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Abstract

The paper studies the influence of noise perturbation on the oscillatory
behaviour of solutions of the stochastic version of the first order delay
differential equation

() =adt) + -1 1), t20 o
x(t)= dtj tOf-r, 0

where 0 < I (t) < I, having several variable delays. By means of the Lisel

type conjugation relation, it is proved that the addition of a multiplicative noise
perturbation of Ito type to the delay differential equation (*) will generate
oscillation in the solution of the resulting stochastic delay differential equation
(SDDE) irrespective of the length of the delays. This can never happen in the
non-stochastic case (*) which can admit a non-oscillatory solution due to the
absence of noise.

1.0 Introduction

Stochastic delay differential Equations (SDDESs) #radr deterministic counterparts are adequate
mathematical models of processes studied in thealephysics, chemical technology, population
dynamics and economics. New applications which lire/¢these classes of equations continue to arige wi
increasing frequency in the modeling of diversenamena. This is why delay differential equations ar
objects of intensive investigation.

In the recent decades, the number of the invegtigabf the oscillatory and non-oscillatory behaviof

the solutions of delay differential equations isistantly growing. For instance, in monographs (8] {8]
published in 1987 and 1992 respectively, the ptigmof oscillation and asymptotic behaviour ofeliént
classes of deterministic delay differential equadiavere systematically studied. Although the liter@
concerned with oscillation and non-oscillation ofusions of deterministic delay differential equats is
quite extensive, it appears that the contributibnaise perturbation to their oscillatory charaistiics has
not received much attention. It is well-known tlegtillation in solutions of delay differential edigas
(DDESs) (both deterministic and stochastic) is cdusg the presence of the delay or retarded argusment
[see 2, 8, 9]. The first article which studied thBuence of noise on the almost sure oscillatamyperties

of scalar linear SDDE with a single variable dekyhat of [2]. The authors established that thesence

of noise would induce oscillation in the solutiof the SDDE under certain assumptions. For the
investigation of noise contribution to the osciliat behaviour of solutions of first order SDDEs wiixed
delays, we refer to the papers of [5,6].

In the present paper, we study the contributionai$e perturbation to the oscillatory behaviour of
solutions of a more general scalar first order SDE multi-variable delays of the form:
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ax(t)=| ax () + Y0 X (-1, (1)) ot + X ()oB(1), = 0

xO)=dt)  t0f-r.0
where a, b, O<r,(t)<r, for i=1,2,............ .n, 1,(t)>0 are continuous functions also
called multi — variable delays whichsatisfy for i =12,......,n
Limn (1)=0
(1.1)

r{t)<r, where—r =inf_ {t -r,(t)} and t - t-r,(t)is increasing, 4 is a positive number which
measures the average impact of the fast fluctuatiteynal noise anc{B(t)}tZO is a one-dimensional
Brownian motion.

By solution of the SDDE (1.1), we mean a stocqutbcess{x(t)}tzo
space(Q, F, P) and with continuous sample paths, which satidfigs(1.1) almost certainly as well as its

initial function. We shall carry out the study bging some oscillatory results in the oscillatorgdty of
deterministic delay differential equations, a methaf solution transformation in [11] and a techr@qu
originally employed in [2]. We will always contragte oscillatory and non-oscillatory results of the
solution of the SDDE (1.1) with those of a compéeatiassical delay differential equation with sealer
variable delays, which satisfies the same initiaiction of the type

X(t)=ax(t) + > bx(t -, (1)
i=1
(1.2)
By solution of (1.2), we mean a unique functiox OC([t, - p,),0) which satisfies (1.2) for

t, =0, Wherep=maxjsisn(ri (t)) Under certain assumptions, the SDDE (1.1) andcisresponding

classical DDE (1.2) are suitable models for desugibthe rate of production/distribution of several
products from a central source as manufacturedustedire distributed to different destinations.

