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Abstract 

 
We formulate a generalized model for prey-predator interaction. We 
discuss the existence and uniqueness of solution of the model. Of 
particular interest are the criteria for the stability of the critical 
points. 
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1.0  Introduction 
When species interact, the population dynamics of each species is affected. In general there is a whole web 
of interacting species, called a trophic web, which makes for structurally complex communities. We 
consider here systems involving two or more species, concentrating particularly on two-species systems. 
There are three main types of interaction. 

(i) If the growth rate of one population is decreased and the other increased the populations are in 
a predator-prey situation. 

(ii)  If the growth rate of each population is decreased, then it is competition. 
(iii)  If each population’s growth rate is enhanced, then it is called mutualism or symbiosis [8]. 

Some mathematical models have been developed in this area. 
In 1926, [13] first proposed a simple model for the predation of one species by another to explain the 
oscillatory levels of certain fish catches in the Adriatic. This model was based on four assumptions. 
First, the prey grows unboundedly in a Malthusian way in the absence of any predation.Secondly; the effect 
of the predation is to reduce the prey’s per capita growth rate by a term proportional to the prey and the 
predator populations. 
Thirdly, in the absence of any prey for sustenance the predator’s death rate results in exponential 
decay.Fourthly, the prey’s contribution to the predator’s growth is proportional to the available prey as well 

as the size of the predator population. The model, is )( bpaN
dt

dN −=    and    )( dcNP
dt

dP −=  

When N is the prey population and P is the predator population. This model also called Lokta-Volterra 
model was analyzed. 
Murray [8] modified the Lokta-Volterra Model by changing of the assumptions made by Volterra.The 

model he obtained is: ,1
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dN  where 1r , 1k , 

2r , 2k , 12b , 21b  are all positive constants. This model was analyzed and the conditions for stability 

established. [2] presented some results on the dynamic complexity of coupled predator-prey systems. [3,4] 
studied in detail a modified Lotka-Volterra system with logistic growth of the prey and with both predator 
and prey dispersing by diffusion. 
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 “Predator-Prey models are arguably the building blocks of the bio and ecosystems as biomasses are 
grown out of their resource masses. Species compete, evolve and disperse simply for the purpose of 
seeking resources to sustain their struggle for their very existence. Depending on their specific settings of 
applications, they can take the forms of resource- consumer, plant-herbivore, parasite-host, tumor cells 
(virus)-immune system, susceptible-infectious interactions, etc.They deal with the general loss-win 
interactions and hence may have applications outside of ecosystems. When seemingly competitive 
interactions are carefully examined, they are often in fact some forms of predator-prey interaction in 
disguise” [5]. 

Another approach to modeling the interaction between prey and predators was developed to account as 
well for organisms (such as bacteria) taking up nutrients and this is called Jacob-Mond Model. This model 
was discovered independently in the several diverse applications. It is akin to the Haldane-Briggs Model 
and Michaelis-Menten Model in Biochemistry the Jacob-Mond Model in microbial ecology and the 
Beverton-Holt model in fisheries. It serves as one of the important building blocks in studies of complex 
biochemical reactions and in ecology [12].In this work, we consider the classical predator-prey problem. 
We study an ecological situation involving two similar species competing for a limited food supply for 
example, two species of fish in a pond that do not prey on each other but do compete for the available food. 
Let R1 and R2 be the populations of the two species at time t. 
 
2.0    Analysis Of The Model 
Consider the general prey-predator model for an n-species system 








 += ∑
=

n

i
iijii

i RabR
dt

dR

1

                                                 

 (2.1) 
         i=1, 2 …n 
The equation represent multispecies prey-predator cases where Ri’s represents the population of different 
species at time t where ai>0, bi>0 are constants and represents a given finite source of food. 
One species 
 In this case equation (2.1) is reduced to one species competing for a given finite source of food. 

)( aRbR
dt

dR +=                                                                              

 (2.2) 
Where a>0, b>0 are constants and R (0)>0.This equation has an exact solution. 
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 (2.4) 
Two species (Of the third order) with death rate (βα , ) competing for a common 

ecological niche. The prey-predator model for this case takes the following 

form nRRRaRabR
dt

dR
12112

3
11111

1 α−++=  
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21221
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22222
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If ( βα , ) = (0, 0)  

Then 
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Finding the critical solutions 
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(1) Critical solution  (0, 0)
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Hence the critical solution (0, 0) is  

Case 1; If b1< 0 and b2 < 0 then (0, 0) is asymptotically stable  

Case 2; If b1  or b2 > 0 then (0, 0) is unstable. 
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Existence and uniqueness of solutions criteria 
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Hence )( ,2,1,1,11 tRRf  is Lipschitz continuous and the criteria for the existence and uniqueness of solutions is 

satisfied. 
 

3.0    SUMMARY AND  CONCLUSION 
 
In this paper, we try to modify the work of Khaled Batiha [6], 2007 on the Numerical Solutions of the 
Multispecies Predator-Prey Model by Variational iteration method. He tried to solve the Multispecies 
Predator-Prey Model numerically using Variational iteration Method(VIM) and the Adomian 
Decomposition Method(ADM).He was able to show that the VIM has the advantage of being more 
concise for numerical and analytical purposes.We have tried to solve the Predator-Prey generalized 
model with two species of the third order with death rate analytically. We modified the work of Khaled 
Batiha[6], 2007 by making our model of the same two species but third order and with death rate 
( ,α β ).We derived the critical points and we try to play around the criteria for stability of the critical 

points. We try to solve for the uniqueness and existence of the model. We observe that as the given 

finite source of food bi  ‘s is getting reduced the system is likely to become Asymptotically Stable and 

become Unstable as the given finite source of food b i  ‘s is getting increased. We have  

made the assumption that the populations of R1  and the population of  R2  are two species of animals 

that do not prey on each other but do compete for the available food. This assumption is biologically 
restrictive. It may hold for some Carnivore-Carnivore or Omnivores-Omnivores or even among aquatic 
organism. 
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