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Abstract 

 
Green’s function provides a wide range of methods for 
solving elastic problems. In this paper, our focus is on the 
method of the separation of variables. Here, the Green’s 
function of the Neumann’s problem for Poisson’s equation 
is adopted. Unlike the problems of the full and half strips, 
the problem of the rectangular strip admits known formulae 
of the hyperbolic functions in addition to conventional 
trigonometric functions. 
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1.0 Introduction  
 
Many methods can be used to construct Green’s functions.  One of such methods is the separation of 
variables.  As in, [1], it is shown that the incompressibility constraint allows one to describe standard 
thermoelastic effects. This approach is recently supported by the works of [4]. The basic idea of the last 
two authors is to decompose the motion of deformation into two parts: one due to traction free uniform 
heating and the other due to isothermal mechanical loading.  
But in our method of separation of variables, the Green’s function is being determined in a holistic form. 
This method had earlier been used by the same author [7, 8] to solve the problems of the full and half strips 
of elastic materials and is hereby extended to rectangular strip problem as shown in this paper. The major 
difference with the already solved problems is that hyperbolic functions are admissible in the 
computational procedure. 
Seremet [6] solved the rectangular strip problem with reflection method, where the Green’s function was 
constructed for Laplace’s equation. But in our approach here, we solve the problem by constructing 
Green’s function for Poisson’s equation. 
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2.0  Mathematical Formulations. 
 
We define the Green’s function of the Neumann’s problem for Poisson’s equation in the form  
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at the following intervals ( 11 ax0 ≤≤ , 22 ax0 ≤≤ ) under the following conditions; 
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2.1 Computational Procedure 
 
The solution is sought by using the method of separation of variables and by defining the following 
trigonometric  series  (see[ 2]) 
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where the  coefficients a0, an , bm are the functions of the variable xi .  The boundary conditions of this 
problem simplify this series and reduce it to the following form 
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Using equation (2.5) in equation (2.1), we get,  
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providing that )x()x()x( 2211 ξ−δξ−δ=ξ−δ  in the method of separation of variables. We now 

integrate (2.6) with respect to x2 and note that the following integral  
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are non zero. 
Thus, we obtain the following ordinary differential equation  
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and boundary conditions  
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to determine the function a0 (x1) 
To construct Green’s functions for  1D differential equations, we use the standard constructing procedure ( 
see [2]).  The general solution to the influence function is sought in the following form 
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Then from the conditions of conjugality at the point 11x ξ= , 
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we obtain the following set of simultaneous algebraic equations  
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 The boundary conditions give  

.ak0)ax(a;0c0)0x(a 1
21110110
−=⇒==′=⇒==′    (2.15)                                                         

Therefore, in accordance with the obtained values of the coefficients    
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we come to the following expression for the function 
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Then, having multiplied the equation (2.6)  
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provided  the orthogonality property of the trigonometric functions has been taken into account and come 
to the differential equations  
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to  determine  the function  am(x1).   Here, the following integrals  are non-zero: 
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boundary –value problem aimed at determining the function  ma : 
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 (2.21)                                                   
To solve this problem we use a standard method of Green’s  function construction for 1D differential 
equation (see[6]). The general solution to this differential equation is  
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Then, from the conditions of conjugality at the point ξ=x  
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Then, from the boundary conditions, it follows that  
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After some transformation, this makes it possible to deduce the expression for the Green’s function as: 
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where the known formulae for the hyperbolic functions were used 
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We note that the expression for the function at),x(a 11m ξ 11x ξ≥ follows from the given expression 

provided the change of the values x1 and 1ξ is allowed for. So, the requirements for the symmetry of the 

Green’s function,  )x,(a),x(a 111m11m ξ=ξ is satisfied. Thus, after introducing the notation,  
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we deduce the expression for the Green’s function of the initial –value problem in a form of infinite series  
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 However, by making use of the known sum (see [2, 3, and 5]) 

π≤α≤≤π≤α≤<+α−−=α∑
∞

=

20,1por;20,1p;pcosp21lnncos
n

p 222

1n

n

     

 (2.31)               
as  well as the trigonometric formulae 
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we are able to  sum ordinary infinite series.  
 
 
 
 
 
 
The final expression for the Green’s function  of the Neuman’s problem for the rectangular strip is written 
in the form of [3];  
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where  the functions  E,    E1,   E2,  E12  are determined by the expressions 
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(Note:  ch and sh  stand for cos and sine hyperbolic respectively.) 
  
 
4.0  Conclusion 
 
In this paper, we used the methods of separation of variables in Green’s function to solve the problem of 
the rectangular strip.   Earlier, the same method had been used by this author to solve the problems of the 
full strip and half strip.  The significant feature of the full strip was that the shearing stresses were 
completely zero.  In the half strip problem, a feature of the conjugality conditions became prominent and 
the solution to this problem admits trigonometry functions in its principal stresses unlike that of the full 
strip.   
In the rectangular strip problem, unlike the full and half-strips, the solution is amendable to the methods of 
hyperbolic functions.  In particular, the introduction of the hyperbolic function preserves the symmetry of 
the Green’s function and satisfies the conditions of conjugalities.  Also, as a a great departure from the two 
previous problems, the rectangular strip problem admits the Green’s function of Neumann’s problem as 
well as the Green’ function of the second kind for Poisson’s equation, a situation which was not possible in 
the full and half strip problems.   The advantage of this is that the solutions to the rectangular problem can 
explicitly be presented in hyperbolic functions instead of the conventional trigonometric functions. 
Consequently, the shearing stresses are symmetrical. 
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