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Abstract

In this study, we presented the fully discrete scheme for
the Galerkin finite edement analysis of a stochastic wave
eguation driven by space-time white noise. The finite
element discretization in time was obtained by applying
the Crank-Nicolson time stepping finite difference
method. Error estimates in the L, norm was obtained by
using L,-projections of the initial data as darting
values.

1.0 Introduction
Our equation of study in this paper is the stromfflyjnped stochastic wave equation
driven by space-time white noise

u, +aAu, + Au=o(u)dW in Qx[0,T]
u(Clt) =0 on 0Q
u@,l=@ u, (0,01=¢ in Qx[0T]
(1.1)

whereQ is a bounded domain R d < 3, with smooth boundaBQ, A = -A is selfadjoint, positive
definite linear elliptic partial operator of secomdier with smooth coefficients, denotes the Laplacian. W

is a Wiener process defined on a filtered protxattﬁlbace(Q, F,P {Ft}tzo) with covariance operator
Q:L,(Q) - L,(Q) and the operatog = | .

Finite element analysis of both the semidiscrete@mpletely discrete schemes of the
deterministic form of (1.1) (i.e.g (u) = 0) were studied by [5] in the, horms and by [6] in the maximum
norm. [3] gave the rate of strong convergence efsmi-discretized solution of (1.1) with= 0 in the L-
norm and in [4] studied the finite element errdireate of the fully discrete scheme which was aisdiby
the backward Euler time stepping method. Also j&tdssed the finite element method for (1.1) and
proved error estimates for both the semidiscretefally discrete solutions. Here the fully discrsttheme
was obtained by applying the backward Euler tine@ging finite difference method. The authors exéshd
their work and in [2] proved error estimates fag fimite element solution of (1.1) in the maximuorm.

In this study, we wish to extend the results ingatl [2] by applying the Crank-Nicolson time
stepping finite difference method to discretize ptately (1.1) in time and obtain convergence resfalt
the approximate solution.
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2.0 Finite Element Analysis
In discussion the finite element analysis of (1wlg,shall first formulate it as a
first order system in time, i.e., as a 2 x 2 systeyrsetting

HER I
X= and B=

U, A aA
(2.1)

where the functions lie in the domaB(A) = Hi n H?, and thus the components of

those in D(B) vanishes a2 . Hence (1.1) becomes
X, + Bx=dw, t>0
x(0)=x, = (4 ¢)
(2.2)
Let E(t) = e™  denote the analytic semigroup of H generated jthén —B generates an analytic
semigroup in the Hilbert spaceX.L,, and (2.2) has a unique solution
X(t) = e™®x, forany x, 0L, xL,

2.1 Discretization in Space and Time
Let Vy, be a family of finite elements spaces, which cstssdf continuous piecewise

linear finite elements that vanish on the boundeiti respect to the triangulation, ®f Q, [J Q with
boundary nodes of h of2,, onéQ. We also have thdiV, } 0 H? . From the standard finite element
method, the spatially semidiscrete problem of (is1p find U, () UV, such that,

Une + GAU,, + A, = PdW, £>0, u,(0) =g, u (0) =9, (23

where ¢, and ¢h are approximations of Mof ¢ and @, B, denotes the iprojection onto {. And as
in (2.1) we have we have

uy, { 0 -l }
X, = and B, =
Uy A, aA,
(2.4)
our semidiscrete problem now becomes
Xqe + By, = B,dW, t>0, x,(0) =Xy, =(a.4,)"

(2.5)
We finally turn to the fully discrete scheme whighl be obtained by discretization
of (2.5) in time. Thus, let r(z) be a rational ftino approximating éto order p,
i.e., such that

r(z)=e*+0(z""), for z - 0, where p=1

(2.6)
and which is A-stable, so that

r(2|<1 for Re@=0
(2.7)
We then define an approximatioX,, = (U ,,V,)" to the solution of (1.1) at timt, = nk;
whereK is the time step, by
X,=rkB,)X,,, for n=21 with X,=x, =(@,9,)"
(2.8)
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In this work we consider the case of the Crank-Mizo approximations. This corresponds to the ration
function r(z) = (1_1 7)1+ 1 z) Which gives
2 2

