Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), pp 221-228
 © J. of NAMP

A Further Result on Oscillations in a Non-Linear Boundary Value Problem of a Fourth Order Ordinary Differential Equation

Hilary Mbadiwe Ogbu

Department Of Industrial Mathematics And Applied Statistics
Ebonyi State University Abakaliki - Nigeria.
Corresponding author: E-mail ohilary2006@yahoo.com Tel. +2348066972013

Abstract

The Eigenvalue approach and the comparison between a linear and nonlinear fourth order differential equation yielded the basis for a theorem on existence of periodic solutions for a nonlinear boundary value problem. By involving β, where $\beta=\min \left\{\frac{1}{2} a_{2}-M^{2},(M+1)^{2}-\frac{1}{2} a_{2}\right\}$ in the hypothesis a further theorem is proved on existence of periodic solutions for the nonlinear boundary value problem. Our method of investigation is the Leray-Schauder fixed point technique and the use of integrated equation as the mode for estimating the a priori bounds.

Keywords: Boundary value problems (BVP), Leray-Schauder fixed point technique, a priori bounds, integrated equation, parameter dependent equation.

1.0 Introduction

Consider the nonlinear fourth order differential equation:
$x^{(4)}+\varphi\left(a_{2} \theta(x)+f(x)=P(t, x, x)\right.$
with boundary conditions

$$
D^{(r)} x(0)=D^{(r)} x(2 \pi), \quad r=0,1,2,3 \quad D=\frac{d}{d t}
$$

where φ, f, θ, P are continuous functions depending on the argument, a_{2} is a constant.
It has been clearly shown that one would expect solutions to the 2π periodic BVP for the equations.
$x^{(4)}+a_{1}+a_{2}+a_{3} x+a_{4} x=P(t, x, x<$
(1.3)
for arbitrary a_{1} and a_{3}, if a_{2} and a_{4} satisfy
$\chi(m) \neq 0$ for $m=1,2, \ldots$
(1.4)
[See [1], [5], [6]]. The Equation (1.4) is an improvement on result of [3], which required that $\chi(\lambda) \neq 0$ for all real λ.
Observe from (1.4) that

Then $a_{2}>0$, the least restriction on a_{4} which secures (1.5) can be obtained by completing squares and rewriting $\chi(m)$ on the form

$$
\chi(m)=\left(m^{2}-\frac{1}{2} a_{2}\right)^{2}+a_{4}-\frac{1}{4} a_{2}^{2}
$$

(1.7)
which shows that (1.5) holds if
$a_{4}>\frac{1}{4} a_{2}{ }^{2}$
(1.8)

This can be further relaxed when $a_{2}>0$ but $\frac{1}{2} a_{2} \neq$ integer 2 that is $\frac{1}{2} a_{2} \neq m^{2}(m=1,2, \ldots)$ implying that $M^{2}<\frac{1}{2} a_{2}<(M+1)^{2}$

Suppose that (1.9) holds and define a constant $\beta=\beta\left(a_{2}\right)>0$ by

$$
\begin{equation*}
\beta=\min \left\{\frac{1}{2} a_{2}-M^{2},(M+1)^{2}-\frac{1}{2} a_{2}\right\} \tag{1.10}
\end{equation*}
$$

Then by (1.7)
$\chi(m) \geq a_{4}-\frac{1}{4} a_{2}^{2}+\beta^{2} \quad \forall m$
(1.11)
so that (1.5) holds provided that

$$
a_{4}>\frac{1}{4} a_{2}^{2}-\beta^{2}
$$

(1.12)
which is a distinct improvement on (1.8). [1].
In this paper, a generalization of conditions (1.6), (1.8) and (1.12) on Equation (1.3) have been used in establishing existence of periodic solutions for Equations (1.1) - (1.2) in which $a_{1}, a_{2}, a_{3}, a_{4}$ are all not necessarily constants. In particular with respect to (1.12), we have the following:

THEOREM 1

Suppose that
(i) $\quad \varphi, \theta, f, P$ are continuous function depending on the arguments shown with a_{2} a constant greater than zero
(ii) The constant a_{2} satisfies $M^{2}<\frac{1}{2} a_{2}<(M+1)^{2}$ for some $M>0$ and there exists a constant $\delta>0$ such that
$\inf _{\|x\| \geq 1} \frac{f^{\prime}(x)}{x} \geq \delta_{1}>\frac{1}{4} a_{2}^{2}-\varepsilon \beta^{2}$
(1.13)
where β is defined by (1.10) and ε is in the interval $0 \leq \varepsilon \leq 1$.
(iii) The function P is bounded and 2π periodic in t .

