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Abstract 

 
We model a two-stage supply chain where the upstream stage (stage 
2) always meet demand from the downstream stage (stage 1).Demand 
is stochastic hence shortages will occasionally occur at stage 2.Stage 
2 must fill these shortages by expediting using overtime production 
and/or backordering. We derive optimal inventory control policies 
under Decentralized, Coordinated and Centralized control. The 
centralized control model is applied to a manufacturing 
industry(Associated Match Industry,Ibadan). 

 
 

1.0 Introduction 
 
In this research work, we study a two-stage supply chain where the upstream facility always meets 

demand from the downstream facility.  We assume that demand is stochastic, and hence, shortages will 
occasionally occur at the upstream facility.  In order to fill these shortages, the upstream facility must 
employ either overtime production or backordering.  We study this supply chain under the centralized 
control where a single controller makes all the decisions for both facilities. 

In traditional supply chain situations, downstream facilities make decisions about their order 
quantities without regard to the actual inventory available upstream.  If the Upstream facilities do not 
have enough inventory on hand to fill the orders, it is often assumed that the downstream facility will 
take what it can get and backorder the rest.  In order to avoid these shortages, the upstream facilities 
have traditionally set their inventory level high enough so that the likelihood of not meeting 
downstream demand is low.  However, the shift towards lean inventory has caused a reduction in 
inventories, possibly increasing the likelihood of these shortages.  Moreover, the cost of premium 
freight (already high, though hard to estimate) is certainly not decreasing in today’s competitive 
markets.  Therefore, many facilities use various forms of expediting to meet supply requests when 
shortages occur. 

We have modeled our problem after the actual inventory control problems faced by a large match 
industry in Ibadan, which we refer to as “Associated Match Industry”.  Associated Match Industry 
produces matches.  The associated Match Industry has three branches (NMC, Safa and Chambon)  
which work together to produce matches.  Backordering is considered an option in both facilities.   

In our model, we have attempted to capture the essence of the interaction between NMC and Safa.  
We feel that our model may apply to the Computer and Electronics Industries as well, where many 
manufacturers have reduced or even eliminated their requirements for warehousing and receive parts in 
just-in-time fashion.   
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Finally we feel that our results yield new insight into a common assumption in the inventory 
literature.  In most single location inventory models, it is assumed that supply requests upstream are 
always met without  

           

           
considering how and at what cost. Our results show that supply requests can always be met upstream 
using some form of expediting, but that may be much less expensive for the system if the downstream 
facility is sensitive to the inventory situation upstream and adjusts supply requests accordingly. 

We have determined the optimal policies for the supply chain under centralized control when both 
options for filling shortages are available.  However, for clarity of exposition, we will consider only 
one of the two mathematically equivalent options, over time production, throughout most of this paper.  
The results are the same if we consider only backordering.  We include the slightly more complicated 
optimal policies and proofs.   

We consider the situation where the two stages are actually part of a single firm and are controlled 
by a single manager.  That manager has complete information from both stages, makes all the 
decisions and attempts to minimize the total system costs.  This manager knows the inventory levels at 
both stages and makes the different decisions concerning production at stage 1, regular production at 
stage 2 and overtime production at stage 2.We develop the relaxed version of our problem.  We also 
derive the optimal inventory control policy for stage 1 under the relaxed conditions.  We show that 
stage 1 will occasionally “under-order” to avoid the expedition at stage 2 but will force expediting at 
stage 2 if the system inventory is very low.  We show that the optimal inventory control policy for the 
entire system is base-stock under the relaxed conditions.  We prove that the optimal relaxed policies 
are actually the optimal policies for the original, fully constrained problem and we list the optimal 
policies for both stages and the system.  We include backordering as an expediting option.  Finally, we 
conclude and discuss managerial insights for the centralized model. 

