Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational Iteration Method

${ }^{l}$ Olayiwola , M. O, ${ }^{l}$ Gbolagade, $\boldsymbol{A} . W \&{ }^{2}$ Adesanya, A. O
${ }^{1}$ Department of Mathematical \& Physical Sciences
College of Science, Engineering \& Technology
Osun State University, Osogbo, Nigeria.
${ }^{2}$ Department of Pure \& Applied Mathematics
Ladoke Akintola University of Technology
Ogbomoso, Nigeria.
Corresponding authors: M. O. O. ; +2348028063936

Abstract

Abstract

In this paper, a Modified initial guess Variational Iteration Method (MigVIM) is used to solve a non-homogeneous variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

Keyword: lagrange multiplier, variational iteration method, parabolic partial differential equation.

1.0 Introduction

The variable coefficient fourth order parabolic differential equations arise in the study of the transverse vibration of a uniform flexible beam. Numerical computations of the transverse vibrations have been carried out by a number of authors [11]

The Variational Iteration Method (VIM) was developed and formulated by He J H for solving various problems [3-10)]. The method has been extensively useful for diversified initial and boundary value problems and has potential to cope with the versatility of the complex nature of physical problems.

In [12], the non homogeneous equation with constant coefficient was solved by Adomian Decomposition Method (ADM) . In this paper, we present MigVIM for the fourth order non homogeneous parabolic partial differential equation of the form:

$$
\frac{\partial^{2} u}{\partial t^{2}}+\mu(x) \frac{\partial^{4} u}{\partial x^{4}}=f(x, t), \quad 0 \leq x \leq 1, t>0
$$

with the initial condition

$$
\begin{aligned}
& u(x, 0),=g_{0}(x) \\
& \frac{\partial u}{\partial t}(x, 0)=g_{1}(x) \\
& (1.2)
\end{aligned}
$$

and the boundary conditions at $x=0$ and $x=1$ are of the forms

$$
\begin{align*}
& u(0, t),=f_{0}(t), u(1, t),=f_{1}(t) \\
& \frac{\partial^{2} u}{\partial x^{2}}(0, t)=p_{0}(t), \frac{\partial^{2} u}{\partial x^{2}}(1, t)=p_{1}(t) \tag{1.3}
\end{align*}
$$

2.0 Variational Iteration Method

To illustrate the basic concept of the technique, we consider the following general nonlinear partial differential equation.

$$
L u(x, t)+R u(x, t)+N u(x, t)=g(x, t)
$$

(2.1)
where L is a linear time derivative operator, R is a linear operator which has partial derivative with respect to x, N is a nonlinear operator and g is an inhomogeneous term. According to VIM, we can construct a correct fractional as follows:

$$
u_{n+1}^{u_{(2.2)}}(x, t)=u_{n}(x, t)+\int_{0}^{t} \lambda\left[L u_{n}+R \tilde{u}_{n}+N \tilde{u}_{n}-g\right] d \tau
$$

where λ is a Lagrange multiplier which can be identified optimally Via variational iteration method. The subscript n denote the nth approximation, \tilde{u}_{n} is considered as a restricted variation i.e, $\delta \tilde{u}_{n}=0$. The successive approximation $u_{n+1}, n \geq 0$ of the solution u will be readily obtained upon using the determined Lagrange multiplier and any selective function u_{0}, consequently, the solution is given by:
$u=\lim _{n \rightarrow} u_{n}$
(2.3)

In MigVIM, equation (2.2) becomes:

$$
u_{0}(x, t)=g_{0}(x)+\operatorname{tg}_{1}(x)+t^{2} g_{2}(x)
$$

$$
\begin{equation*}
u_{n+1}(x, t)=u_{n}(x, t)+\int_{0}^{t} \lambda\left[L u_{n}+R \tilde{u}_{n}+N \tilde{u}_{n}-g\right] d \tau \tag{2.4}
\end{equation*}
$$

(2.5)
where $g_{2}(x)$ can be found by substituting for $u_{0}(x, t)$ in (1.0) at $t=0$.

