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Abstract

In this paper, we construct embedded diagonally implicit
Runge-Kutta- Nystrom (DIRKN) methods of orders 4(3) for the
numerical solution of the special second order initial value

problems (IVPs) of the differential equation Y =f(x )
possessing oscillatory solutions. The motivation for this work
comes from the fact that not much work seems to have been
done on the embedded implicit RKN methods compared to the
explicit case. In the present consideration, we derive coefficients
of the method with minimized truncation error coefficients and
show that it is R-stable.

Keywords: Runge-Kutta-Nystrom methods, numerical analysiscisph second-order IVPs, oscillatory solutions.
1.0 Introduction

Consider the special second order initial valuéjenm
y =1 y) L ve) =y Vi) = ¥ (1.1)
the characteristic feature here is that the functfo does not explicitly depend on the first derivative

see [9]. This special differential equations of #eegond order and in particular systems of suclatemns
occur frequently e.g. in mechanical problems withdiasipation. It is often advantageous ([4], [6], and
[14]) to apply a direct method for this type offeiential equation rather than rewriting (1.1)it® first-
order form of twice the dimension and solved usheystandard Runge-Kutta (RK) method.

A notable direct numerical method for the spes&dond order initial value problem (1.1) is the &emn
Kutta-Nystrom (RKN) method. The general RKN metfiodequation (1.1), see for example ([8] and [14])
is of the form

Your = Yn + hyr'1 + hzbj FJ
=1

Yoa = Yo +hY b} F (1.2)

j=1
S
F, = f[xn +c;h, y,+chy, + h? Zaijkj
k=1
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where the RKN parameteid, , bj , b} and C; are assumed to be real aaqL are the stage weights,

bj weights anot:j the modes. In most methods, tOp satisfy

1 N .
ch = ;ajk (j=1A )
(1.3)
By defining the method parameters as follows
A= {a,} . b=b ., b =1b, c=c,
the method (1.2) is compactly represented by mehtise Butcher Tableau
Table1.1: Butcher Tableau for RKNM
c A

hT

blT

RKN methods are divided into two broad c:Iasseinaeitq:(ajk =0 k= j) and implicit(ajk = 0,k>j )
The later contains the class of diagonally implRitnge-Kutta-Nystorm (DIRKN) methods for which the
a; are equal.

A number of numerical methods for this class ofbpems of the explicit types have been extensively
discussed in numerous papers (e.g. [2], [3], Bl [6], [7], [12], [14] and [17]). However, littlseems to
have been done on the embedded implicit methods. petticular examples in [13] and [15] are the
implicit cases of the methods, but are not embedded

In this paper, we will derive embedded implicit imed of orders 4(3), which is a four-Stage diaggnall
implicit RKN method for the special second ordePB/in (1.1)

2.0 The Embedded RKN Methods

An efficient implementation must allow for variabdtep size. This will enable us to estimate thealloc
truncation error at each step and control it bynigla step size such that the local error is lbas some
prescribed tolerance. It is usual to achieve lyisdentifying an embedded method of lower ordethi&

underlying methods. Generally, efficient RKN metbddvolved the embedded pairs of ordeép),
where the method of ord€f = p +1 used to obtain the numerical solution of the peablnd the method
of order pis used obtain the local truncation error, whichuged for feeding the step size control

algorithm. Hence the algorithm developed hereaswriable step size algorithm.
The idea is to construct RKN formulae with themsslv contain besides the numerical

approximatiory,,, , Yn.;, & second approximationy,,, , Y., to y(xn+1) and y'(xn+1)
according to

You = Yathy, + WX 0 F, v, =y, +hY bF,
j=1 j=1
S A IS
9n+1 = yn +hy,ﬂ + hzzbj FJ ’ y,ﬂ+1 = y” + hzb; Fj
j=1 j=1
Fo= f[xn +c;h, yn+cjhy'n+h2kz_;aijj] (2.1)

such that both use the same function values. Tsetio formulae are of ordef] and the second two are
of order p, € denotes the number of function evaluations thanaeded for each stef, is the step size.
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The differencesy,,, = V.., and y.,, - %ﬂ yields an estimate of the leading term of the lloca

truncation error and can be used for step sizeraorithe formula commonly used for variable stegesi
see [4] and[5] is
1

h, = 0.9 (Max | &, W,A:ﬁlw)