The literature on supply chain with expediting or set-up costs upstream is limited. [3] consider 
supply chains with stochastic demand, constant lead times, and with set-up costs under centralized 
control. [7] consider an m + 1 stage supply chain where decisions must be made at each echelon about 
how many products to ship by regular means (which takes one period) and how many to expedite 
(which occurs simultaneously).  Each expedited unit incurs a per unit cost higher than the per unit cost 
of regular shipping.  They show that a “top-down” base-stock” policy is optimal where the upstream 
managers ignore downstream decisions.[9] consider a two-stage system with one warehouse and 
several retailers.  They assume modified one-for-one (s-1, S) policies for both regular and expedited 
orders and develop a procedure to find optimal policy parameters.   

Although our paper is related to those just mentioned, our paper is related to papers where 
outsourcing is used to meet shortages, but our results still differ. One reason is that we include a fixed 
cost when shortages occur, whereas most outsourcing assumptions only include a per unit cost. For 
example, in [4] the cost of outsourcing is the same as it is from within the supply chain. In [8], the 
author transform their outsourcing units into backorder penalties, effectively allowing negative 
inventory levels upstream, even though supply requests are always met. 

Finally, in our proof of the centralized model, we use the results discussed by the following 
authors: [10], [12], [2] and [11], [5] and [6].  In Zhang’s paper, he shows that (s,S) policies are optimal, 
given that the expected one period cost function in quasi convex, which we show using a  
result from [10].  We use this result to prove the optimal policy for the system inventory.  The text by 
Bertsekas has several useful propositions; specifically, one proposition states that if the optimal 
function satisfies Bellman’s equation under assumptions we show to be true in our model.  Finally we 
assume that our demand distribution is log concave. 
    The rest of this paper is organised as follows: 

In section 2, we define our model, develop cost functions, substitute system variables for supplier 
variables and relax two constraints.  Under these relaxed conditions, we determine the optimal 
inventory control policy for stage 1, we show that stage 2 occasionally “under-order” to avoid 
expediting at stage 2 but will forced expediting at stage 2 if the system inventory is very low in section 
3.  In section 4 again under the relaxed conditions, we show that the optimal inventory control policy 
for the entire system is base-stock.  We prove that the optimal relaxed policies are actually the optimal 
policies for the original, fully constrained problem and we list the optimal policies for both stages and 
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the system. We include Backordering as an expediting option.  Finally in section5, we conduct a 
numerical computation and discuss Management insights. Section 6 concludes the paper. 

 
 
 

1.1 Basic Concepts And Definitions 
 
A supply network or chain for a product (services or total solution to consumer needs) consists 

of several companies that are involved in the manufacturing and delivery of the production from raw 
material to its end consumer. 

Holding Cost/Carrying Cost: This is the cost incurred in the process of keeping an item of 
inventory in the store. 

Inventory:  An inventory is any resource that has value or satisfaction of future needs e.g. raw 
materials, finished goods, loosed tools and consumables etc. It is a detailed list of all items in stock. 

 Inventory Control:  An inventory control is concerned with decisions such as when to order or 
produce, how much to order or produce, what types of control system should be in place to minimize 
total inventory cost. 

Set-up Cost(Ordering Cost):This is the cost incurred in making stock available in the present 
location. If the goods are purchased from outside suppliers, those costs are called Ordering Costs. If 
the items are produced in the company, they are referred to as Set-up Costs i.e. the costs are incurred 
from the time the request is made for the items from the stores to the time the request are returned into 
the stores. 

Policy: A policy is a rule that determines a decision given. 
Backordering Cost: This is incurred when a customer’s demand cannot be fulfilled because 

inventory is completely depleted. For a firm incurring a temporary shortage in supplying its supplying 
its customer’s goodwill due to delay. 

(s,S) Policy: This is a 2-parameter decision rule where s=inventory level at which an order is 
placed and S= inventory level to which to order. 