(1+%th)Xn = (1—%th)Xn_l, for n=1 with X, =Xy, = (@,.6,)"

Express in terms of the componentsXf, = (U,,V.,)" these may be written as

s Lyaw = a-Cais Li _ 1
@Gk GKIAN, = A= (Gat+ KA N —kAU, +5 [RAWS)

U,]:Un_l+%k(\/n +V,,), for nz1

Uy =9, Vo =9,
Eliminating V, we find that, withgu = (U, -U,,)/2k andy :E(U +2U, , +U,.,)
n 2 n n-: n—

@U., x)+aA@U ., )+ AU, Y)=PAW, O x0OV,, n=2 (2.9)
s 1, 1,01 2 A K
Uo =@, 0U =28, + (142 (ak+k)A) (@, ~kAg, + [RdW(9)
thog
3.0 Convergence results

If we definep, :L, - Vv, andR :H; - V, asL, and Ritz projections respectively,

then we have |Rv|<C|M and |RM<CM
such that by the standard finite element analysis
|Pv-v|sCh?|v|, for vOH” n Hg
(3.1)
and
|Ryv-v[sCh?|v|, for vOH” n Hg
(3.2)
To present our error estimate, we need the following resalts ljoseh and Ayoola (2008).
Lemma 3.1
Let ¢, ¢ K and assume thily, - ¢f| < Ch”|], and g, -4 < Ch’g],

Then there is a constant C such that
Ju, (@) = u(®)] + Juy, @ = u, O] = Ch (g, +Jg], +[A"] )

and
- B -(1-p)/2
%, (®) = @) < Ch* ([, .., +| A L)
Lemma 3.2
Let E, (t) =e™ be the semigroup generated hy Bet F,(t) = E, (t)P, — E(t). Then
[Fa®l_ oy, SCHFM,, for vOH, 0< <1
and

IFa Ol oy S CN°M,, for vOR™, 0<5<2
Theorem 3.1Assume that (1) satisfies (2.6) and (2.7). Lef, ¢ 0K, s=max(8, p), and
assume thafy, ~ < Chelgf, and |9, -] <], @3

Then for the solution of (1.1) and of (2.9) we have
U -ue)|+ V" -u )] < chf(d, +lgl, +|A S0 )+ ok (d, +lgl, + AP

3.4)

), t.20 (

Lo
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This is equivalent to
[Xq =% s Ch? (x|, + A2 )+ Ok ([, +[A72] ), 1,20 (3:5)

Proof: - We have X, = ()] <|X, = %,(t,)| [, (t,) - x|
By lemma 3.1 %, ) = x(®)] < Ch? (|, o HA-(l—B)IZ

)

LoxL,
Hence we need to estimate
Xy =%, (t,) =[r(kB,)"Xg, +1(KB,)" RAW(H) — & "*x,,]
=[r(kB,)" Xgn =€ )%y, +1 (KB, )" RAW()]
We assumex,, = P,x,, whereR, is also the orthogonal projection bf x L, ontoV, xV,
and if we let
F, =F,(kB,) =r(kB,)" —e )

X, =%, &,)] < HF%(@ Pl * ‘-L{ (8,)") P%A\AV%)H
1
The bounds for (I) we will get from Lemma 3.1 and Lemnfa 3

[1]=[F. (kB )R] < Ch* g, +le],)
From lemma 3.1, 3.2, Ito isometry and Paserval's relatiergbtain

] =[r08,)" RawE)| = |r (k)" [ Phd\N(s)H

such that

<C

I PhGW(s)H

=C

Phimi (B; () = B; (t, 1)),

2

< ch Ao

> +Ck pHA—(l—p)lz
L,

2

This completes the proef

Conclusive Remark 3.1
Sinceq,, ¢, U K | and bothg, and ¢@,, are arbitrary initial approximations of optimal order,

the error bound (3.4) shows that it is sufficient teenmnitial data ink¥ in order to have optimal order
convergence, for bothl, andu,, uniformly fort 2 0.
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