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Abstract 
 

In this paper, we construct embedded diagonally implicit 
Runge-Kutta- Nystrom (DIRKN) methods of orders 4(3) for the 
numerical solution of the special second order initial value 

problems (IVPs) of the differential equation ),( yxfy =′′  
possessing oscillatory solutions. The motivation for this work 
comes from the fact that not much work seems to have been 
done on the embedded implicit RKN methods compared to the 
explicit case. In the present consideration, we derive coefficients 
of the method with minimized truncation error coefficients and 
show that it is R-stable. 
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1.0    Introduction  
 
Consider the special second order initial value problem 
 ( ) ( ) ( ) 0000 ,,, yxyyxyyxfy ′=′==′′                 (1.1)  

the characteristic feature here is that the function f  does not explicitly depend on the first derivativey ′ , 

see [9]. This special differential equations of the second order and in particular systems of such equations 
occur frequently e.g. in mechanical problems without dissipation. It is often advantageous ([4], [6], [5] and 
[14])  to apply a direct method for this type of differential equation rather than rewriting (1.1) to its first-
order form of twice the dimension and solved using the standard Runge-Kutta (RK) method.  
 A notable direct numerical method for the special second order initial value problem (1.1) is the Runge-
Kutta-Nystrom (RKN) method. The general RKN method for equation (1.1), see for example ([8] and [14]) 
is of the form 
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where the RKN parameters jjjkj candbba ′,,  are assumed to be real and jka  are the stage weights, 

jb  weights and jc  the modes. In most methods, the jc  satisfy  
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(1.3)  
By defining the method parameters as follows  

 { } , , , ,jk j j jA a b b b b c c′ ′= = = =  

the method (1.2) is compactly represented by means of the Butcher Tableau  
 Table 1.1: Butcher Tableau for RKNM 
            c      A                                              

                       Tb                                           

                                Tb′                                        
 
 
 
RKN methods are divided into two broad classes: explicit ( )jka jk ≥= ,0  and implicit ( )0,jka k j= > . 

The later contains the class of diagonally implicit Runge-Kutta-Nystorm (DIRKN) methods for which the 

jja  are equal.  

A number of numerical methods for this class of problems of the explicit types have been extensively 
discussed in numerous papers (e.g. [2], [3], [4], [5], [6], [7], [12], [14] and [17]). However, little seems to 
have been done on the embedded implicit methods. The particular examples in [13] and [15] are the 
implicit cases of the methods, but are not embedded. 
In this paper, we will derive embedded implicit method of orders 4(3), which is a four-Stage diagonally 
implicit RKN method for the special second order IVPs in  (1.1)    
 
2.0 The Embedded RKN Methods  
  
An efficient implementation must allow for variable step size. This will enable us to estimate the local 
truncation error at each step and control it by taking a step size such that the local error is less than some 
prescribed tolerance.  It is usual to achieve this by identifying an embedded method of lower order in the 
underlying methods. Generally, efficient RKN methods involved the embedded pairs of orders )( pq , 

where the method of order 1+= pq  used to obtain the numerical solution of the problem and the method 

of order p is used obtain the local truncation error, which is used for feeding the step size control 

algorithm. Hence the algorithm developed here is the variable step size algorithm. 
The idea is to construct RKN formulae with themselves contain besides the numerical 

approximation 11 , ++ nn yy , a second approximation 1 1ˆ ˆ,n ny y+ +′ to ( ) ( )11 ++ ′ nn xyandxy  

according to  
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∑                 (2.1)       

such that both use the same function values. The first two formulae are of order q  and the second two are 

of order sp ,  denotes the number of function evaluations that are needed for each step, h  is the step size.  
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The differences '
1 1 1 1ˆ ˆn n n ny y and y y+ + + +′− −  yields an estimate of the leading term of the local 

truncation error and can be used for step size control. The formula commonly used for variable step-size, 
see [4] and[5] is  
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are the absolute values of the largest of the truncation error terms, 1+nh  the current step size, nh  is the size 

of the previous step and T is the approximate value of the desired accuracy (tolerance). If the estimated step 

1+nh  produces truncation error that are larger than T, the step should be recomputed with a smaller value of 

1+nh . When this difficulty repeatedly occurs, the factor 0.9 should be decreased. 