1

_ T o
hn+1 = 0'g1n (Max H A o w)

n+l || n+1

whereAn+l = You VYo = hzi(bj ‘61) Fi
j=1

A'n+1 = y:1+1 - 9'n+1 =h Zsi(bl _6;) Fi
i=

are the absolute values of the largest of the atime error termsh,,; the current step sizd), is the size
of the previous step and T is the approximate vafube desired accuracy (tolerance). If the edtchatep
hn+l produces truncation error that are larger thaihé step should be recomputed with a smaller vaiue

hn+1' When this difficulty repeatedly occurs, the fadd® should be decreased.

3.0 Stability of RKN Method

In studying linear stability of DIRKN methods, wee the standard test problem
y'=ay, (w>0) (3.1)
when (1.2) is applied to (3.1) we obtain the followiegursive relation
yn+1 = yn + hy; - ZbT Yn
hy,., =hy, —zb'" Y,
where
z=-hw?, Y, = (y,ethyle) N, N=1+zA
e = (1L.) ,c=(qL &)
Eliminating the auxiliary vectol,, yields
1+ ' (1-28)"e 1+b"(1 -2zA)"c
R(z) = (3.2)
7 (1 -zA)"e 1+ 207 (1 -zA) "¢
This matrix R(Z) which determines the stability of the method is called thglification matrix.
Introducing the functions

s(z) = Trace(R(2)) and p(2) = Det(R(2)) (3.3)
the characteristic equation corresponding to equation (3.2}he dorm.
¢*-s(2)¢+p(2)=0 (3.4)

IF p(R) denotes the spectral radiusRgf) , method (1.2) is said to be R-stablepifR) < 1 forall z <0
and the eigenvalues on the unit disk are simple. This meamsnhigude of the numerical solution (3.1)
does not increase with time for alland h.

If p(R) =1 for all Z<0, method (1.2) is said to be p-stable, and if (1.2) &dRie andp(R) - 0 as

z -~ —oo, the method is said to be RL-stable. The interfegl, 0) (z,<0) on which p(R)<1 is
called the interval of stability, see [2] and [13]. The methathmeters of the embedded DIRKN formula
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would have to be chosen so that it is either R-stablesastatbility matrix has bounded eigen-values, see
[13]. According to [16], the eigenvalues of (3.2) whichthiezeros of (3.4) are on the unit disc if

R(z) = 1-p(z) 2 0
R(z2 = p(2)+1 -s(z)=0 (3.5)
R(2) = p(2) +1 + s(z2) 20

The feature of a non-empty interval of periodicity is imanttin integrating periodic solution. It
guarantees that fa [] (Z0 ) O), the numerical solution will not be damped (or amplifiedi),is called the
stability boundary.

Definition ([8]): A Nystrom method (1.2) has order p if for fiziEntly smooth problems (1.1)
y(xo+h) -y, = O(hp+1) , y'(X0+h) _y'l:O(hpﬂ)

For RKN method to be of order p, it must satisfy certaider conditions. The order conditions for
formulae of types (1.2) have been presented by [1], [6]&]nd [

4, Derivation of the Embedded DIRKN Method

For a process with =4, =4 and p =3, we have to satisfy seventeen order conditions
(see e.g. [13] and [14]): three conditions f&r-component, five conditions f0t§/' -component, three

conditions fory' -component, two conditions foy -component and four compatibility

Conditions: we list the conditions in the tables below.
Table |

Order conditions fory

Order 2 ~ 1 (4.1)
Condition Z P T o
Order 3 ~ 1 (4.2)
Condition Zb'c' " 6
Order 4 ~, 1 (4.3)
Condition Zb,cf T 12
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Table Il

Order conditions fory’

Order 1 ZB! -1 (4.4)
I
Condition i
Order 2 - 1 (4.5)
Zbl G =5
Condition i 2
- 1 (4.6)
Zbl Ciz ==
Order 3 i 3
Condition
Order 4 ~ 1 4.7)
b = 3
i 4
Condition 5 i~ 1 (4.8)
' c. = —
;h 3¢ =,
Table Il
Order conditions fory
Order 2 Zb 1 (4.9)
Condition i I 2
Order 3 1 (4.10)
Zb' cC ==
Condition i 6
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Table IV

