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Abstract 

 
In this work, we propose a numerical scheme to solve 
telegraph equations using modified variational iteration 
method. The numerical results are compared with analytical 
solutions to confirm the efficiency of the method. 
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1.0 Introduction 
 
In the present work we are dealing with the numerical approximation of the following second order partial 
differential equation: 
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 (1.0) 
Where γβα ,,  are constants related to resistance, inductance, capacitance and conductance of the 

cable. 
This equation appears in the propagation of electrical signals along a telegraph line, digital image 

processing, telecommunication, signals and systems [2,3,20]. 
Equation (1.0), referred to as second order telegraph equation with constant coefficients, models 

mixture of between diffusion and wave propagation by introducing a term that accounts for effects of finite 
velocity to a standard heat or mass transport equation [16]. 

The existence of time-bounded solutions of nonlinear bounded perturbations of telegraph equation with 
Neumann boundary conditions has recently been considered in [12]. The approach is based upon Galerkin 
method combined with the use of some Lyapunov functional. 

Finite difference methods are known as the first techniques for solving partial differential equations 
[13-15]. Even though these methods are very effective for solving various kinds of partial differential 
equations, conditional stability of explicit finite difference procedures and the need to use large amount of 
CPU time limits the applicability of these methods. 

The basic motivation of this paper is the application of Modified initial guess Variational Iteration 
Method (MigVIM) for solving telegraph equations. The Variational Iteration Method (VIM) was developed 
and formulated by  He J H for solving various problems [4-7,9)]. The method has been extensively useful 
for diversified initial and boundary value problems and has potential to cope with the versatility of the 
complex nature of physical problems [2-3]. 
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This article presents a new algorithm to solve the second order telegraph equation using Modified 
initial guess Variational Iteration Method. 

 
2.0 Variational Iteration Method (VIM) 
To illustrate the basic concept of the technique, we consider the following general nonlinear partial 
differential equation. 

( ) ( ) ( ) ( )txgtxNutxRutxLu ,,,, =++      

 (2.1) 
where L is a linear time derivative operator, R is a linear operator which has partial derivative with respect 
to x, N is a nonlinear operator and g is an inhomogeneous term. According to VIM, we can construct a 
correct fractional as follows: 

( ) ( ) [ ] τλ dt gnuNnuRnLutxnutxnu ∫ −+++=+ 0
~~,,1

   

 (2.2) 
where λ  is a Lagrange multiplier which can be identified optimally via variational iteration method. The 

subscript n denote the nth approximation, nu~  is considered as a restricted variation i.e, 0~ =nuδ . The 

successive approximation 0,1 ≥+ nun  of the solution u will be readily obtained upon using the 

determined Lagrange multiplier and any selective function 0u , consequently, the solution is given by: 
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3.0 Derivation of  λ  for VIM 
 
Consider equation (3.1) of the form 

( ) ( ) ( ) ( )txgtxNutxRutxum ,,,, =++′′      

 (3.1) 

    ( ) ( ) ( ) ( ) ( ) ( )[ ] τττττλ dxgxuNxuRxumtxutxu
t

nnnn ∫ −++′′+=+ 01 ,,~,~,,,    

 (3.2) 
Making (3.2) stationary, we have: 

( )∫ ′′+′−+=+ τλλλδδδ dmumumuuu nnnnn
/
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 (3.3) 
This yields the following stationary condition 

01 =′− = tm τλ         

 (3.4a) 

0== tm τλ          

 (3.4b) 
0=′′λm          

 (3.4c) 
Solving (3.4a-3.4c), we have 
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 (3.5) 
Equation (3.2) becomes 
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In Modified initial guess Variational Iteration Method (MigVIM), (3.6) becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ττττττ dxgxuNxuRxumt
m
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t
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Where ( ) 0,)(2,)(),(),(, 0000 =++= xnixtkxtxutxutxu i
ix    

 (3.8) 
where )( tik  can be found by substituting for ),(0 txu in (1.0) at 0=x . 

 
 

4.0 Numerical Applications  
 
In this section we present MigVIM for solving the telegraph equations with different values of γβα ,, . 

γβα and,  are constants related to resistance, inductance, capacitance and conductance of the cable. 

 
Example 4.1: Consider (1.0) with 0),(,1,1,1 =−=== txfγβα   
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As ∞→n  
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In a closed form: 
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 (4.5) 
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Fig I.: 3D Graph of Example 5.1  

Example 4.2: Consider (1.0) with 0),(,4,4,1 ==== txfγβα   
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With boundary conditions 2
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At n=0 we have 
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This gives 
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In a closed form: 
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 (4.11) 
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Fig II.: 3D Graph of Example 5.2  

 
 

Example 4.3: Consider (1.0) with 1),(,11,1 2 −+==== txtxfγβα   

12
2

2

2

2

−++
∂
∂=+

∂
∂+

∂
∂

tx
x

u
u

t

u

t

u
       

 (4.12) 

The initial condition 10,1
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The correction functional becomes; 
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At n=0 we have 

( ) ( ) τ
τ

τττ d

x
x

u

u
uu

xtxtxu
x

∫


















+−−
∂
∂−

+
∂
∂+

∂
∂

−++=
0

2
2

2

2

2

2

2
1

1

,
     (4.14) 

This gives 
( ) txtxu += 2

1 ,           (4.15) 

which is the exact solution. 
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                        Fig III.: 3D Graph of Example 5.3 
 
5.0 Conclusion 
 
The MigVIM is a powerful method. It has provided an efficient potential for the solution of physical 
applications modeled by partial differential equation. The main goal of this article has been to derive an 
approximation to the solution of telegraph equation. The main advantage of the new method over VIM is in 
the improvement on the initial guess which in turn reduces the number of iterations when compared with 
[17,18]. This method can be extended to solve nonlinear partial differential equations of physical 
significance. 
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