 
3.0 Stability of RKN Method                                         

 In studying linear stability of DIRKN methods, we use the standard test problem  
  2''y yω= , ( 0ω > )                                                                               (3.1) 

when (1.2) is applied to (3.1) we obtain the following recursive relation 
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 ( ) zAINNeyheyYwhz nnn +=′+=−= − ,, 122  

( ) ( )11, ,1 , , ,
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Eliminating the auxiliary vector nY  yields  
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This matrix ( )zR  which determines the stability of the method is called the amplification matrix. 

Introducing the functions  
 ( ) ( ) ( )( ) ( ) ( )s z Trace R z and p z Det R z= =                 (3.3)    

the characteristic equation corresponding to equation (3.2) is of the form.  
 2 ( ) ( ) 0s z p zς ς− + =           (3.4)   

IF )(Rρ  denotes the spectral radius of )(zR , method (1.2) is said to be R-stable if 1)( ≤Rρ  for all 0<z  

and the eigenvalues on the unit disk are simple. This means the amplitude of the numerical solution (3.1) 
does not increase with time for all ω and h . 
If 1)( =Rρ  for all 0<z , method (1.2) is said to be p-stable, and if (1.2) is R-stable and ( ) 0Rρ →  as 

∞−→z , the method is said to be RL-stable. The interval ( ) ( )00, 00 <zz  on which 1)( ≤Rρ  is 

called the interval of stability, see [2] and [13]. The method parameters of the embedded DIRKN formula 
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would have to be chosen so that it is either R-stable or its stability matrix has bounded eigen-values, see 
[13]. According to [16], the eigenvalues of (3.2) which are the zeros of (3.4) are on the unit disc if 
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          (3.5)   

The feature of a non-empty interval of periodicity is important in integrating periodic solution. It 

guarantees that for ( )0,0zz ∈ , the numerical solution will not be damped (or amplified), 0z  is called the 

stability boundary.  

Definition   ([8]): A Nystrom method (1.2) has order p if for sufficiently smooth problems (1.1) 

 ( ) ( ) ( ) ( )1 1
0 1 0 1,p py x h y O h y x h y O h+ +′ ′+ − = + − =  

For RKN method to be of order p, it must satisfy certain order conditions. The order conditions for 
formulae of types (1.2) have been presented by [1], [6] and [8].  

4. Derivation of the Embedded DIRKN Method 

 For a process with 34,4 === ρandqS , we have to satisfy seventeen order conditions 

(see e.g. [13] and [14]): three conditions for ŷ -component, five conditions for y′ˆ -component, three 

conditions for y′ -component, two conditions for y -component and four compatibility  

Conditions: we list the conditions in the tables below.  
                                     Table I 
Order conditions for ̂y  
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Table II 

Order conditions for ̂y′  
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                                         Table III 

Order conditions for y  

Order 2 

Condition  
∑ =

i
ib

2

1
 

(4.9) 

Order 3 

Condition  
∑ =

i
ii cb

6

1
 

(4.10) 

 

 

                                        

 

 

 

 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 169 - 180 

R-Stable Embedded DIRKN Method of Orders 4(3) …Imoni  and Ikhile  J of NAMP 

 

Table IV 

Order condition for  y′  

Order 1 

Condition  

∑ =′
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ib 1 (4.11) 

Order 2 
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Order 3 
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The compapitibility conditions are given by 
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To simplify the analysis, we use the following result due to [8]. 

 Let ( ) sjcbb jjj ,,1,1 Λ=−′=                                                          (4.15) 

then the order condition for the y -component are subset of the order conditions for the y′ -component. 

The Tableau of the method is of the for  

 Table (4.1): The Butcher Tableau of the 4(3) DIRKN method 

1c  

2c  

3c  

4c  

λ  

λ21a  

λ3231 aa  

λ434241 aaa  

 
4321 bbbb  

4321 bbbb ′′′′  

 
4321

ˆˆˆˆ bbbb  

4321
ˆˆˆˆ bbbb ′′′′  
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Applying the (4.15), we therefore have twelve equations to solve in nineteen unknowns. Thus, we have 

seven free parameters. Let '
1 2 3 4 32 42 1, , , , ,c c c c a a and b  be the free parameters. 