 
1.2 DEFINITION OF VARIABLES 
 

Dt = the exogenous demand during period t 
x1, t = the stage 1 inventory position at the start of period t 
z1, t = the stage 1 production quantity during period t 
y1, t = the stage 1 inventory level after production during period t 

       x2, t = the stage 2 inventory position at the start of period t. 
z2, t = the stage 2 regular production quantity during period t 
y2, t = the stage 2 inventory level after regular production during period t 

  x2, t = the stage 2 inventory position at the start of overtime after receiving demand from stage 1   
during period t  

z2, t = the stage 2 overtime production quantity during period t 
y2, t = the stage 2 inventory level after overtime production during period t 
During the production processes at each stage, various costs are incurred.  At stage 1, linear costs 

are assessed for production (c1), holding (h1) and backordering (b1).  At stage 2, linear costs are 
assessed for production (C2), holding (h2), and backordering (b2).  Overtime production incurs linear 
(C0) plus fixed (K0) costs.  These costs are assumed to be discounted every period by a factor of α with 
0< α < 1.  Throughout this paper, we utilize the following notation: 

 
X+ =   x if x > 0    X- =   x if x< 0                        δ(x) =   x if x > 0           

            0 otherwise                          0 otherwise                                0 otherwise        
                                                  
  
1.3 MODEL ASSUMPTIONS: 
 

(A1) 0 < α < 1 
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(A2) Demand is discrete, stationary, non-negative and log-concave 
(A3) For all t, 0 < u < ∞ 
(A4) c2 < c0 
(A5) b1 > (1- α) C1  

   
(A6) b1 > (1- α) C1 + (C0/α - C2) 
(A7) h2<α( h1 +(1- α) C1) 

 
A function F (w) is said to be log concave in x if log (F(x) is concave in X i.e.  the assumption 

means that we require our demand distribution to have a smooth shape with at most one mode).  For 
the discrete distribution that we counter, we use two nice properties of log concave functions: the 

fraction ( ) ( )
( )xF

xFxF −+1  is non-increasing in x and the convolution of a quasi convex function with a 

log concave demand distribution remains quasi convex. 
 
2.0 THE SUPPLY CHAIN MODELS 
 
We model a two-stage supply chain where the upstream stage (stage 2) always meet demand from 

the downstream stage (stage 1).Demand is stochastic hence shortages will occasionally occur at stage 
2.Stage 2 must fill these shortages by expediting using overtime production and/or backordering.We 
derive optimal inventory control policies under Decentralized, Coordinated and Centralized 
control.The centralized control model is applied to a manufacturing industry (Associated Match 
Industry, Ibadan). 

 
2.1 DECENTRALIZED CONTROL 
Under decentralized control, stage 1 ignores stage 2 and follows a simple base-sock policy. Stage 

2 also follows a simple base-stock policy if there is no set-up cost for regular production. When we 
include this set-up cost at stage 2 two decisions must be made: how much to produce during regular 
production and how much to produce during overtime production. We show that the optimal regular 
production policy is an (s, S) policy and that the optimal overtime production policy depends on the 
cost parameters. 
 
2.2     COORDINATED CONTROL 
       
         To coordinate the two stages, we develop two contracts. Both contracts depend on a two-tiered 
wholesale cost and a linear transfer payment. Contract A achieves system optimality but requires the 
two stages to share cost information. Without sharing cost information contract B achieves near-
optimality for the system (optimality for the average cost case).Under both contracts an appropriate 
transfer payment may be negotiated that benefits both stages. 

 
      2.3    CENTRALIZED CONTROL 

 
Under centralized control which is where we focused, the two stages work together to minimize 

system costs. By substituting system variables for stage 2 variables and relaxing some constraints. We 
show that the optimal policy at stage 2 has two order-up-to levels and depends on the available system 
inventory. We also show that the optimal policy for stage 2 is to ensure the system base-stock is 
achieved. 

 
     2.4     OPTIMAL POLICIES 

We are interested in finding the optimal policy π out of all possible admissible policies Π and 
hence the optimal total discounted cost over the infinite horizon f(x0).This function will exist according 
to proposition 1.1 of page 3 of Bertsekas if g (period “k” variables) ≥ 0.  We seek to solve the optimal 
cost function f* (x0) = min fΠ (x0) where πE Π in order to 

determine the optimal inventory control policies. 
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      2.5    THE RELAXED PROBLEM 
 
In this problem, the centralized manager makes three decisions at once about production at the 

two stages. So for the one period experienced by the entire system are  
 

gcen (x1,y1, x2,y2,D) ≡ K0δ((y1-x1) - x2) + c0((y1-x1) - x2)
++ h2(x2-(y1 

x1))
++ α(c1 (y1-x1) + c2(y2-(x2 – (y1-x1))