Then Equations (1.1) - (1.2) have at least one 2π periodic solution for arbitrary φ and θ

2.0 GENERAL COMMENTS ON SOME NOTATIONS

Throughout the proof, which follows the capital, $C, C_{1}, C_{2}, C_{3} \ldots$ represent positive constants, whose magnitudes depend at most on φ, θ, f, P and the constants a_{2}. The $C_{1}, C_{2}, C_{3}, \ldots$ with suffices attached
retain their identities throughout the proof of the theorem 2 but the C_{j} without suffixes are not necessarily the same
in each place of occurrence. The symbols $\left\|_{\infty},\right\|_{1}$, and $\|_{2}$ in respect of the mapping: $[0: 2 \pi] \rightarrow \mathbf{R}$ shall have their usual meanings. Thus given the function
$\theta:[0,2 \pi] \rightarrow \mathbf{R}$ then

$$
|\theta|_{\infty}=\max _{0 \leq t \leq 2 \pi}|\theta(t)|,|\theta|_{1}=\int_{0}^{2 \pi}|\theta(t)| d t,|\theta|_{2}=\left(\int_{0}^{2 \pi} \theta^{2}(t) d t\right)^{\frac{1}{2}}
$$

3.0 PROOF OF THEOREM 1

The proof of theorem 1 is by the Leray-Schauder fixed point technique and we shall consider the parameter λ dependent equation, $(0 \leq \lambda \leq 1)$

$$
\begin{equation*}
x^{(4)}+\varphi\left(a_{2}+\theta\left(+f_{\lambda}(x)=\lambda P\right.\right. \tag{3.1}
\end{equation*}
$$

where

$$
f_{\lambda}(x)=(1-\lambda) \delta_{1}+\lambda f(x)
$$

By setting

$$
\begin{equation*}
\&=y, \quad \&=z, \quad k, \quad \iota=-\lambda \varphi u-a_{2} z-\lambda \varphi(y)-f_{\lambda}(x)+\lambda p \tag{3.2}
\end{equation*}
$$

the equation (3.1) can be written compactly in matrix form

$$
\begin{equation*}
\not X^{\&}=A X+\lambda F(X, t) \tag{3.3}
\end{equation*}
$$

where

$$
X=\left[\begin{array}{l}
x \tag{3.4}\\
y \\
z \\
u
\end{array}\right], \quad A=\left[\begin{array}{llrl}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\delta_{1} & 0 & -a_{2} & 0
\end{array}\right], \quad F=\left[\begin{array}{l}
0 \\
0 \\
0 \\
Q
\end{array}\right]
$$

with $Q=P(t)-\varphi u+a_{2} z-\theta(y)-f(x)+\delta_{1} x$.

Note that equation (3.1) reduces to a linear equation.

$$
x^{(4)}+a_{2} r^{2}+\delta_{1} x=0
$$

(3.5)
when $\lambda=0$ and to (1.1) when $\lambda=1$. The eigenvalues of the matrix A defined by (3.4) are the roots of the auxiliary equation

$$
\begin{equation*}
r^{4}+a_{2} r^{2}+\delta_{1}=0 \tag{3.6}
\end{equation*}
$$

The equation (3.6) has no roots of the form $r=i \beta$ (β an integer) if

Therefore the matrix $\left(e^{-2 \pi A}-I\right)$ (I being the identity 4×4 matrix) is invertible. Thus $X=X(t)$ is a 2π periodic solution of (3.3) if and only if

$$
X=\lambda T X, \quad 0 \leq \lambda \leq 1
$$

(3.8)
where the transformation T is defined by

$$
\begin{equation*}
(T X)(t)=\int_{0}^{2 \pi}\left(e^{-2 \pi A}-1\right)^{-1} e^{A(t-s)} F(X(s), s) d s \tag{4}
\end{equation*}
$$

