycy, by assumption (A10), ¥y by algebra andpxw as before]

We have
m(xs) = min {E(L1 (y1,D))+ L1 (Y1.XsZ2)
Z,20,v;
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BXs+N(Yn) If Xs= yy

= N If tw < X< Yy
abe-abyxstNy (Y v) If t, < X<ty
(4.5)
ke (Co-ac)xs+NL(YL) If Xs< 1t

Where {, is defined as the smallest w such that N¢vab.-ab,w+N(Y ) and t is defined as
t= Ko+Ny (y1)- abe = Ni(ym)
€a(Cy + ©)
We have now defined mfxexplicitly and again determined the relaxed optirmventory
Control Policy at stage 1.

y*cen,l = y-l If styH
X If ty<X<<yn
(4.6)
Y] If t1<X<tm
Y If X<t_

From equation (4.5) we have that
P eedXs)=min{m(xs)+ acy(ys-xs) +aEp {F* cen,{ys'D)}}
X5
As earlier we move the mfxand eac,xs terms back to get
f*cens()%) = min {Gcens(yS) + acp+a ED(f* cenr( Ys 'D))}
Where céer’as(ys) = C((l-d) Cst+ED(m(ys'D))}-

5.0 Application

We consider a problem that has a Poisson demard mg&an 20 in a match Industry (AMI)
Ibadan, where stage 1 which is the downstream stagmlled NMC and Stage 2 which is the
Upstream stage is referred to as SAFA. The pércast at Stage 1 are: G=1Q74, b=20

The per unit cost at Stage 2 are

C,=4 b=10 y=20
H=1 bc=100 y=1000
CO=5 X1=600

Ko=200 %=1000

0=0.9 Nm(y)=15

Note that all the values are in ten thousands.
We first calculate the Optimal Inventory Control@aeters for stage 2;¥; and y,
Yn=52.5,Y.=88.5, y=202.5
Nm(Yw) = 6108.75
N (Y.)=1845.15
t,=546
S*) 4e38.4
S*2,de=45
f* 1 4ec=660, % 4e=440, S*%e=30

The percentage Inventory reduction which is deteechiby

— * * *
=S 1,dec+S 2,dec‘S cen
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S* dectS*2,dec
38.45+45-30 x 100
38.45+45
53.4 x 100 = 64% reduction
834

this is one factor that contributes to cost savingeother factor that contributes to cost saviisgs
how often Stage 2 is forced to run overtime proiduct

6.0 CONCLUSION AND INSIGHTS

We have studied the two-stage supply chain undetralezed Control. We have shown that the
optimal Inventory Control policies for both stagepend only on the system inventogyand that the
optimal policy for the system inventory is a basaek policy. In the first sections, we assumed tha
overtime production was the only method of expaditi We later finally described the numerical
application of the problem.

The main managerial insight gained from this papénat to cut costs in this kind of supply chain,
Stage 1 must be sensitive to the amount of Invgrdwailable at Stage 2. Stage 1 must be willing to
occasionally under-order to save significant oweetiproduction costs (or backordering costs) ateStag
2. By the same token, Stage 2 must be willing nadpce extra units when Stage 1 under-orders
trusting that stage 1 will want those additionaltsithe next period.
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