3.0 Application

Consider the fourth-order problem as considered in [12,13]

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}+(1+x) \frac{\partial^{4} u}{\partial x^{4}}=\left(x^{4}+x^{3}-\frac{6}{7!} x^{7}\right) \cos t, \quad 0<x<1, t>0 \\
u(x, 0),=\frac{6}{7!} x^{7} \\
\frac{\partial u}{\partial t}(x, 0)=0 \tag{3.2}
\end{gather*}
$$

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 205-210

Fourth-Order Parabolic Equation Olayiwola, Gbolagade, Adesanya J of NAMP

$$
\begin{aligned}
& u(0, t),=0, u(1, t),=\frac{6}{7!} \cos t \\
& \frac{\partial^{2} u}{\partial x^{2}}(0, t)=0, \frac{\partial^{2} u}{\partial x^{2}}(1, t)=\frac{6}{20} \cos t \\
& (3.3)
\end{aligned}
$$

Applying recursive formula (2.4-2.5) gives

$$
\begin{gather*}
u_{0}(x, t)=\frac{6}{7!} x^{7}-\frac{3}{7!} x^{7} t^{2} \\
u_{1}(x, t)=u_{0}(x, t)+\int_{0}^{t}(\tau-t)\left[\begin{array}{l}
\left.\frac{\partial^{2} u_{n}(x, \tau)}{\partial \tau^{2}}+(1+x) \frac{\partial^{4} u_{n}(x, \tau)}{\partial x^{4}}\right] d \tau \\
-\left(x^{4}+x^{3}-\frac{6}{7!} x^{7}\right) \cos \tau
\end{array}\right] d \tag{3.4}
\end{gather*}
$$

this gives;

$$
\begin{aligned}
& u_{1}(x, t)=\left(\frac{t}{840}-\frac{1}{840} \sin t\right) x^{8}+\left(\frac{1}{840} t \sin t-\frac{1}{840} t^{2}+\frac{1}{840} \cos t\right) x^{7} \\
& +\left(-t+\frac{t^{3}}{6}+\sin t\right) x^{5}+\left(\frac{t^{2}}{2}+\frac{t^{3}}{6}-\cos t+(-\sin t-1) t+1-\frac{t^{4}}{8}+\sin t\right) x^{4} \\
& +\left(\frac{t^{2}}{2}-\frac{t^{4}}{8}+1-t \sin t-\cos t\right) x^{3} \\
& \text { (3.6) }
\end{aligned}
$$

Equation (3.6) is the first numerical approximation.

4.0 Conclusion

In this work, the MigVIM was applied to the solution of non-homogeneous variable coefficient fourthorder parabolic partial differential equation. Table.I shows the comparism of fist approximation with the exact solution while Fig. I is the 3-D graphical representation. The ability of the method to give an efficient solution with just one iteration makes it remarkable when compared with [12,13].

This method can be extended to nonlinear variable coefficient parabolic partial differential equation of order greater than four.

Table 1:Absolute errors for first approximate solutions, $\mathrm{U}_{1}(\mathbf{x , t})$ and Exact Solution.

