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Abstract 
 

This paper investigates the transverse deflection of a uniform beam 
resting on a non-uniform elastic foundation and traversed by a 
harmonic load of variable magnitude.  The mode-superposition 
method is used to obtain the approximate analytical solution of the 
differential equation of motion of the dynamical beam problem. 
Analytical and numerical solutions reveal that increase in the axial 
force leads to decrease in the amplitude of deflection of the 
undamped elastic beam for fixed foundation stiffness. Also for fixed 
value of axial force, the amplitude of deflection of the elastic beam 
structure decreases with an increase in the value of foundation 
stiffness. Furthermore, the various resonance conditions and the 
corresponding critical speeds are obtained. These show that the 
critical speed of the dynamical system increases with an increase in 
the effect of axial force suggesting that the structural designs are 
more stable and reliable for higher values of axial force. In unlike 
manner, the critical speed decreases with an increase in the effect of 
foundation stiffness, indicating a reduction in the attendant risk of 
resonance. 

 
                 Keywords: Transverse deflection, elastic foundation, mode-superposition method, axial 
force, foundation stiffness, critical speed, resonance condition. 
 
1.0 Introduction 
 
 Moving loads have great effect on dynamic stresses in traversed beam or beam-like structures, thereby 
subjecting them to intensive vibrations especially at high velocities. This phenomenon is of considerable 
interest to Applied Mathematicians, Physicists, Transport Engineers, Construction Engineers and Designers 
of structures like railway and highway bridges, suspension bridges, rails sleepers, roadways and airport 
runways, pipelines, etc [1]. For a beam resting on a non-linear elastic foundation, the force exerted by the 
foundation on the beam opposes displacements of the beam’s centroidal axis. As a result, various 
investigations have been carried out on this subject. [2] considered the problem of elastic beam under the 
action of moving loads. In his study, the mass of the beam was considered much smaller than the mass of 
the moving load. [3] later considered the problem of simply supported finite beams lying on an elastic 
foundation and traversed by moving loads. In his analysis he assumed that the loads were moving with 
constant velocities along the beam. Recently, [4] considered the response of a thick beam under the action 
of harmonic variable concentrated force moving at a uniform velocity. The method of integral 
transformation was used, in particular, the finite Fourier sine transform is used for length co-ordinate and 
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the Laplace transform for the time co-ordinate. Solution, which converges, was obtained for the deflection 
of simply supported thick beam. The effect of an elastic foundation on the transverse displacement of the 
beam was analyzed  
 

 
for the problem. [5] investigated the dynamic response of finite elastic beam under the influence of a 
dynamic load moving with constant speed. [6] analyzed the influence of foundation stiffness and axial 
force on the vibration of thin beam under variable harmonic moving load using the method of integral 
transformation. In all the aforementioned, no consideration has been given to the effect of variable 
foundation on the transverse displacement of undamped thin beam subjected to moving loads. Thus, this 
work is set to investigate the influence of exponentially decaying foundation and axial force on the 
transverse deflection of undamped simply-supported thin beam (Bernoulli-Euler beam) under harmonic 
load of variable magnitude. 
 
2.0 BASIC EQUATION OF MOTION 
 
The motion of a concentrated force P(x, t) moving at a uniform speed v along a uniform beam of length  in 
the positive x- direction is considered. Neglecting the influence of damping and rotatory inertia correction 
factor, the effect of the axial force on the dynamic deflection V(x, t) under moving load of the beam 
structure resting on a non-uniform elastic foundation K(x) is examined by solving the governing fourth-
order partial differential equation of motion of the form 

                                           

 (2.1)                                                           

where x = spatial coordinate, t = time, =  nth partial derivative with respect to x, 

EI = flexural rigidity of the beam, I = constant moment of inertia of the beam’s cross section about the 
neutral axis, E= Young‘s modulus, P(x, t) =applied concentrated load, N= axial force, µ= mass per unit 
length of the beam, K(x) = non-uniform foundation function. 
 Furthermore, the ends of the beam x = 0 and x = are assumed to be simply supported. Thus, the 
boundary conditions are  

                                          

 (2.2) 
Without loss of generality, one can consider the initial conditions of the form 

                                                                                   

 (2.3) 
On one hand, the exciting force moving on the beam is taken to be of the form 
 

                            

 (2.4)                     
where Pf (t) is assumed to be a harmonic forcing function given by 