The paper is organized in three sections. In ¢loersd section, we present the preliminaries which
contain certain assumptions and lemmas. The thittion contains the main result.

defined on the probability

2.0 Preliminaries:

Definition 1:
The solution x(t) of the classical delay diffeiahtequation (1.2) defined on the interval

[T, 0) and satisfies Sup{jx(t} :t >T}> 0, for every T >T,, that is |x(t} # O on any infinite

interval [TX, 00) is called a regular or non-trivial solution. Tigsalso true of the solution of the SDDE.

The non-trivial solution x(t) of the DDE (1.2) said to be eventually or almost certainly positive
if there existst, > 0, such that X(t)>0, for allt >t;. The non-trivial solution x(t) of the DDE (1.2)
is said to be eventually or almost certainly negeif there exist§ > 0, such that x(t)< 0, for allt>t,.
The solution x(t) of the DDE (1.2) (also of the SBDis called an equilibrium or zero solution if
x(t) = 0, (also X (t) = 0) whenever the initial function¢(t) =0

Definition 2:
As it is customary for the deterministic DDE, anrtoivial solution x(t) of the DDE (1.2) is said to

be oscillatory around the equilibrium solutiontihias arbitrarily large zeros. That is, fo& t, there exists
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a sequence of zerof :x(t,)=0} of x(t) such that |imt =+, Otherwise x(t) is said to be non-

n-oc

oscillatory.
In 2005, Appleby and Buckwar [2] introduced thefidition into stochastic processes as below:
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Definition 3:
A non-trivial continuous functiory:ft,,«) - O is called oscillatory if the set

Z, :{tzt0 ; y(t):o} satisfies SupZ, = . If a function is not oscillatory, it is said to be non-

oscillatory. The authors extended this definition to sastib processes in the following intuitive manner:
A stochastic procesgX(t},, defined on the probability spad®, F,P) and with continuous

sample paths is said to be almost surely (a.s.) oscillittngre exists a subs€®” [ Q with P[Q*J =1
such that for alwJ Q" the path X(.,w) is oscillatory. Otherwise it is said#&®non-oscillatory.

2.1. Strategy:
The method of our proof involves building a conjugatieiation between the solutidix t)},., of

the SDDE (1.1) and a continuously differentiable solufgit)}
differential equation

2/)= -3 R()2(-5 1)

o Of @ non-autonomous random delay

(2.1)
Where the coefficients;® = 0 are continuous non-negative random functions. Moreovedbfficients
are defined on some subs&” [ Q, for wJQ by
_p e i )gl-AE0m-BE= W) 15t
[— 1 ’
R (t’ W) = _p e t-el)w)

.ot<t
(2.2a)

2\ -
Where } :[a—é} t=inf{t=0:t-r (t)=0}, wIQ such that for all t=t, t-r(t)=0.

By property (2.2a), the;Eepend upon the increments of a standard Brownian motion
{B(t)}..,- The large deviations in these increments ensure that; taee Psufficiently large to generate

oscillation in the random delay differential equation (2.1).
Also by property (2.2a), of thesRve observe that

Il b - -2 e el s
- ma{l ex;{— (a _ %)Dr O excl- a(8(9)- Bls-r (ks

It is observed (See [2]) that the eveyit 0 Q as defined above exists eventually whenever

Limsup]  expl- 4(B(s)- Bls—r(e))is =

(2.2b)
Lemma 1[11]:

Consider the stochastic functional differential equatiavedrby a continuous helix special semi-
martingale of the kunita type
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dX (t) = H(t, X (t), X, )t + M (dt, X (t)), t =0
x(0)=vOD®, X, =g 012(-r,0,0°) }
where X, (,w)(u) = X(t+u,w), ud[-r 0t =0, wOQ
(2.3)

Also consider a random functional differential equation effdrm
dy(t) =G(t,Y(t),Y, )dt, t =0
X(0)=vOD®,Y, =¢ 0 Lz([—r,O],Dd)}
(2.4)

Let {/\(t,.)}ﬁ]D be a random stationary coordinate change or a process sattbfyifaljowing properties:
(i) {A(t..} o, is a continuous C***" semi = martingale (with 0 <0< &) such that
for all wOQ, 0¢ v - A(t,v)00% isa C** diffeomorphismof 0¢ and {I'(t,.},,
is a continuous C*” semi — martingale(with 0 <0< 9)
(i) For allt=s,vOO" and ae wQ