+) + h1(y1-D)+ + b1 (y1- D)-) 
With y1 ≤ x1 and y2 ≥ (x2 – (y1-x1))

+.   
The first two terms are overtime production costs, the third term is the holding and backordering 

costs at stage 2.  The further term is the production cost at stage 1, the fifth term is the production cost 
at stage 2, and the last two terms are holding and backordering costs at stage 1.  Note that we assume 
there is a fixed cost for regular production at either stage for the remainder of the paper.  Clearly gcen (.) 
≥ 0 and hence the Optimal cost function fcen(x1,x2) satisfies 

f* cen (x1,x2) = min  ED(gcen (x1,y1,x2,y2,D) + α f* cen ((y1-D), y2)) 
                  y1 ≥ x1 

                 y2 ≥ (x2 – (y1-x1))
+ 

The argument that minimizes this equation is the optimal inventory control policy which we 
seek.  Moving the - α c1x1 back to the preview period as - αc2(y1-D) and rearranging terms.  We get: 

gcen,m (x1,y1,x2,y2,D) ≡ α(1- α) c1y1+α2c1D+k0δ ((y1-x1) – x2) +c0((y1-x1) – x2)
+ +  

(h2-α c2)(x2-(y1-x1)) 
+ + α(c2y2+ α (h1 (y1-D)++b1 (y1-D)-)    (2.1) 

Under the same restriction.  Note that f*cen (x1,x2) = -α c1x2+ f*cen,m (x1,x2). We originally 
tried to solve this problem in terms of stage 1 and stage 2 variables but found that the solution lent 
itself more easily to stage 1 and system variables.  Define the system inventory position as xs=x1+x2 
and the system inventory information (x1,x2) and (x1,xs).  We substitute these variables and rewrite gcen, 
m(.) as  

gcen,m (x1,xs,y1,ys,D) = α (1- α) c1y1+ α2c1D + α (h1 (y1-D)+ b1 (y1-D)-)++ k0δ (y1-xs) +  
(c0-αc2) (y1-xs) 

++h2(xs-y1)
+ +αc1 (y1-xs)      (2.2) 

 
with y1≥x1 and ys ≥ y1+(xs-y1)+.  Note that the seconds restriction is equivalent to ys ≥max (y1,xs).Also, 
we can rewrite gcen, m(.) as  

gcen,m(x1,y1,xs,ys,D) = L1 (y1,D) + L2(y1,xs) + αc2(y1-xs) 
Where L1 (y1, D) represents the terms on equation (2.1) and L2(y1,xs) represents the terms on equation 
(2.2). 

We can now rewrite the fully constrained optimal cost function which we would like to solve 
namely 

fcen,m (x1,xs) = min ED [gcen,m(x1,y1,xs,ys, D) + f*cen,m (y1-D) (ys-D)] 
     y1≥ x1  
    ys ≥ max (xs,y1) 
To solve this equation, we relax some of the constraints; later we show that these constraints are 

always met by the optimal solution to the relaxed problem and thus solve the original fully constrained 
problem. 

First we drop the constraints that y1>xs.For later reference we label the relaxed assumptions: 
(R1) y1≥x1 and 
(R2) ys ≥y1, when y1>xs 
After relaxing the constraints, our relaxed cost per period has the same costs as gcen, m(.) but 

with only one constraint; 
gcen,s(y1,xs,ys,D) ≡ L1 (y1,D)+ L2(y1,xs) + αc2(ys-xs) 
With ys≥xs. 
 