                                                                                       
 (2.5) 

Po is the amplitude and Ω is the driving circular frequency and( )⋅δ  is the unit impulse or Dirac delta 

function defined as  

                                                    

 (2.6) 
with the property; 
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(2.7) 
while on the other hand, the elastic foundation is taking to be of the form 
                                ,                                                                             
 (2.8) 
where  is the bedding constant of the foundation material. 
Introducing equations (2.4), (2.5) and (2.8) into (2.1) yields 

                            

 (2.9) 
 
 
 
 
   3.0 SOLUTION PROCEDURE 
 
In order to obtain the analysis of the dynamic displacement response V(x, t) of the beam structure under 
concentrated load, the normal-mode method of dynamic analysis [7 - 11] is employed. This technique 
assumes that any displacement function V(x, t) for the beam or beam-like structure can be developed by 
super-imposing suitable amplitudes of the modes of vibration. When the beam performs one of its natural 

modes of vibration, say ),( txVn , it is given as  

    )()(),( txtxV nnn Θ= ϕ                          

 (3.1)                                                                                  thus the total displacement is seen as the 
sum of the modal components which is given by 

∑
=

Θ=
N

n
nn txtxV

1

)()(),( ϕ        

 (3.2)                                                                                                          

where )(tnΘ  are the modal amplitudes representing the time dependency of the displacements and )(xϕ  

are the normal-mode shape functions of the beam. Assuming the beam structure is undergoing harmonic 
oscillations, the shape function of the beam in free transverse vibration can be written as 

                    
 (3.3) 
The constants  and the mode frequencies  can be determined by using the boundary   conditions 
associated with the beam structure. For simply supported end conditions, it can be shown that 
   and                   (n=0,1,2,…)       (3.4)         

which results in 
                                                                                                

 (3.5)          
For simply supported edges, X=0 and X=L, the shape function of vibration takes the form   
         

 (3.6)                                                          
Substituting equation (3.6) into equation (2.9), one obtains 
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(3.7)                                                                                         where is the first derivative of � with respect 

to t  

Assuming )(xnϕ and )(xmϕ  are any two mode-shape functions of the vibrating system corresponding to 

the circular frequencies   and  respectively, the mode superposition procedure requires that for any 
such two mode-shape functions, the orthogonality relationship for transverse vibration is  

∫ =
l

nmmn dxxx
0

)()( δϕϕ      

 (3.8) 
where the symbol  is the kronecker delta defined as 





=
≠

=
mn

mn
nm          ,1

         ,0
δ       

 (3.9) 

Multiplying equation (3.7) by
l

xmπ
sin  and integrating over the beam span  with respect to x, one obtains 

           (3.10) 
 
 
 
 
Equation (3.10) can be rewritten as 
       (3.11) 
where 

         (3.12) 

In view of Equations (3.8) and (3.9) and the property of Dirac delta function in equation (2.7), the 
evaluation of integrals in (3.12) yields 
    (3.13) 

where     
  .         (3.14) 

After some rearrangements, equation (3.13) becomes 
                           (3.15) 

where 
                                  (3.16) 

                                 (3.17) 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 133 - 140 
Transverse Vibrations Of Axially Tensioned …   J. M. Tolorunshagba  J of NAMP  

In what follows, the nth mode of vibration of the nth particle is considered. The                              non-
homogeneous second order ordinary differential equation (3.15) is now subjected to Laplace transformation 
defined as  
                   (3.18) 
with the inverse, 

                                     (3.19) 

where the path of integration is a line parallel to the imaginary axis at Real s=a and extending from  - 
 and 

                  (3.20) 

 
Introducing equation (3.18) into equation (3.15) and setting the initial conditions equal to zero, one obtains 

             (3.21) 

where  

                       (3.22) 

Thus 

                                                                       (3.23) 

It remains to obtain the Laplace inversion of equation (3.23). Thus, equation (3.23) can be rewritten as 

                                                                (3.24) 

Introducing equation (3.19) into equation (3.24), the Laplace inversion of (3.24) as defined in [7 - 11] is  
      (3.25) 
Where  

                      (3.26)  

In order to evaluate the above integrals in (3.26), the residue theorem defined in [9, 12] is employed. 
 