x	t	$\mathbf{U}_{1}(\mathbf{x}, \mathbf{t})$	Exact Solution	absolute error
0.1	0.01	$1.1904175259 \mathrm{E}-10$	$1.1904166672 \mathrm{E}-10$	$8.5870059398 \mathrm{E}-17$
0.2		$1.5237335356 \mathrm{E}-08$	$1.5237333340 \mathrm{E}-08$	$2.0162870612 \mathrm{E}-15$
0.3		$2.6034414622 \mathrm{E}-07$	$2.6034412511 \mathrm{E}-07$	$2.1116398338 \mathrm{E}-14$
0.4		$1.9503788235 \mathrm{E}-06$	$1.9503786675 \mathrm{E}-06$	$1.5602750923 \mathrm{E}-13$
0.5		$9.3001310486 \mathrm{E}-06$	$9.3001302122 \mathrm{E}-06$	$8.3637251753 \mathrm{E}-13$
0.6		$3.3324051461 \mathrm{E}-05$	$3.3324048014 \mathrm{E}-05$	$3.4474194468 \mathrm{E}-12$
0.7		$9.8035942943 \mathrm{E}-05$	$9.8035931333 \mathrm{E}-05$	$1.1610741746 \mathrm{E}-11$
0.8		$2.4964850292 \mathrm{E}-04$	$2.4964846944 \mathrm{E}-04$	$3.3479873388 \mathrm{E}-11$
0.9		$5.6937268710 \mathrm{E}-04$	$5.6937260161 \mathrm{E}-04$	$8.5489957019 \mathrm{E}-11$
0.1	0.02	$1.1902626758 \mathrm{E}-10$	$1.1902381032 \mathrm{E}-10$	$2.4572659708 \mathrm{E}-15$
0.2		$1.5235098312 \mathrm{E}-08$	$1.5235047721 \mathrm{E}-08$	$5.0591270683 \mathrm{E}-14$
0.3		$2.6030543556 \mathrm{E}-07$	$2.6030507316 \mathrm{E}-07$	$3.6240044419 \mathrm{E}-13$
0.4		$1.9500880124 \mathrm{E}-06$	$1.9500861082 \mathrm{E}-06$	$1.9041366714 \mathrm{E}-12$
0.5		$9.2987435500 \mathrm{E}-06$	$9.2987351811 \mathrm{E}-06$	$8.3689327170 \mathrm{E}-12$
0.6		$3.3319080512 \mathrm{E}-05$	$3.3319049365 \mathrm{E}-05$	$3.1147369826 \mathrm{E}-11$
0.7		$9.8021325334 \mathrm{E}-05$	$9.8021225820 \mathrm{E}-05$	$9.9513940965 \mathrm{E}-11$
0.8		$2.4961130075 \mathrm{E}-04$	$2.4961102185 \mathrm{E}-04$	$2.7889335253 \mathrm{E}-10$
0.9		5.6928789572E-04	$5.6928719501 \mathrm{E}-04$	$7.0071059437 \mathrm{E}-10$
0.1	0.03	$1.1901079492 \mathrm{E}-10$	$1.1899405164 \mathrm{E}-10$	$1.6743285448 \mathrm{E}-14$
0.2		$1.5231590458 \mathrm{E}-08$	$1.5231238610 \mathrm{E}-08$	$3.5184856624 \mathrm{E}-13$
0.3		$2.6024226184 \mathrm{E}-07$	$2.6023999093 \mathrm{E}-07$	$2.2709067476 \mathrm{E}-12$
0.4		$1.9496085933 \mathrm{E}-06$	$1.9495985420 \mathrm{E}-06$	$1.0051246063 \mathrm{E}-11$
0.5		$9.2964479888 \mathrm{E}-06$	$9.2964102841 \mathrm{E}-06$	$3.7704635273 \mathrm{E}-11$
0.6		$3.3310844556 \mathrm{E}-05$	$3.3310718839 \mathrm{E}-05$	$1.2571653611 \mathrm{E}-10$
0.7		$9.7997093548 \mathrm{E}-05$	$9.7996718267 \mathrm{E}-05$	$3.7528056843 \mathrm{E}-10$
0.8		$2.4954962304 \mathrm{E}-04$	$2.4954861338 \mathrm{E}-04$	$1.0096667543 \mathrm{E}-09$
0.9		$5.6914733469 \mathrm{E}-04$	$5.6914486016 \mathrm{E}-04$	$2.4745220102 \mathrm{E}-09$
0.1	0.04	$1.1901504535 \mathrm{E}-10$	$1.1895239365 \mathrm{E}-10$	$6.2651698527 \mathrm{E}-14$
0.2		$1.5227297674 \mathrm{E}-08$	$1.5225906387 \mathrm{E}-08$	$1.3912866093 \mathrm{E}-12$
0.3		$2.6015759381 \mathrm{E}-07$	$2.6014888491 \mathrm{E}-07$	$8.7088987430 \mathrm{E}-12$
0.4		$1.9489515406 \mathrm{E}-06$	$1.9489160176 \mathrm{E}-06$	$3.5523014941 \mathrm{E}-11$
0.5		$9.2932760490 \mathrm{E}-06$	$9.2931557539 \mathrm{E}-06$	$1.2029511084 \mathrm{E}-10$
0.6		$3.3299423429 \mathrm{E}-05$	$3.3299057269 \mathrm{E}-05$	$3.6616014277 \mathrm{E}-10$
0.7		$9.7963432983 \mathrm{E}-05$	$9.7962411124 \mathrm{E}-05$	$1.0218587825 \mathrm{E}-09$
0.8		$2.4946387691 \mathrm{E}-04$	$2.4946125025 \mathrm{E}-04$	$2.6266645320 \mathrm{E}-09$
0.9		$5.6895185851 \mathrm{E}-04$	$5.6894561130 \mathrm{E}-04$	$6.2472074868 \mathrm{E}-09$
0.1	0.05	$1.1906605558 \mathrm{E}-10$	$1.1889884052 \mathrm{E}-10$	$1.6721505773 \mathrm{E}-13$
0.2		$1.5223057301 \mathrm{E}-08$	$1.5219051587 \mathrm{E}-08$	$4.0057136762 \mathrm{E}-12$
0.3		$2.6005673197 \mathrm{E}-07$	$2.6003176422 \mathrm{E}-07$	$2.4967743745 \mathrm{E}-11$
0.4		$1.9481364297 \mathrm{E}-06$	$1.9480386031 \mathrm{E}-06$	$9.7826606899 \mathrm{E}-11$
0.5		$9.2892828804 \mathrm{E}-06$	$9.2889719159 \mathrm{E}-06$	$3.1096449356 \mathrm{E}-10$
0.6		$3.3284950100 \mathrm{E}-05$	$3.3284065821 \mathrm{E}-05$	$8.8427961520 \mathrm{E}-10$
0.7		$9.7920634904 \mathrm{E}-05$	$9.7918307821 \mathrm{E}-05$	$2.3270833372 \mathrm{E}-09$
0.8		$2.4935466156 \mathrm{E}-04$	$2.4934894120 \mathrm{E}-04$	$5.7203567656 \mathrm{E}-09$