THEOREM 2.1  gcen, r(y1,xs,ys, D)≥0 
Proof: Every term of gcen, r (y1,xs,ys, D) is non-negative except possibly the first term if y1< 0 
gcen, r (y1,xs,ys, D)≥ α (1-α) c1,y1 - αb1y1 + αb1ED(D) 
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   = α ((1-α)c1-b1)y1+αb1µ≥0 
Because gcen,r(y1,xs,ys,D)≥0, proposition 1.1 of Bertsekas holds and the relaxed optimal cost 

function f*cen,r satisfies 
f* cen, r(xs) = min ED(gcen,r(y1,xs,ys,D) + αf* cen,r(ys-D)    

 2.3 
 y1,ys≥xs 
=min (ED (L1 (y1, D)) + L1 (y1,xs) + αc2(ys-xs) + α ED (f* cen,r(ys-D) 
  y1,ys≥xs 

Here it is important to notice that under the relaxed condition y1 has o effect on either ys or the costs 

to go, αED (f* cen,r(ys-D)).  Thus 

f* cen, r (xs) =  min(ED(L1(y1, D) + L2( y1,xs)) + αc2(ys-xs) + αED(f* cen,r (ys-D)) 

   ys≥xs 

 

=min (m (xs) + αc2(ys-xs) + αED(f* cen,r(ys-D)))    
 2.4 
 
Where m (xs) ≡ min {ED(L1(y1, D)) + L2(y1,xs)}.  Finding the optimal inventory policy for stage 

1 has become a myopic problem which we solve in the next section.  For later reference, we also 
define the related function m′ (xs) ≡ m(xs) - α2c1µ where m′(xs) represents all of the system costs that 
are not due to production.  For convenience, we study m(xs) below but test our final result in terms of 
m′(xs). 

 
3.0  STAGE 1 RELAXED OPTIMAL POLICIES: 
 
In this section, we determine the optimal inventory policy for stage 1 for the relaxed problem.  

We study the function m (xs) and show that the stage 1 policy depends only on the system inventory 
level xs.  Define NH(y1) and NL(y1) as: 

NH(y1)=( α(1-α)c1-h2)y1+αED (αc1D+h1(y1-D)++b1(y1-D)-) 
And 

NL(y1)≡( α(1-α)c1-c0-αc2) y+αED(αc1D+h1(y1-D)++b1(y1-D)-) 
The function NH(y1) corresponds to the stage 1 costs when y1≤xs and the function NH(y1) corresponds 
to the stage 1 costs when y1>xs.  We now have that  

m(xs) = min (ED (L1(y1D)) + L2(y1,xs) 
     y1 
 = min { ED (L1(y1,D))+ h2 (xs-y1) 
      y1  { ED (L1(y1, D) +k0+(co-αc2)(y1-xs) 
         =        min    { h2xs + min(NH(y1) 
   y1                  y1≤xs 

                                          { K 0-(c0-αc2)xs + min {NL(yL)} 
                                                   y1>xs  
Before continuing our study of m (xs), we derive properties for N1(y1)) 
1. NL(y1) and NH(y1) are convex in y1 
2. 0≤ yL≤yH≤ ∞ 
Returning to our study of m (xs) and defining N(xs) ≡ ED(L1(xs,D)), we have that 
 
m(xs) = min   h2xs+NH(yH)                     if xs≥yH 
                      N(xs)                      if  tL ≤ xs < yH 
                      K0-(c0-αc2)xs+NL(yL)       if xs<tL 
 
Define the as the smallest w such that N(w) ≤ K0 – (C0-αc2) w+N1 (y1.  We get that 
 
m(xs) =  yH                   if xs≥yH  
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   xs                   if tL ≤ xs < yH 
                          yL                            if xs<tL 
 
Proof: By the definition of m(xs) 

   

 

 

4.0 SYSTEM RELAXED OPTIMAL POLICY 
 
In this section, we determine the relaxed optimal policy for the system.  Given m (xs), we now 

have the optimal relaxed cost functions in terms of system variables only, we have 
f* cen,r(xs) = min(m(xs) +αc2(ys-xs)+ αED(f* cen,r(ys-D)) 
We move the m (xs) and -αc2xs terms back to the previous period as αm(ys-D) and α2c2 (ys-D) 

respectively and get  
f* cen,s (xs) = min   α(1-α) c2ys+αED(m(ys-D) 
   

    = min   Gcen, s (ys)+ α2c2µ+αED(f* cen, s(ys-D)) 
    

  ys≥xs 
Where Gcen, s(ys) = α(1-α)c2ys+αED(m(ys-D)) 
We need to justify two steps next.  First we can move the two terms back a period and F*cen,s(.) 