Order condition for y'

Order 1 zbl' =1 (4.11)
Condition '
Order 2 , 1 (4.12)
zbl G =75
Condition i 2
Order 3 1 (4.13)
Zb| G =3
Condition i 3
The compapitibility conditions are given by
le -y =1 2, 3
5¢ = ;a,-k, (i=1 2, 3, 4 (4.14)
To simplify the analysis, we use the following result tug8].
Letb, =b(l-c;), j=1A s (4.15)

then the order condition for thy -component are subset of the order conditions for thecomponent.
The Tableau of the method is of the for

Table (4.1): The Butcher Tableau of the 4(3) DIRKN method

(o A

c, a,, A

c, a; ap A

C, a,, a, a5 A
b, b, b, b,
by b b b
bb b, b b
b b B b
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Applying the (4.15), we therefore have twelve equationsoige in nineteen unknowns. Thus, we have
seven free parameters. Lef , C,, C;, C,, a, , 4a, and b, be the free parameters.
We start by solving the order conditions fft'r and )7 . From (4.4), (4.5), (4.6) and (4.7) we obtain

__3+4cz+4C3_ €c,t £,-€£,~ €¢,+ 12¢c¢,

b =
12(c, - ¢,)(c,~¢c5)(c,—¢c,)

6; _ _ 344+t &c,- £, &L, B¢, 12¢¢,
12(c, - c,)(c,—¢5)(c,—c)

6; _ _"8+4ct+4,-6GC,t+ £,- €L, €2+ 12¢c,
12(c,—c;)(c,—c,)(cs—c,)

6; _ _ 344t &c,- £, Lt B2, 1BeG,

12(c, —¢,)(c,—¢c,)(c;—c)
We then substitute into (4.8) and solve &y; as

Q3 = ((01_03)(02_03)2342(01_09(_3"'0 2(4_ & 3)+ £ st z 1(2_ 8 FC 2(' 3 6 3)))

+ ((1—401—8:12+12:f) Cl_C4X_C2+C4)(_C3+CA))_ %_32(0 i C )(Cl_c )(C z_c)l

(-3+c,(4-6c,) +4c, +2¢,(2-3c, +¢,) (-3+6c,))

(2(c, - €5)? (-¢, +¢;) (-3+¢, (4-6c,) + 4c, +2¢,(2-3c, +¢, (-3+6¢,))))

From (4.14) we obtain

an = %(_ 2a,, _C12 +Cf _((01 —C3)(C, _C3)(2a42(cl —Cz)(—3+C2)(4—603))

+ 4C3 + 201(2_3C3 +Cz(_3+6cs))) + (1_401 _6C12 +12013)(Cl _C4)(_ C, +C4)
(_C3 +C4) _2a32(01 _Cz)(C1 _C4)(C2 _C4)(Cz _C4)(_3+Cz (4_604) +

+4C4 + 201 (2_304 +Cz(_3+ 604))))

(Cl _C3)2(_Cz +C3)(_3+Cz(4_603) + 403 + 2C1(2_303 +Cz(_3+603)))))

Again using (4.15) we obtain
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(1-c,)(-3+4c, +4c, —6c,c, + 4c, —6c,c, —6C,C, +12C,C,C,)

o 1206, - ¢.)(6 - :) (e -

b = - (1-c,)(-3+4c, +4c, +6c,c, — 4c, +6¢,C, +6¢,c, —120,C,C, )
12c, -¢,)(c, -¢c,)(c, -c,)

b = - (1-c,)(-3+4c, +4c, - 6c,c, + 4c, +6c,c, —6C,C, —12¢,C,C,)
12c, - ¢,)(c, - ¢;)(c; - c,)

5, = - (1-c,)(3+4c, +4c, - 6c,c, — 4c, +6c,C, — 6C,C, —126,C,C,)

12(C1 _C4)(Cz _C4)(C3 _C4)

We now solve the order conditions fgf and y . Thus from (4.11), (4.12) and (4.13) we obtain

o = 276Dl +c,(=3 + 6bic,) +c,(=3-6c,(-1+b})+ Bbic,)
L 6(02 _03)(C2 _C4)