Let S be the space of all real continuous 4-vector function $\bar{X}(t)=(x(t), y(t), z(t), u(t))$ which are of periodic 2π and with norm

$$
\begin{equation*}
\|\bar{X}\|_{s}=\sup _{0 \leq t \leq 2 \pi}\{|x(t)|+|y(t)|+|z(t)|+|u(t)|\} \tag{3.10}
\end{equation*}
$$

If the operator T defined by (3.9) is a compact mapping of S into itself, then it suffices for the proof of theorem 1 to establish a priori bounds $C_{1}, C_{2}, C_{3}, C_{4}$ independent of λ such that
$|x|_{\infty} \leq C_{1},\left|X_{\infty} \leq C_{2},\right| \infty C_{3}, C_{\infty}$
(3.11)

4.0 VERIFICATION OF (24)

We shall require in addition the use of result

$$
\begin{equation*}
\int_{0}^{2 \pi}\left(u+\frac{1}{2} a_{2} y\right)^{2} d t \equiv \int_{0}^{2 \pi}\left(\frac{1}{2} a_{2} x^{2} d t \geq \beta^{2} \int_{0}^{2 \pi} d z^{2} d t\right. \tag{4.1}
\end{equation*}
$$

Let $x(t)$ be a possible 2π periodic solution of (3.1). Then the main tool to be used here in this verification is the function $V(x, y, z, u)$ defined by

$$
\begin{equation*}
V=\lambda \int_{0}^{z} s \varphi(s) d s+a_{2} y z+u z+y f_{\lambda}(x)+\lambda \int_{0}^{y} \theta(s) d s \tag{4.2}
\end{equation*}
$$

The time derivative $V^{\&}$ of (4.2) along the solution paths of (3.2) is
$\mathcal{L}=u^{2}+a_{2} y u+y^{2} f_{\lambda}^{\prime}(x)+\lambda z P$, on completing the squares, we have

$$
=\left(u+\frac{1}{2} a_{2} y\right)^{2}+y^{2}\left(f_{\lambda}^{\prime}(x)-\frac{1}{4} a_{2}^{2}\right)+\lambda z P
$$

(4.3)

In dealing with the term like $y^{2} f_{\lambda}^{\prime}(x)$ in which $f^{\prime}(x)$ is positive only when $|x|$ is positive. Consider the function W defined by

$$
\begin{equation*}
W=y H(x) \tag{4.4}
\end{equation*}
$$

where

$$
H(x)= \begin{cases}\sin \left(\frac{\pi x}{4}\right), & |x| \leq 2 \\ \operatorname{sqn} x, & |x|>2\end{cases}
$$

Along the solution paths of the Equation (3.2)

$$
\frac{d}{d t}(y H(x))=y^{2} H^{\prime}(x)+z H(x)
$$

By considering the function

$$
\begin{equation*}
U=V+\lambda C_{0} y H(x) \tag{4.6}
\end{equation*}
$$

and along the solution paths of (3.2)

$$
\frac{d}{d t}(U)=U^{\&}=\left(u+\frac{1}{2} a_{2} y\right)^{2}+y^{2}\left(f_{\lambda}^{\prime}(x)-\frac{1}{4} a_{2}^{2}\right)+\lambda z P+\lambda C_{0} y^{2} H^{\prime}(x)+\lambda C_{0} z H(x)
$$