will have the same optimal policy as f*cen (.) 
We have that 
f* cen,r(xs) = m(xs)-αc2xs+f* cen,s(xs) 
 
THEOREM 4.1.  For the relaxed problem, the optimal inventory control policy for the system 

inventory is a base-stock policy. 
Proof: Consider gcen,s(ys): 
Gcen,s(ys) = α((1-α) c2ys+ m(ys-D) 
  = α((1-α) (c2ys-c2D+c2D)+m(ys-D)) 
  = α((1-α) c2D+g+(ys-D))≥0 
Where the inequality holds because g+(.)≥0.  Note from Lemma 3 that g+(.)is a quasiconvex 

function with a minimum point.  Now consider Gcen,s(ys): 
Gcen,s(ys) = αED ((1-α)c2ys+m(ys-D)) 
     =  α((1-α)c2ED(D) + ED(g+(ys-D))) 
The first term is a constant, and the second term is a convolution of a quasiconvex function (g+(ys-

D)) and a log concave probability distribution by Assumption(A2).  Thus Gcen,s(.) is a quasiconvex 
function according to [10] and [1]. 

 
4.1 FULLY CONSTRAINED OPTIMAL POLICIES 
 
In this section, we show that the optimal inventory control policy that solves the relaxed problem 

also solves the original fully constrained problem.  From section 2 we have that 
f* cen (x1,x2) = -αc1x1+f* cen,m(x1, xs) 
From the previous section, we have that 
f* cen,r(xs) = m(xs) -αc2xs+f* cen,s(xs) 
The missing piece of the puzzle is to show that 
f* cen,m(x1,xs) = f*cen,r(xs) 
By doing so, we verify that the optimal policies listed in section 3 and 4 are truly optimal.  We 

must show that the optimal policies for f*cen,r(xs) minimize f*cen,m(x1,xs) and that both (R1) and (R2) 
are met. 

 
Theorem 4.2: 
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f* cen,m(x1,xs) = f*cen,r(xs) 
Proof: The optimal policies for f*cen,r (xs) minimize the costs for f*cen,m(x1,xs) because both relaxed 

constraints are met and y1 does not affect ys or the costs to go. 
 

 

For the original, fully constrained problem, we now know the optimal policies for stage 1, stage 2, 
and for the system. 

    
        yH        if xs ≥ yH 

       y*cen,1 =      xs       if tL ≤ xs<yH 
yL     if xs < tL 

 
             xs       if xs > S*cen 

 y*cen,s = 
       S*cen       if xs ≤ S*cen and  
  

y* cen,2 = y*cen,s – y*cen,1 
 
Now, under the assumption that the initial system inventory is less than the system base-stock 

level, xs≤S*cen, we can further calculate f*cen (x1,xs) 
f* cen,1(x1,xs) 
=-αc1x1+ f* cen,m (x1,xs) 
= -αc1x1+ m(xs)- αc2xs+min (α(1-α)c2ys+ αED(m(ys-D))+ α2c2µ+ αED(f* cen,s(ys-D))) 
= -αc1x1+m(xs) -αc2xs+α(1- α)c2s*cen+ αED(m(S*cen-D))+ α2c2µ+ αED(f* cen,s(S*cen-D)) 
= -αc1x1+m(xs) - αc2xs+α((1-α)c2S*cen+ED(m(S*cen-D)) + αc2µ)(1+α) 

= -αc1x1+m(x1) - αc2xs+ α
α
−1

 ((1-α)c2S*cen+ED(m(S*cen-D))+ αc2m) 

           

= -αc1x1+m’ (xs) + αc2(S*cen-xs) + 
α

α
−1

 (ED(m(S*cen-D)) + α(c1+c2)µ  

 
4.3  OPTIMAL POLICIES WITH BACKORDERING 
In this section, we study the problem where both overtime production and Backordering are viable 

options.  We follow the analysis from the previous five sections but add additional comments and 
proofs when necessary.  In this problem, the overtime production decision is a real decision.  If a 
shortage exists, the manager must choose how much of the shortage to fill with overtime production 
and how much to fill with backordering.  We will later show that it is optimal to pick one of the other 
expediting options, but never both.  We modify assumption (A6) 