Alt,u) = A(s,v) + LtM (du, A(u,v)) +Ltr(u,v)du
(iii) The processes{Al(t,.)} ., {r(t,.} . are perfectly stationary, i.e,
A(t,vw) = A(0v, 6(t,w)) and T (t,vw) = ' (Ov, 8(t,w)) for all tO0,vOO0%, wOQ

Let {X(t)}tZD be the solution of (2.3). Also Ie[tY(t)}tZD be the solution of (2.4). Then the following
conjugation relation holds:
X (t,.,w) = A(0,.,0(t,w)) oY(t,.,w) oA t,.,w)

The difficulty encountered in obtaining direct necessary anficigunt conditions for oscillation of the
solution of the SDDE (1.1) due to the disturbances efribise perturbation is overcome by recalling for

use on a path-wise basis (i.e. for eawhl Q) certain existing oscillatory and non-oscillatory resuitthie
deterministic theory of oscillation which apply directlygquation (2.1). The following result pertaining to
oscillatory solutions is found in [9] (Theorem 2.7.2).

Proposition 1
Assume thatt; (t) =r, for il =12,..n and non-decreasing and there exists

r*<r, for il such that

Liminf J':Hr P(s)ds>0

Then there exists N > 0 such t X(t) ) >N and for any r = Qwhere x(t) is any positive solution.
X\tt-r
In addition, suppose that
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P —It_|m|nf () (s)ds>e for i,j=22,....... n (25)

Then every solution of

X(t)= ZP() (t-n(t) (26)

oscillate

We also have results concerning non-oscillation of solutdri2.6). The following is a special case of the
result found in Elabbasy et al [7] (Lemma 1.4). It orddiynappeared in Li [10] (Lemma 2).

Proposition 2

Assume that, (t)=r,,i =12,........ Lnf
j:+ri > P(s)ds<1 i=12..,n 2.7)
i=1

Then equation (2.6) has an eventually positive solutigrax@d hence non-oscillatory.

In the main result, we establish that once the function t — T, (t) satisfies the condition (2.5)

of proposition 1 for negative feedback intensities, tienSDDE (1.1) has an oscillatory solution. We also
comment that by the condition (2.7) of propositionh2, ¢orresponding classical delay differential equation
can admit a non-oscillatory solution, when the magnitufiésecdelays are sufficiently small.

2.2 Solution Transformation:

The proof of the existence of oscillatory and non-osoiiasolutions of the SDDE (1.1) depends
on the following transformation: We introduce a nowherefedéhtiable random bijective process

{/7(t,W)}t2_r which is strictly positive and satisfies properties ({ji- of Lemma 1. Using the stationary

coordinate change, we transform the solution of the SDREaimonjugation relation with a process which
has continuously differentiable sample paths and solves tldermadelay differential equation (2.1). To

this end, we Ie{X(t)}tZO be the solution of the equation
X () = 0)-+ j;[ax (9)+ zb X(s-r (s)))ds+ [ ix(s)ee(s) (28)
and let {Z(t)},., be the solution of the equation
[\ 2 R(sz(s-r (B)es (29)

Also let {/7(t)}t2_r be a random process satisfying properties (i) — (iii)ehma 1. We see by the Lemma

that the following conjugation relation holds for &[] Q

X (t.w) = Z{t - v, () w)or(t —r.(t) w)on ™t w) (210)
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The conjugation relation (2.10) is important in our analygecause it builds a relationship
between the process Z(t) and the solution X(t) of the SIPDE). by this, the zeros of the process Z
corresponds to the zeros of the process X. Hence it is suffitd analyze the oscillatory behaviour of the
process Z in order to obtain information about the oscilfgtooperties of the solution X of the SDDE.

The approach is of great benefit in the sense that there is af mhaterministic oscillatory and
non-oscillatory results (as in proposition 1 and prafmos?2 in this case) that apply directly to the sample
paths of the solution Z(t) of the random delay differerglation (2.1).