(4.7)
since $|H| \leq 2 \forall x$ and $H^{\prime}(x) \geq 0 \forall x$
but $H^{\prime}(x) \geq \frac{\pi}{4 \sqrt{2}}$ when $|x| \leq 1$ it follows from (4.6) and (4.7) that C_{0} is fixed and large enough, we shall have that for every possible 2π periodic solution of that

$$
\begin{aligned}
& \begin{array}{l}
\int_{0}^{2 \pi}\left(u+\frac{1}{2} a_{2} y\right)^{2} d t+y^{2} \int_{0}^{2 \pi} f_{\lambda}^{\prime}(x) d t+H^{\prime}(x)-\frac{1}{4} a_{2}^{2}+y^{2} \int_{0}^{2 \pi}\left(\lambda C_{0} H^{\prime}(x)-\frac{1}{4} a_{2}^{2}\right) d t= \\
\\
\qquad \int_{0}^{2 \pi}\left\{\lambda P+\lambda C_{0} H(x)\right\}|z| d t
\end{array} \\
& \quad \int_{0}^{2 \pi}\left(u+\frac{1}{2} a_{2} y\right)^{2} d t+\int_{0}^{2 \pi}\left(\frac{1}{4} a_{2}^{2}+\varepsilon \beta^{2}\right) y^{2} d t \leq C_{2} \int_{0}^{2 \pi}|z| d t
\end{aligned} \quad \begin{aligned}
& \text { splitting } \int_{0}^{2 \pi}\left(u+\frac{1}{2} a_{2} y\right)^{2} d t \text { as follows }
\end{aligned}
$$

$$
\begin{aligned}
& (1-\varepsilon) \int_{0}^{2 \pi}(u+\alpha y)^{2} d t=\{(1-\varepsilon)+\varepsilon\} \int_{0}^{2 \pi}(u+\alpha y)^{2} d t \\
& \alpha=\frac{1}{2} a_{2}
\end{aligned}
$$

By (4.1) and (4.8), we have

$$
(1-\varepsilon) \int_{0}^{2 \pi}(u+\alpha y)^{2} d t \leq C_{2} \int_{0}^{2}|z| d t
$$

with $(1-\varepsilon)>0$ and that $y=z=u=$ equation implies

$$
\alpha x x_{2}^{2} \leq C_{2} \mid
$$

Note that

$$
\begin{aligned}
& \mid \text { 类 } \\
& \text { (4.9) } \\
& \text {. }
\end{aligned}
$$

by Schwartz's inequality

$$
\leq(2 \pi)^{\frac{1}{2}} C_{3} \alpha \alpha
$$

From [2]

$$
\leq C_{5}\left|\alpha x_{1} \leq C_{6}\right| \alpha x_{2}
$$

by Schwartz's inequality and where $C_{6}=(2 \pi)^{\frac{1}{2}} C_{5}$

This implies that
$\alpha \leq C_{6}$
(4.10)

From (4.9) and (4.10)

$$
\leq C_{8}
$$

(4.11)

Since $x(0)=x(2 \pi)$ implies that there exists $\tau \in[0,2 \pi]$ such that $\delta \tau)=0$ then the identity

$$
x(t)=x(\tau)+\int_{0}^{2 \pi} d s \text { holds. }
$$

So that
$\max _{0 \leq \leq \leq 2 \pi}|x(t)| \leq \int_{0}^{2 \pi} \mid x \notin d s$
That is

$$
\leq(2 \pi)^{\frac{1}{2}}
$$

$$
\left.\max _{0 \leq t \leq 2 \pi} \mid x \notin t\right) \mid \leq C_{9}
$$

Hence
$x_{\infty} \leq C_{9}$
Now integrate equation (14) directly from $t=0$ to $t=2 \pi$

$$
\int_{0}^{2 \pi} x^{(4)} d t+\int_{0}^{2 \pi} \lambda \varphi\left(t+\int_{0}^{2 \pi} a_{2} d t+\int_{0}^{2 \pi} \lambda \theta\left(\partial d t+\int_{0}^{2 \pi} f_{\lambda}(x) d t=\int_{0}^{2 \pi} \lambda P d t\right.\right.
$$

Using equations (4.11), (4.12) and (1.2)

$$
\int_{0}^{2 \pi} f_{\lambda}(x .13) d t=\int_{0}^{2 \pi} \lambda P d t-\int_{0}^{2 \pi} \lambda \theta(\lambda) d t
$$

The boundedness of P and the fact that $0 \leq \lambda \leq 1$ together with (4.12) imply that the right hand side of (4.13) is finite.