(A9) b1≥(1-αc1)+b2 
(A10) k0≥αbc 
(A11) c0≤α(b2+c2) 

Using the same notation as before, we now develop the various cost equations:  
gcen (x1,y1,x2,y2,z2,D) ≡ k0δ(z2+h2 (x2-(y1-x1)+z2)+ 
+αbcδ((x2-(y1-x1)+z2)) + αb2 (x2-(y1-x1)+z2 + αc1(y1 - xs) 
+αc2 (y2-(x2-(y1-x1)+z2))+ α(h1 (y1-D)++b1 (y1-D)- 

 
Under the same restriction, substituting system variables, we get 
           Gcen,m(x1,y1,xs,ys,z,D)≡ 

α(1-α)c1y1+α(αc1D+h1 (y1-D)++b1 (y1-D)-)     (4.1) 
+k0δ (z2)+(c0-αc2)z2+h2 (xs-y1+z2)+      (4.2) 
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+bcδ((xs-y1+z2)-)+ αcp(xs-y1+z2)      (4.3) 
+αc2 (ys-xs) 

 
with y1≥x1,z2≥0, and ys≥y1+(xs-y1,+z2)+ = max {y1,xs+z2}. We can rewrite gcen,m(.) as 
gcen,m(x1,y1,xs,ys,z2,D) = L1 (y1,D)+L2 (y2,xs,z2) + αc2 (ys-xs) 
Where L1 (y1, D) represents the terms on the equation (4.1) and L2 (y2,xs,z2) represents the terms 

on equations(4.2) and (4.3) 
 
Again, we relax some constraints.  First we drop the constraint that y1≥x1.  Second, we relax the 

constraint on the system inventory position so that only ys≥xs.  For later reference, we label the relaxed 
assumptions as: 

(R1)  y1≥x1                            [R1=Relaxed assumption 1] and [R2= Relaxed assumption 2] 
(R2)  ys≥max (y1,xs+zs, D) ≡ L1 (y1,D) + α c2(ys-xs) 
With z2≥0 and ys≥xs.  The function gcen,r(.) can be shown to be non-negative by analysis similar to 

Lemma and we can thus use the same result from Bertsekas for the optimal cost function f*cen,r 
    f*cen,r(xs) 
                 =min    ED(gcen,r(y1,xs,ys,z2,D)+ α f* cen,r(ys-D))    (4.4) 
 

 ys≥xs,z2≥0,y1 
= min                     ED(L1,(y1,D))+L2(y1,xs,z2) 
 ys>xs,z2≥0,y1       + αc2(ys-xs)+ αED(f* cen,r(ys-D)) 

 
Again, it is important to notice that under the relaxed conditions y1 and z2, have no effect on either 

ys or the cost to go, αED (f* cen,r(ys-D)  Thus, 
 
  f*cen,r(xs)  

   = min       (EDL1(y1,D))+ L2(y1,x1,z2)} 
         z2>01y1 
        +αc2(ys-xs) +αED(f* cen,r(ys-D)) 
 
Where m (xs)=Min {EDL1(y1, D)} + L2(y1,xs,z2)}.  Finding the optimal inventory policy for stage 1 

has become a myopic problem that now depends on y1 and z2.  Now consider m(xs) under two cases.  
When stage 1 does not order more than the system inventory on hand (y1≤xs) and when stage 1 does 
order more than the system inventory on hand (y1>xs).  In the first case, we get that 

        L2(y1,xs,z2) = k0δ(z2) + (c0-αc2) z2+h2 (xs-y1+z2) 
    = k0δ(z2) + (h2+c0-αc2)z2+h2 (xs-y1) 
Which is minimized when z2=0 and thus L2 (y1,xs,z2)=h2 (xs-y)+αc2xs when y1≤xs. 
In other words, if there is not a shortage don’t use overtime production. 
In the second case, there are options. 
     L2 (y1,xs,z2)=  
     αbc+αb2 (y1-xs)     If z2=0 
      k0+αbc + (c0-α(b2+c2))z2+αb2 (y1-xs)   If 0<z2<y1-xs 

k0+ (c0-αc2)(y1-xs)     If z2=y1-xs 
k0+ (h2+c0-αc2)z2+h2 (xs-y1)    If z2>y1-xs 

Before returning to m (xs), define Nm(y1) as  
Nm(y1)= α{(1-α)c1+b2} y1+αED(αc1D+h1 (y1-D)++b1 (y1-D)-) 
Define ym=argmin {Nm(y1) is convex and we have 0≤ym≤yL≤yH<∞ 
[0≤ymby assumption (A6) ym≤yL by assumption (A10), yL≤yH by algebra and yH<∞ as before] 
 
