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Abstract 
 

The paper, discusses semi-implicit inverse Runge –Kutta Scheme for  numerical solution of  stiff  ordinary differential  equation 
of the form y′ =f(x,y), a≤≤≤≤x≤≤≤≤b.  Its derivation adopts Taylor and binomial  series expansion , while it analysis of its stability uses 

the well known  A-stability test model equation.  Both theoretical and experimental results  show that the scheme is A-stable.  
Numerical results compared favourably with existing Euler’s  method.  
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1.0 Introduction 
 

There are problems in the field  of Science, Technology and Engineering, which often lead to ODEs of the  form 
   y′ =f(x,y),       y (xo) = yo ,    a ≤ x ≤ b     (1.1) 
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where y depends on x.  Equation  ( 1.1 ) is said  to be stiff if the Eigen values jλ of the Jacobian  

x∂
∂= f

  J  and 

  1i (1)m, 1  j ,Vjj −==+= iU jλ      

(a) Uj < 0;  j = 1 (1)m 
(b) Max (Uj)>> min (Uj), j = 1 (1) m 

(c) jj VU <<  for at least one value of j. 

The problem associated with numerical solution of stiff systems were first discovered by [3].  Researchers have generated a lot of interest because of the difficult 
nature of the solution process of stiff ODEs.  Other popular methods include Conventional Implicit, Semi-Implicit and Explicit Runge-Kutta Scheme.  [5] introduced a 
rationatized Runge-Kutta Scheme of the general form. 
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where 
   K1 =  hf(xn, yn) 

   Ki = hf(xn + cih, yn+∑
=

i

j 1
jijKa       (1.3) 

   H1 = hg(xn, zn) 

   Hi = hg(xn + dih,    zn + )Hb
1

jij∑
=

i

j

      (1.4) 

   g(xn, zn) = 2
nZ  f(xn, yn) = 2

ny

1− f(xn, yn)     (1.5) 

Although the method is suitable, accurate and stable, it is bedeviled by the difficult nature of the function evaluation of f and g. 
 The method we are considering in this work is of the form 
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where, 

  H1 = hg(xn +di h, Zn + )Hb j
1

ij∑
=

i

j

        (1.7) 

 
with 

  g(xn, zn) = )y ,f(x nn
2
nZ− ,    Zn =  

ny
1      (1.8)  

and 

   di = ∑
=

R

j 1
ijb         (1.9) 

and it is called Inverse R-stage Runge-Kutta Scheme. This method was classified  into Explicit, Semi-Implicit and Implicit. 
[1] proposed the  Explicit one and two stage Inverse R-K scheme.  In this paper, we consider the case Semi-Implicit of R = 1 for numerical solution of stiff initial values 
problems in ODEs. 
  
2.0 Derivation of the  Scheme 

 
Now setting R = 1 in equation (1.6), then the one – stage semi-implicit inverse R – K scheme is of the form  

   
11n

1n HVy1
y

+
=+

ny        (2.1) 

where 
   H1 = hg(xn + d1h,   zn + b11 H1)      (2.2) 
with  

g(xn, zn) = )y ,f(x nn
2
nZ−          (2.3) 

with constraint 
 

 
with constraint 

d1 =  b11         (2.4) 
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The parameters  V1, d1, and b11 are to be determined from the system of non-linear equations generated by adopting the steps below. 
(1)  Obtain the Taylor and binomial series expansion of H1 about point (xn, yn) 

                  for  i = 1(1)R. 
(2) Insert the series expansion into (2.1) 
(3) Compare the final expansion with Taylor series expansion . 