 
The singularities in the integrals are poles. The denominators of the integrands of A1 (t) and A 2(t) have 
simple poles at  

 
Evidently, it is straight forward to show that    

          (3.27) 

                   (3.28) 

Substituting equations (3.27) and (3.28) into equation (3.25) yields  

             (3.29) 

Thus, in view of equation (3.27), the displacement function in equation (3.6) can be given as  

         (3.30) 

The expression in (3.30) represents the transverse deflection (or displacement response) of the tensioned-
beam under the action of a harmonic moving load with uniform velocity and resting on exponentially 
decaying foundation. 
 
4.0 Discussion Of Analytical Soluton 
In a beam vibration problem such as this, with damping neglected, one is interested in the resonance 
conditions of the dynamical system. These are conditions under which any of the exciting circular 
frequencies coincides with one of the natural frequencies of the dynamical system, thereby making the 
amplitudes of displacement grow without bounds. 
In this case however, equation (3.30) reveals that the axially-tensioned thin beam under harmonically 
moving load deflects continuously with time when  

                                                              (4.1) 
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The expressions in equation (4.1) show that the state of resonance of the thin beam is dependent on axial 
force and foundation stiffness. At this juncture, one seeks the critical speeds at which these resonance 
conditions occur. The critical speeds at the respective states of resonance are 
    

        (4.2) 

                   (4.3)                                                                                                                                                                

 where          (4.4) 

From the equations (4.2) and (4.3), it is straightforward to examine the effects of the various parameters, 
such as axial force and foundation stiffness on the beam dynamical system.  
In what follows, the effects of various pertinent parameters on the displacement response of the beam and 
the critical speeds of the dynamical system are analysed. 
 
5.0 NUMERICAL ILLUSTRATION 
For the purpose of numerical illustration of analytical results obtained for the dynamical beam problem, the 
uniform beam of length 12.192m with flexural rigidity   is considered. The 
transverse deflection profile at various times  when the foundation stiffness is fixed and the axial force (N) 
is varied between 0N and 2,000,000N and equally too, for fixed axial force, the transverse deflection 
profile at various times when the foundation stiffness which is varied between 0N and 40000N are shown 
in plotted curves as presented in Figures 5.1 and 5.2 respectively. Figure 5.1 shows that for fixed values of 
K, the displacement response of the beam is in the form of an exponentially decaying harmonics which 
eventually disappear as the effect of axial force is increased, while figure 5.2 indicates that for fixed N, the 
transverse deflection of the thin beam decreases with increases in the values of the foundation stiffness. In 
figure 5.3 and 5.4, the respective graphs of the critical speed ( , both follow like patterns) against 
various values of K and N are displayed. Figure 5.3 shows that the critical speed decreases as the axial 
force effect increases, indicating that the structural designs are more stable and reliable for higher values of 
axial force while figure 5.4 shows that critical speed increases as values of foundation stiffness increases, 
thereby reducing the risk of resonance. 
 
 
6.0 CONCLUSION 
 
This paper examined the transverse deflection of a highly tensioned-uniform thin beam resting on an 
exponentially decaying foundation and traversed by harmonically varying moving load. 
The governing differential equation of motion of the beam, assumed to be simply-supported and resting on 
variable Winkler elastic foundation, is a non-homogeneous fourth-order partial differential equation with 
variable and single coefficients. The solution of the dynamical beam problem is obtained, using the method 
of normal-mode analysis in conjunction with the method of integral transformations and the Cauchy 
residue theorem. This solution is analysed and two distinct resonance conditions of the dynamical system 
emerged. Numerical analysis is carried out and the study revealed the following results. 
For fixed values of K, the displacement response of the beam is in the form of an exponentially decaying 
harmonics which eventually disappear as the effect of axial force increases 
For fixed values of N, the transverse deflection of the thin beam decreases with increases in the values of 
the foundation stiffness. 
 Critical speed decreases as the axial force effect increases, which suggests that the structural designs are 
more stable and reliable for higher values of axial force. 
Critical speed increases as the foundation stiffness increases, thereby reducing the risk of resonance. 
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Figure 5.1. Deflection profile of simply supported 
uniform beam under the action of harmonic forces 
for various values of axial force and fixed value of 

foundation stiffness K = 40000 
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Figure 5.2. Deflection profile of simply supported 
uniform beam under the action of harmonic forces 
for various values of foundation stiffness and fixed 

value of axial force N = 20000
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Figure 5.3. The graph of Critical Speed against 
Foundation Stiffness
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Figure 5.4. The graph of Critical Speed against Axial 
Force
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