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 205-210 Fourth-Order Parabolic Equation Olayiwola, Gbolagade, Adesanya J of NAMP

Fig. I

References

[1] Adomian, G (1988). A review of the decomposition method in applied mathematics. J. Math Anal App. 135: pp. 501-544
[2] Adomian, G \& Rach, R (1992). Noise terms in decomposition series solution. Computers Math Appl. 24.: pp .61-61.
[3] He, J. H. (1999). Variational iteration method, A kind of non-linear analytical technique, some examples. Internat. J. Nonlin. Mech. 34 (4), pp. 699-708.
[4] He, J. H. (2000). Variational iteration method for autonomous ordinary differential systems. Comput. Math. Appl. 114 (2-3), pp. 115-123.
[5] He, J. H. and Wu, X. H (2006). Construction of solitary solution and compaction-like solution by variational iteration method. Chaos, Solitons \& Fractals, 29 (1) pp. 108-113.
[6] He, J. H. (2007). Variational iteration method - some recent results and new interpretations. J. Comput. Appl. Math. 207, pp. 3-17.
[7] He, J. H. and Wu, X. H. (2007). Variational iteration method: New development and applications. Comput. Math. Appl. 54, pp. 881-894.
[8] He, J. H. (2007). The variational iteration method for eighth-order initial boundary value problems, Phys. Scr. 76(6), pp. 680-682.
[9] He, J. H. (2008). An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B 22 (21), pp. 3487-4578.
[10] He, J. H. (2006). Some asymptotic methods for strongly nonlinear equation. Int. J. Mod. Phys. 20 (20)10, pp. 1144-1199.
[11] Khaliq, A Q \& Twizell, E H. (1987.) A family of second order methods for variable coefficient fourth-order parabolic partial differential equations. Int .J. Comput. Math., 23: pp. 63-76
[12] Suzelawati Z. \& Isshak H.(2007). Numerical comparisons of AGE method and Adomian decomposition method for the solution of fourth-order parabolic equation. Proceedings of the Third International Conference on Research and Education in Mathematics (ICREM3), 10-12 April 2007, Kuala Lumpur. Pp. 260-265)
[13] Wazwaz, A M. (2001). Analytic treatment for variable cefficient fourth-order parabolic partial differential equations. Appl math. Comput. 123: pp. 219-227