We start by solving the order conditions for ŷ′ and ŷ . From (4.4), (4.5), (4.6) and (4.7) we obtain  

( )( ) ( )
2 3 2 3 4 2 4 3 4 2 3 4
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1 2 1 3 1 4
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3 4 4 6 4 6 6 12ˆ
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We then substitute into (4.8) and solve for 43a  as  

( )43 1 3 2 3 42 1 2 2 3 3 1 3 2 3( )( )2 ( )( 3 (4 6 ) 4 2 (2 3 ( 3 6 ))a c c c c a c c c c c c c c c= − − − − + − + + − + − +  

         

( ) ( )( )( ) ( )( )( )2 3
1 1 1 1 4 2 4 3 4 32 1 2 1 4 2 41 4 6 12 ( ) 2c c c c c c c c c a c c c c c c+ − − + − − + − + − − − −  

         ( )( )4241242 63)32(24)64(3 ccccccc +−+−++−+−  

( ))))63(32(24)64(3()()(2 323133232
2

31 ccccccccccc +−+−++−+−+−−  

From (4.14) we obtain  

 

( )( )(( )64(3)(2))((2
2

1
3221423231

2
4

2
14241 ccccaccccccaa −+−−−−−+−−=  

 ( ))) ( )( )( )4241
3
1

2
1132313 1264163(3224 cccccccccccc +−−+−−++−+−++  

 ( ) ( )( )( )( ) (( ) +−+−−−−−−+− 42424241213243 6432 ccccccccccacc  

 ( )( )))42414 633224 ccccc +−+−++  

 ( ) ( ) ( ) ( )( )( )))323133232
2

31 633224643 ccccccccccc +−+−++−+−+−−  

Again using (4.15) we obtain  
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( )( )
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We now solve the order conditions for y and y′ . Thus from (4.11), (4.12) and (4.13) we obtain  
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The principal truncation error coefficients of the higher order method are given by   

       

4
41 42 43

1ˆ ˆ ˆ
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120i i ij j
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 (4.16) 
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We minimize the principal truncation error coefficients with respect to ,,,, 4321 cccc  

14232 , bandaa ′  to obtain values for the free parameters. The choice of 

1 2 3 4 32 42

1 1 6 4 1 7
, , , , ,

10 5 25 5 2 10
c c c c a a= = = = = − = and '

1

1

25
b = −   gives the 

coefficients of the tableau (4.1) for the embedded DIRKN 4(3) method.       
  
`Table (4.2): The Butcher Tableau of the  
coefficients of the 4(3) DIRKN method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The local truncation error estimate for the method are given by  

 






 +−+−=∆ + 4321
2

1 441000

797

29400

15143

1125

797

12250

2391
FFFFhn      








 +++−=∆′ + 43211 88200

797

247128

21659

900

797

3675

797
FFFFhn   (4.17) 

We now examine the stability of the method. The amplification matrix is given by  
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( )
2 3 4 2 3 4

2 3 4 2 3 4

1 26 3 1 833 29 7 1
1 1

2 625 1250 2500 5000 2000 2500 10000
833 57 1 1 26 27 3

1
5000 10000 625 2 625 2500 10000

z z z z z z z z
R z

z z z z z z z z

 + + − − + − − + 
=  

 + + − + + − −
  

  

A plot of the roots of ( )zR  against z  shows that the polynomial ( ) 3,2,1, =jzR j  as defined by (3.5) 

are nonnegative if ( 3.2,0)z ∈ − , yielding the stability boundary 0 3.2z = , see the graph in fig.4.1 for 

the stability plot of |R(z)|. Hence the method is R-stable within the interval. 

-14 -12 -10 -8 -6 -4 -2 0

1

1.1

1.2

1.3

Z

ÈlHZLÈ

 

                  Fig. (4.1): Absolute Root locus plot of |R(z)| versus z 

 

5. Conclusion  

[13] and [15] derived the implicit cases of the RKN methods, but are not embedded. In fact, there has not 
been much work on embedded implicit methods so far arising from the difficulties of deriving its 
coefficients and its implementation when compared to the explicit case of the class of the method. In this 
paper, we  
have developed a class of four-stage embedded DIRKN method of orders 4(3) for the numerical solution of 
the initial value problem of the special second order differential equation (1.1) possessing oscillatory 
solution. The scheme controls the local error in the solution and the derivative. The error estimate is 
obtained by using an  

 

z 
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embedded method. The embedded formula, see table (4.2) for the DIRKN method have been chosen so that 
its stability matrix has bounded eigen-values and R-stable, thus suitable for oscillatory problems. Also, for 
the method in table (4.2) derived, the minimization of the principal truncation error coefficients (4.16) leads 
to the minimized local truncation error in (4.17) used for variable step-size implementation of the method 
in table (4.2).  
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