Recall that one-stage semi-implicit inverse Runge-Kutta scheme of order two is of the form 

  
11n

1n HVy1
y

+
=+

ny         (2.5) 

The Taylor series expansion of yn+1 gives 

yn+1 = 4
32

n 0
!3!2

y hy
h

y
h

yh nnn +′′′+′′+′+       (2.6) 

We know that 

  nnnn f  )y ,f(xy ==′  

  nyxn Df ffy =+=′′ nf  

  n
2

ynxyyy
2
nxyxxn DfD - )f(fff  f2fy ynn fffff +++++=′′′     (2.7) 

Substitute (2.7) into (2.6), yields 

  ( ) 4
y

2
32

1n 0f
62

h
  y hDffD

h
Dfhfy nnnnn +++++=+

    (2.8) 

In the same way, expanding H1 about (xn, zn) yield 
  H1 = hN1 + h2M1 + h3R1 + 0h4       (2.9) 
where 
  N1 = g(xn, zn) = gn 
  M1 = d1 (gx + gngz) = d1Dgn 

  R1 gz + ½ d1 M1 (gx + gn gz) + ½ 1
2
1 Md  ( )zznxznxx ggggg 22 ++    (2.10) 

Expressing g and its partial derivatives in terms of f and its partial  derivatives to increase the comparison of the coefficients.  This implies that 
  

2xx2x2
g    ,g   ,

  n

xx

n

x

n

n
n y

f

y

f

y

f
g

−=−=−=  

xy
n

n
y

n

n
z f

y

f
f

y

f
g +−=+−= 2

g   ,
2

xz
 



5 

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 229 – 240  
Stiff  Ordinary Differential Equation           P.O. Babatola               J of NAMP 

yy
2
n f y 2 −−= nxz fg  

xyy,
2f22 nxxzz yfg −−=  

yyynyynynzzz fyfyfyg 422 64 ++=        (2.11) 

Substitute (2.12) into  (2.11) and (2.10) yields 

N1 = 

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adopting  (2.10) and (2.13) yields 

( )4
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3
1

2
1

2
nn1n 0hN y - y y hRhMh +++=+  

=  ( )4
1

3
1

2
11

2
n 0Vy hRhMhhNyn +++−       (2.13) 

comparing the coefficient of the powers of h in (2.14) and (2.9).  That is 
 
  n11

2
n f   N V y- =          (2.14) 
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  V1fn = fn ⇒ V1 = 1        (2.15) 
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  V1d1 = ½ 
 But  V1 = 1 
  d1 = ½          (2.16) 
From the constraints 
  b11 = d1  ⇒ b11 = d1 = ½  
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Then equation (2.6) becomes  

  yn+1  =   
1ny 1 H

yn

+
        (2.17) 

where 
  H1 = hg(xn + ½ h,  Zn + ½ H1)       (2.18) 

 
3.0 Analysis of the Basic Properties 

 
Naturally, all ODEs solvers are allergic to error.  The magnitude of  these errors determines the degree of accuracy of the scheme and their effect can be great.  In this 

section of the paper, the error, convergence, consistency and stability analysis shall be discussed. 
 

3.1. Error Analysis  
 
Error of numerical approximate techniques for stiff ordinary differential equation arise from different cause, which can be classified into  

Discretization error, Truncation error, Round-off error. 
Discretization error: 
 
 In numerical analysis for ODEs, discretisation error (en+1) associated with the scheme is the differences between the exact solution y(xn+1) and the numerical solution 
yn+1 at point xn+1.  That is 
  en+1 = yn+1 – y(xn+1)        (3.1) 
Since the numerical solution of the scheme involves iteration process, there exist propagation of error from step to step.  The propagation of error grow or decay from step to 
step. 
Round off error 
 
 Round-off errors is an error introduced as a result of the computing devices.  Mathematically, it can be expressed as  

   11n1 y +++ −= nn Pγ         (3.2) 

 
where yn+1 is the expected solution of the difference equation (2.1) while Pn+1 the computer output at the (n+1)th iteration. 
 