We have 
m(xs) = min {ED(L1 (y1,D))+ L1 (y1,xs,z2) 
   Z2≥0,y1 
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          h2xs+NH(yH)   If xs ≥ yH 

       =       N(xs)    If tM  ≤ xs< yH 
          αbc-αb2xs+NM(YM)   If tL ≤ xs<tM   

 (4.5) 
                       K0-(c0-αc2)xs+NL(yL)   If xs < tL 
 
Where tM is defined as the smallest w such that N(w) ≤ αbc-αb2w+Nm(Ym) and tL is defined as  
                 tL = K0+NL(yL)- αbc – NM(yM) 
                          c0-α(cb + c2) 
We have now defined  m(xs) explicitly and again determined the relaxed optimal Inventory 

Control Policy at stage 1. 
 
       y*cen,1 =     yH  If xs≥yH 
                        xs  If tM≤xs<yH       

 (4.6) 
                       ym  If t1≤xs<tm 
                       yL  If xs<tL  
 
From equation (4.5) we have that 
      f*cen(xs)=min{m(xs)+ αc2(ys-xs) +αED {F* cen,s(ys-D)}} 
               ys≥xs 
As earlier we move the m(xs) and -αc2xs terms back to get 
      f*cen,s(xs) = min {Gcen,s(ys) + αc2µ+αED(f* cen,r ( ys -D))} 
Where Gcen,s(ys) = α(1-α) c2ys+ED(m(ys-D))}.  
 

5.0    Application 

We consider a problem that has a Poisson demand with mean 20 in a match Industry (AMI) 
Ibadan, where stage 1 which is the downstream stage is called NMC and Stage 2 which is the 
Upstream stage is referred to as SAFA.  The per unit cost at Stage 1 are: G=10, h1=4, b1=20 

The per unit cost at Stage 2 are 
C2=4  b2=10  y1=20 
H2=1  bc=100  y2=1000 
C0=5  x1=600 
K0=200  x2=1000 
α=0.9  Nm(y1)=15 

Note that all the values are in ten thousands. 

We first calculate the Optimal Inventory Control parameters for stage 2: t1,y1 and yH 

YH=52.5,YL=88.5, YM=202.5 

NM(YM) = 6108.75 

NL(YL)=1845.15 

tL=546 

S*1,dec=38.4 

S*2,dec=45 

f* 1,dec =660, f*2,dec=440, S*cen=30 

 

The percentage Inventory reduction which is determined by 

=  S*1,dec +S*2,dec-S*cen 
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     S*1,dec+S*2,dec 

=   38.45+45-30 x 100 

          38.45+45 

=    53.4 x 100 = 64% reduction 

          83.4     

this is one factor that contributes to cost savings.  Another factor that contributes to cost savings is 
how often Stage 2 is forced to run overtime production. 

 

6.0   CONCLUSION AND INSIGHTS 

We have studied the two-stage supply chain under centralized Control.  We have shown that the 
optimal Inventory Control policies for both stages depend only on the system inventory xs, and that the 
optimal policy for the system inventory is a base-stock policy.  In the first sections, we assumed that 
overtime production was the only method of expediting.  We later finally described the numerical 
application of the problem. 

The main managerial insight gained from this paper is that to cut costs in this kind of supply chain, 
Stage 1 must be sensitive to the amount of Inventory available at Stage 2.  Stage 1 must be willing to 
occasionally under-order to save significant overtime production costs (or backordering costs) at Stage 
2.  By the same token, Stage 2 must be willing to produce extra units when Stage 1 under-orders 
trusting that stage 1 will want those additional units the next period. 
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