That is

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} \lambda P d t\right|+\mid \int_{0}^{2 \pi} \lambda \theta\left(d t \mid \leq C_{10}\right. \tag{4.14}
\end{equation*}
$$

Thus

$$
\left|\int_{0}^{2 \pi} f_{\lambda}(x) d t\right| \leq C_{10}
$$

or

$$
\begin{equation*}
\left|(1-\lambda) \delta_{1} x+\lambda f(x)\right| \leq C_{10} \tag{4.15}
\end{equation*}
$$

for C_{10} very large implies that $|x(\tau)| \leq C_{11}$ for some $\tau \in[0,2 \pi]$
(4.16)

Now the identity t

$$
x(t)=x(\tau)+\int_{e}^{t} x d t \text { holds }
$$

Thus

$$
\begin{aligned}
\max _{0 \leq \leq \leq 2 \pi}|x(t)| & \leq|x(\tau)|+\int_{0}^{2 \pi} \mid x d d t \\
& \left.\leq C_{11}+(2 \pi)^{\frac{1}{2}} \right\rvert\, x C_{2}
\end{aligned}
$$

by Schwartz's inequality. From (4.12)

$$
\max _{0<t \leq 2 \pi}|x(t)| \leq C_{11}+C_{2}=C_{3}
$$

and

$$
\begin{equation*}
|x|_{\infty} \leq C_{13} \tag{4.17}
\end{equation*}
$$

To obtain the fourth inequality in (3.11), multiply (3.1) by $x^{(4)}$ and integrate with respect to t from $t=0$ to $t=2 \pi$.
$\int_{0}^{2 \pi} x^{(4) 2} d t+\int_{0}^{2 \pi} \lambda \varphi\left(\int_{0}^{(4)} d t+a_{2}^{2 \pi} d t+\int_{0}^{2 \pi} \lambda \theta(x) x^{(4)} d t+\int_{0}^{2 \pi} f_{\lambda}(x) x^{(4)} d t=\int_{0}^{2 \pi} \lambda P x^{(4)} d t\right.$
we use equation (4.11), (4.12), (4.17) and the boundedness of P and since φ, θ and f are continuous functions, there are constants C_{14}, C_{15} such that

$$
\begin{aligned}
\left|x^{(4)}\right|_{2}^{2} & \leq C_{14}\left|x^{(3)}\right|_{2}\left|x^{(4)}\right|_{2}+C_{15}\left|x^{(4)}\right|_{2} \\
& \leq C_{16}\left|x^{(4)}\right|_{2}
\end{aligned}
$$

(4.18)
where $C_{16}=C_{15}+C_{14} C_{7}$
so that

$$
\left|x^{(4)}\right|_{2} \leq C_{16}
$$

from which because of (1.2) with $r=3$ then

$$
\left|x^{(3)}\right|_{\infty} \leq(2 \pi)^{\frac{1}{2}}
$$

The estimates (4.11), (4.12), and (4.17) verify the inequality (3.11) and hence the proof theorem 1

REFERENCES

[1] Ezeilo J.O.C. (2001), Non-resonant oscillations for some fourth order differential equations I, J. Nigerian Math Soc. vol 20, 45-58.
[2] Ezeilo J.O.C and Omari P.N. (1989), Non-resonant oscillations for some third order differential equations II, J. of Nigerian Maths. Soc. vol 8, 25-48.
[3] Ezeilo J.O.C. and Tejumola H.O. (1989), Periodic solutions of certain fourth order differential equations. Atti. Accad. Naz. Lencei. Sci. Fis. Mat. Natur. Ser. VIII LXV1, 344-350.
[4] Hale J.K. (1963), Oscillations in non-linear systems. McGraw Hill, New York, Toronto, London
[5] Ogbu H. M. and Umahi A. E. (2009), Periodic solutions for a certain nonlinear boundary value problem (BVP) of a fourth order differential equation, Journal of Nigerian Association of Mathematical Physics, vol 14 pp 479-484.
[6] Ogbu H. M. (2010), Oscillations in nonlinear systems of a fourth order differential equation I, N.M.C - Journal of Mathematical Sciences (to appear).