Truncation error 
 
 Truncation error on the other hand  is the error introduced as a result of ignoring some of the higher terms of the power series of Taylor and Binomial series expansion 
during the derivation of the new scheme. 
 Mathematically it can be defined as 
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1n1 V)(1
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Hxy
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n +

−= ++       (3.3) 

where 
 H1 = hg(xn+d1h,    zn+b11 H1) 
For example, the local truncation error for the family of one-stage semi-implicit  scheme of order two is 
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3.2 Convergence Property 
 
The numerical scheme (2.1) for solution of stiff ODEs will be convergent  if the numerical approximation yn+1 that is generated tends to the exact solution y(xn+1) as the 

step size tend to zero. 
That is, 

 

  Lim  ][ 0)(x 11n =− ++ nyy        (3.5) 

               n ⇒ ∞ 
                 h ⇒ 0 
         
To  analysed the convergence of the proposed scheme the theorem stated below will be considered. 
Theorem 1 
 
Let     { }(1)n 0  j , =je  be the set of real numbers, it there exist finite constant R and S such that 

   1-0(1)n  j , 1 =+< + SeRe jj       (3.6) 

   //R  
1

1 j
o

J

j eS
R

R
e +









−
−≤       (3.7) 

Let en+1 and Tn+1 denote the discretization and truncation error generated by scheme (2.1) respectively. 
Adopting binomial expansion and  ignoring higher terms in (2.1) and (3.4) we obtain  

   y(xn+1) = y(xn) + h 2Ψ (xn, y(xn); h)  + Tn+1     (3.8) 

where  2Ψ  is a continous function in the domain a ≤ x ≤ b,  ∞<   y . 
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Apply 

( )) ( ))nn2n y(z ,xf 
)(y

1
(,x

n
n x

xzg =      (3.9) 

where 

   h (( ))n
n

n xyx
xy

h
Hx ,

)(
V   h) );y(x ( n2211n2 Ψ==Ψ    (3.10) 

 
Similarly equation (2.1) yields 

     ( )h y ,y n2n1 nn xy Ψ+=+       (3.11) 

Subtract (3.9) from (3.11) and adopt equation (3.2) leads to  

( )( ) ) ( ) ) 12n21  ,;y(x , ++ +−+= nnnnnn Tnyxhhxhee ψψ     (3.12) 

Taking the absolute value on both sides of equation (3.13),we have 

Tehakee nnn +<+≤+1        (3.13) 

where 

  T = 1nT  
bxa

+

≤≤
Sup  and by        (3.14) 

Setting N = K 
The inequality (3.13) become 

( ) Thee nn ++≤+ N 11        (3.15) 

Adopting theorem 1, expression (3.15) becomes 

  
( ) ( ) o

n
n

n ehNT
hN

hN
e ++









 −+≤ 1
11

      (3.16) 

Since  

( ) )(1 anxNnhNn eehN −==+  
and xn ≤ b, then xn – a ≤ b - a 
Consequently 

  )()( abnaxN ee n −− <  
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o
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n eT
hN

e
e a)-N(b

)(

e  
1 +






 −≤
−

      (3.17) 

Tn+1 = hψ2 (xn + θh,  y (xn + θh)) - ψ (xn, y(xn),  0 ≤ θ ≤ 1 
=  hψ2 (xn + θh,  y (xn + θh)) - ψ2 (xn, + θh, y(xn) +  ψ1(xn +θhy (xn))  

   -  ψ1 (xn + θhy(xn)) - ψ1 (xn, y(xn)),  0 ≤ θ ≤ 1       (3.18) 
By  taking the absolute value of (3.18) on both sides and considering equation (3.14) we have 

 T = hK ( ) 1x x, )(x n1n
2

n +≤≤∈−−+ θθ jhxyhy n      (3.19) 

by setting Q = j,  and Y = (x)Sup
bxa

y′
≤≤

        (3.20) 

Therefore equation (3.20) becomes 
 T =  h2 θ (N Y + Q)         (3.21) 

By setting (3.21) into (3.17), we have   ( ) o
abN

n eeQNYhe )(a)-N(b2 e −++≤ θ    (3.22) 

Assuming no error in the input data.  That is when eo = 0, then the limit as h → 0, we obtain 

  0=neLim  

     h→ 0          (3.23) 
     n → ∞ 
Thus establishing the convergence of the scheme (2.1). 