L 2+ 6+, (3~ 6big) e, (3+6c,(-1+b) - Golc)
? 6(02 - C3)(Cs - C4)

o = 276bic) +cy(=3 + Bbic) +c, (-3~ 6c,(-1+bi)+ 6bjc))
) 6(02 _04)(C3 _C4)

Also (4.15), we obtainb, = (1—Cl)b{

o - (F1rc)(-2+enic +c,(3-6bc) +c,(3+6c,) (~1+b)-6bic,)

(e, —¢,)(c, —c.)
(

c, (3-6bic,) +c, (3+6c,)(-1+b;)-6bic,)
(Cz C3)(C3—C4)

b = (_1+C4) (_2+6bic12 * G (3_6b1'C1 M) (3+6C3) (_1+b1)_6b{‘31))
‘o 6(02 _C4)(C3 _C4)

The principal truncation error coefficients of the higheromethod are given by

b, = (_1+C3)( 2+6b1C1 +

Ao 1 4
T,= T,=T,.= =c'-= ; bca.c
41 42 43 Zh ( 5 Zj (] ] j 120
TA4'5 = -I:A;G = anlj ]2_i ; TA41 = -l:42 Zbc —1
W 60 , 4

(4.16)
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We minimize the principal truncation error coefficients with esdp to C, , C,, C;3, C,,

a,,a,andb to obtan values for the free parameters. The choice of
_1 = 1 c = 6 c = 4 S 1

10" * 5 725" 5 F2
coefficients of the tableau (4.1) for the embedded DIRKN #{&hod.

a ——7 and bl'——i ives the
L 25 °

“Table (4.2): The Butcher Tableau of the
coefficients of the 4(3) DIRKN method

1 1
10 20C

1 3 1

5 20C  20C

6 2619 1 1

25 500( 2 20C

4 170241 7 2382 1
5 10460( 10 486t 20C

9 347 551 6071

~25C 1128 420C 6300(
1 347 29 6071

25 90C 166  1260(

39 -2 95 139
245 5 148 147C
26 1 125 139
147 2 1471 294

The local truncation error estimate for the method are given by
A, = h?[ - 2391 F, + 797 F, - 15143F3 + 797 F
12250 1125 29400 441000
797 797 21659 797
- Fo+ —F, + 3 T F,
3675 900 247128 88200

A'

n+l =

(4.17)

We now examine the stability of the method. The amplificathatrix is given by
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1,2, 3 5 1 . ,,. 88 2, 7, 1,

1+=z+ - z - z zZ- z z
R(z) _ 2 625 1250 2500 5000 2000 2500 1000
833 , 57 1_, 1 26_, 27 4 3
z+ z°+ z - z 1+—z+ z°— z°— Z
5000 10000 625 2 625 2500 10000

A plot of the roots ofR(Z) againstz shows that the polynomidR; (Z) , | =1, 2, 3 as defined by (3.5)

are nonnegative iz[1(—3.2,0), yielding the stability boundarg, = 3.2, see the graph in fig.4.1 for
the stability plot of |[R(z)|. Hence the method is R-stalitleimvthe interval.

13

12

11

-14 12 -10 -8 -6 -4

Fig. (4.1): Absolute Root locudqt of |R(z)| versus z

5. Conclusion

[13] and [15] derived the implicit cases of the RKN methdwlg,are not embedded. In fact, there has not
been much work on embedded implicit methods so far ariBimm the difficulties of deriving its
coefficients and its implementation when compared to theaixpéise of the class of the method. In this
paper, we

have developed a class of four-stage embedded DIRKN metlwdess 4(3) for the numerical solution of
the initial value problem of the special second order difteakequation (1.1) possessing oscillatory
solution. The scheme controls the local error in the selutiod the derivative. The error estimate is
obtained by using an
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embedded method. The embedded formula, see table (4.2) PIRK& method have been chosen so that
its stability matrix has bounded eigen-values and R-stthis,suitable for oscillatory problems. Also, for

the method in table (4.2) derived, the minimization of thecipal truncation error coefficients (4.16) leads

to the minimized local truncation error in (4.17) used farable step-size implementation of the method
in table (4.2).
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