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Abstract 

 
In this study, we presented the fully discrete scheme for 
the Galerkin finite element analysis of a stochastic wave 
equation driven by space-time white noise. The finite 
element discretization in time was obtained by applying 
the Crank-Nicolson time stepping finite difference 
method. Error estimates in the L2 norm was obtained by 
using L2-projections of the initial data as starting 
values. 

 
 
1.0  Introduction 

Our equation of study in this paper is the strongly damped stochastic wave equation 
driven by space-time white noise  
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 (1.1) 
where Ω is a bounded domain in Rd; d ≤ 3, with smooth boundary ∂Ω, A = -∆ is selfadjoint, positive 
definite linear elliptic partial operator of second order with smooth coefficients, ∆ denotes the Laplacian. W 

is a Wiener process defined on a filtered probability space ( )0}{,,, ≥Ω ttFPF  with covariance operator 

)()(: 22 Ω→Ω LLQ  and the operator I=σ . 

Finite element analysis of both the semidiscrete and completely discrete schemes of the 
deterministic form of (1.1) (i.e., σ (u) = 0) were studied by [5] in the L2 norms and by [6] in the maximum 
norm. [3] gave the rate of strong convergence of the semi-discretized solution of (1.1) with α = 0 in the L2-
norm and in [4] studied the finite element error estimate of the fully discrete scheme which was obtained by 
the backward Euler time stepping method. Also [1] discussed the finite element method for (1.1) and 
proved error estimates for both the semidiscrete and fully discrete solutions. Here the fully discrete scheme 
was obtained by applying the backward Euler time stepping finite difference method. The authors extended 
their work and in [2] proved error estimates for the finite element solution of (1.1) in the maximum norm. 

In this study, we wish to extend the results in [4] and [2] by applying the Crank-Nicolson time 
stepping finite difference method to discretize completely (1.1) in time and obtain convergence results for 
the approximate solution. 
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2.0  Finite Element Analysis 
In discussion the finite element analysis of (1.1), we shall first formulate it as a 

first order system in time, i.e., as a 2 × 2 system, by setting 
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 (2.1) 

where the functions lie in the domain 21
0)( HHAD ∩= , and thus the components of 

those in D(B) vanishes on ∂Ω . Hence (1.1) becomes  
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 (2.2) 

Let tAetE −=)( , denote the analytic semigroup of H generated by A, then –B generates an analytic 

semigroup in the Hilbert space L2× L2, and (2.2) has a unique solution 

0)( xetx tB−=  for any 220 LLx ×∈  

 
2.1  Discretization in Space and Time 

Let Vh be a family of finite elements spaces, which consists of continuous piecewise 

linear finite elements that vanish on the boundary with respect to the triangulation Th of  Ω⊂Ωh    with 

boundary nodes of h on hΩ  on ∂Ω. We also have that 1
0}{ HVh ⊂ . From the standard finite element 

method, the spatially semidiscrete problem of (1.1) is to find hh Vtu ∈)( , such that, 

       

)3.2()0(,)0(,0,,, hthhhhhthhtth uutdWPuAuAu ϕφα ==>=++  

where  hφ  and hϕ  are approximations of Vh of φ  and ϕ ,  Ph denotes the L2-projection onto Vh . And as 

in (2.1) we have we have 
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 (2.4) 
our semidiscrete problem now becomes 

T
hhhhhhhth xxtdWPxBx ),()0(,0, 0, ϕφ==>=+   

 (2.5) 
We finally turn to the fully discrete scheme which will be obtained by discretization 
of (2.5) in time. Thus, let r(z) be a rational function approximating e-z to order p, 
i.e., such that  

1,0),()( 1 ≥→+= +− pwherezforzOezr pz    

 (2.6) 
and which is A-stable, so that 

0)Re(,1)( ≥≤ zforzr      

 (2.7) 

We then define an approximation T
nnn VUX ),(=  to the solution of (1.1) at time nktn = ; 

where k  is the time step, by 
T

hhhnhn xXwithnforXkBrX ),(,1,)( 001 ϕφ==≥= −   

 (2.8) 
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In this work we consider the case of the Crank-Nicolson approximations. This corresponds to the rational 

function )
2
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Express in terms of the components of T
nnn VUX ),(=  these may be written as 
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Eliminating Vn we find that, with kUUU nnn 2/)( 1−−=∂  and )2(
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3.0  Convergence results 
If we define 

hh VLP →2:  and 
hh VHR →1

0:  as 2L  and Ritz projections respectively, 

then we have       vCvRandvCvP hh ≤≤  

such that by the standard finite element analysis 
1
0HHvforvChvvPh ∩∈≤− β

β
β      

 (3.1) 
and 

1
0HHvforvChvvRh ∩∈≤− β

β
β      

 (3.2) 
To present our error estimate, we need the following results from Njoseh and Ayoola (2008). 
Lemma 3.1 

Let βϕφ H&∈,  and assume that 
β

β
β

β ϕϕϕφφφ ChandCh hh ≤−≤−  

Then there is a constant C such that 
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Lemma 3.2 
Let htA

h etE −=)(  be the semigroup generated by Ah. Let )()()( tEPtEtF hhh −= . Then 

10,,)(
)];,0([

≤≤∈≤
∞

ββ
β

β HvforvChtF
HTLh

&  

and 
20,,)( 1

1)];,0([2
≤≤∈≤ −

−
ββ

β
β HvforvChtF

HTLh
&  

Theorem 3.1 Assume that )(λr  satisfies (2.6) and (2.7). Let ),max(,, psH s βϕφ =∈ & , and 

assume that 
β

β
β

β ϕϕϕφφφ ChandCh hh ≤−≤−     (3.3) 

Then for the solution of (1.1) and of (2.9) we have 
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This is equivalent to 
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Proof:    We have      )()()()( txtxtxXtxX nhnhnn −+−≤−  
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We assume 
00 xPx hh = , where hP  is also the orthogonal projection of 22 LL ×  onto hh VV ×  
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The bounds for (I) we will get from Lemma 3.1 and Lemma 3.2 
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From lemma 3.1, 3.2, Ito isometry and Paserval's relation, we obtain 
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This completes the proof ▪ 
 
Conclusive Remark 3.1 

Since βϕφ Hhh
&∈, , and both hφ  and hϕ  are arbitrary initial approximations of optimal order, 

the error bound (3.4) shows that it is sufficient to have initial data in βH&  in order to have optimal order 

convergence, for both hu  and thu , , uniformly for 0≥t . 
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