 
3.3.   Consistency Property 
 
One stage scheme (2.1) is said to be consistent if 

 ),(yn nn yxf=′ as h tends to zero. 

That is 

 )y f(x  
y

lim nn,
1n =







 −

→
+

h

y

oh

n  

To show the consistency of the scheme (2.1) 
Recall that 
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11n
1n V y 1
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H

yn

+
=+          (3.24) 

Adopting Binomial expansion and ignoring   higher order terms 

yn+1  =  yn - 11
2
n V y H          (3.25) 

Subtracting yn from both sides, we have 

 yn+1 – yn     =  - 11
2
n V y H          (3.26) 

But   H1 =   )y ,f(x 
y nn2

n

h−
        (3.27) 

( )
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n yxf
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y ,Vyy 

21
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n1n       (3.28) 

)y ,f(x  y nn11n hVyn =−+        (3.29) 

Divide both sides by h and V1  =1 

)f(x       n,
1

n
nn y

h

yy =−+        (3.30) 

Taking the limit as  h tends to zero 
 

)y f(x  
y

lim nn,
1n =







 −

→
+

h

y

oh

n        (3.31) 

 
This shows that one-stage method of semi-implicit inverse R-K scheme is consistent. 
 
3.4. Stability Property  

 
As mentioned earlier that any error introduced at any stage of the computation which is not bounded can produced unstable numerical results. 
Therefore, we consider the stability analysis of the proposed semi-implicit Runge-Kutta scheme defined in (2.1) to access its suitability. 
To achieve this, we apply scheme (2.1) to [4] stability scalar test initial value problem 

   oo y )y(x    y,y ==′ λ        (3.32) 
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under the assumption that Re(λ)<< 0 from the scheme (2.1) 

   
11n

1n V y 1
y 

H

yn

+
=+        (3.33) 

( )
nybhdhg 1    Z,H z    ,xH n111n1n1 =++=  

( )
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1
111 y
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.hb1H heλλ −+=  

( )11n
1 b1y
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=        (3.34) 

( ) e

y
y n

n 1
111

1
hb1hV1 −+ ++

=
λλ

      (3.35) 

       let p = λh,  and e = 1 
      Then (3.36) becomes 

( ) 1
111

1
b1V1 −+ ++

=
pp

y
y n

n
       (3.36) 

( ) n1
111

1 y
b1V1

1
−+ ++

=
pp

yn
      (3.37) 

Hence let λ(p)   =   
( )111 b1V1

1

pp ++
       (3.38) 

Then equation (3.37) becomes 
  yn+1 = µ(p)yn         (3.39) 
The equation is A-stable if       1(p) <µ        (3.40) 

with  V1 = 1,  b11 = d1 = ½  
Equation (3.37) becomes 

( ) p

p

pp
2

3
1

2

1
1

11

1
1

2
1

+

+
=

++ −
       (3.41) 

Then equation (3.40) is satisfies 
If 
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p

p
        (3.42) 

That is if 

1  

2

3
1

2

1
1

 1 - <
+

+
<

p

p
        (3.43) 

P < 1 implies that the scheme is A-stable.  Also p > 0 implies that the scheme is P-stable.  Since the values of p is from (-∞, ∞). 
Numerical Computation and Results 
 In order to demonstrate the applicability of this scheme, some sample problem were considered. 
Problem 1: 
Consider initial value problem 
  ( ) 1  y(o) ,3x-y1000- y 23 =+=′ x        (3.44) 
The theoretical solution 
  y(x) = x3

 -1 e-1000x         (3.45) 
The numerical results are shown in table 1. 