3.0 The Main Result:

In the main result, we establish that for negative feedbasksthe multi-delays and any selection
of initial datum, oscillation in the solution of the SDDOE.1) is generated by the presence of the
multiplicative noise perturbation. This occurs in the SDDe&nef the comparable deterministic DDE has a
non-oscillatory solution.

Theorem 1:

Assume that thdd, <O for i=12,......n. Let r, (t)> 0 be continuous functions which satisfy
It_imri (t): 0} h(t)=t— I; (t) is strictly monotone increasing Eﬁ)oo) Then the SDDE (1.1) has an
oscillatory solution o]0, ] , almost certainly for any choice of initial datugn
Proof:

By the relation (2.10) and the properties of the prov:}s(i;)i the set W ={t >0: X(t) = 0} can
only satisfy SUpW = oo if and only if the set

*

wW ={t > O:Z(t) = O} satisfies SUpW™ = O.Since{X(t)}t20 is defined on an appropriate probability
triple (Q, F, P), we define fort 2 0, wIQ
Pt w) = -bip(t -, (t) why (t, w)

Then the R.) are almost surely positive continuous functiond @yro] . Moreover, Z satisfies the equation
n
z'(t,w)=-> Pt w2zt - (t)w), t=0
i=1

(3.1)
Hence Z satisfies condition (2.5) of proposition 1 angsthlmost certainly oscillatory. If not, we may

assume that equation (2.1) has a non-oscillatory solt{[ib(t)}tzo which is in fact non-decreasing for the
sake of contradiction. Without loss in generality, let Bé)a positive solution of the form

z(t)= exp(— J‘:o a(s)ds)
(3.2)

Substituting (3.2) into (2.6), we have

alt)- .Z:‘ P (t)ex;{.[:_ri (t)a(s)ds) =0

(3.3)
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which may have no solutiom'(t) if all the solutions of (2.6) are oscillatory. By thesficondition of

proposition 1, ai*, i=12........ N are bounded. From (3.3) we have forj=1, 2, 3,....,n

* Lo t .. t n s
a; = It_ll;pmf jt—ri (t)a(s)dS: It_lg“nf J.t—ri (t); P' (S)J.t—r‘ (s)a(g)dg)ds

n
>>' P, expa;
i=1
(3.4)
It is true from the properties of exponential function foaty = O.maxyexr(— y) =e

Hence from (3.4), we obtain
P sa; exp(ai* )s et

-1

(3.5
which contradicts (2.5). Hence Z is almost certainly oscifat@uppose that there exists a subset

Q 0Q such

that

o' =wioo: Limin [ R (s)ds set)  withplo]
(3.6)
Then asP, and h(t) =t-r (t) satisfy the hypothesis of proposition 1, it follovast the trajectory Z(., w)

is oscillatory and so the path X(.,w) is oscillatory anddeeas the subs&®” [1 Q exists, it follows that
the solution X(t) of the SDDE (1.1) is almost surelgiltatory.

Remark 3.1:

We observe that in the stochastic delay differential equatids), (under theorem 1, the important
factor that generates oscillation in the solution is equd#db) which must always occur in the stochastic
case as a result of the presence of the multiplicative noiselmitm. If ther, (t) are small enough, the
integral in (2.2b) is made so small that condition (Bff)roposition 2 holds in the deterministic case (1.2)
and at that instance, a non-oscillatory solution occurs.).(However, this cannot happen in the SDDE
(1.1) as result of equation (2.2b). Hence the multiplicativise sustains oscillation in the solution of the
SDDE (1.1) even when the non- stochastic equation (1.2 haa-oscillatory solution.

The following result shows that the crucial factor (2.@h)ch ensures oscillation in the solution
must always hold in the stochastic case. It is a special case @fsult found in [2] (Lemma 1).

Lemma 2:
Assume thar, (t)0C(0,,0, ) and that 0<r,(t)<r <oo. If £# 0, then

Lim SJpJ.:_r (t)exp(— u(B(s) - B(s-r,(s))))ds = «o almost certainly holds.
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