 
 
Problem 2 
Consider the stiff system of ODEs of the form 

  

AYY =′          (3.46) 
where 

  

















−
−

−
=

0.120.70

00.50

099.40.1

 A  

with initial conditions   [ ]212  in the theoretical interval  0 ≤  x ≤ 1 while the theoretical solution are given as      
xex 5-x

1 e )(y −+=  

 
xex 5

2 )(y −=  
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xexy 12-5x

3 e )( −+=         (3.47) 

The results are shown in Table 2. 
 
Discussion of Numerical Results 
  

From the results obtained from the solution of the sample problem as shown in the table, the error obtained compare with the error obtained in the existing method 
show that the new scheme is very accurate. 
 It was observed that as the mesh size reduces the solution converges, which shows that the method is accurate, stable and convergent. 
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Table 1:  RESULT  OF ONE-STAGE SEMI-IMPLICIT   INVE RSE  RUNGE-KUTTA SCHEME AND EULER’S SCHEME 

  H YEXACT PROPOSED ONE-STAGE 

SEMI-IMPLICIT  R-K 

METHOD OF ORDER TWO  

YN 

E1 EULER’S SCHEMES 

  YN  

E2 

.10000000D+00 .36887944+00 .36940452D+00 .52508172D-03 .37603125D+00 .71518088D-02 

.500000000D-01 .60665566D+00 .6066819D+00 .26309584D-04 .60689665D+00 .24098742D-03 

.25000000D-01 .77881641D+00 .77881743D+00 .10234944D-05 .77882424 D+00 .78335668D-05 

.12500000D-01 .88249886 D+00 .88249889D+00 .36809087D-07 .88249911 D+00 .24978363D-06 

.62500000D-02 .96941331D+00 .93941331D+00 .12298566D-08 .96941331D+00 .78857242D-08 

.31250000D-02 .96923326 D+00 .96923326D+00 .23411650D-09 .96923326D+00 .2476954D-09 

.15625000D-02 .98449644 D+00 .98449644 D+00 .75289774D-11 .98449644D+00 .7763479D-11 

.78125000D-03 .99221794 D+00 .99221794 D+00 .15305257D-09 .99221794D+00 .24280578D-12 

.39062500D-03 .99610137 D+00 .99610137 D+00 .96332942D-11 .99610137D+00 .75495166D-14 

.19531250D-03 .99804878 D+00 .99804878 D+00 .60418337D-12 .99804878 D+00 .22204460D-15 

.97656250D-04 .99902391 D+00 .9902391 D+00 .15495538D-09 .99902391 D+00 .00000000D+00 

.48828125D-04 .99951184 D+00 .99951184 D+00 .19385937D-10 .99951184 D+00 .11102230D-15 

.24414063D-04 .99975589 D+00 .99975589 D+00 .24242830D-11 .99975589 D+00 .00000000D+00 

.12207031D-04 .99987794 D+00 .99987794D+00 .3032109D-12 .99987794D+00 .11102230D-15 
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Table 2:    RESULT OF ONE-STAGE SEMI-IMPLICIT RUNGE -KUTTA SCHEMES FOR SOLVING STIFF SYSTEMS OF  
        ORDINARY DIFFERENTIAL EQUATIONS  

 

  Y1 Y2 Y3 

X CONTROL STEP SIZE E1 E2 E3 

  .1980099667D+01 .9706425830D+00 .8869204674D+00 

.3000000000D – 01 .3000000000D – 01 .8291942688D-09 .3281419103D-07 .8161313500D-05 

  .1885147337D+01 .8379203859D+00 .4917945068D+00 

.1774236000D+00 .1771470000D-01 .9577894033D-01 .3422855333D-08 .5357828618D-06 

  .1791235536D+01 .7191953586D+00 .2663621637D+00 

.3307246652D+00 .1046033532D-01 .11050933794D-10 .35587255336D-09 .3474808041D-07 

  .1694213422D+01 6088845946D+00 .1365392880D+00 
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