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Abstract

This paper investigates the transverse deflection of a uniform beam
resting on a non-uniform elastic foundation and traversed by a
harmonic load of variable magnitude. The mode-superposition
method is used to obtain the approximate analytical solution of the
differential equation of motion of the dynamical beam problem.
Analytical and numerical solutions reveal that increase in the axial
force leads to decrease in the amplitude of deflection of the
undamped elastic beam for fixed foundation stiffness. Also for fixed
value of axial force, the amplitude of deflection of the elastic beam
structure decreases with an increase in the value of foundation
gtiffness. Furthermore, the various resonance conditions and the
corresponding critical speeds are obtained. These show that the
critical speed of the dynamical system increases with an increase in
the effect of axial force suggesting that the structural designs are
more stable and reliable for higher values of axial force. In unlike
manner, the critical speed decreases with an increase in the effect of
foundation stiffness, indicating a reduction in the attendant risk of
resonance.

KeywordsTransverse deflection, elastic foundation, modgeguosition method, axial
force, foundation stiffness, critical speed, resmeacondition.

1.0 Introduction

Moving loads have great effect on dynamic stressdsaversed beam or beam-like structures, thereby
subjecting them to intensive vibrations especiallyhigh velocities. This phenomenon is of considiera
interest to Applied Mathematicians, Physicists,riBort Engineers, Construction Engineers and Dessgn
of structures like railway and highway bridges, parssion bridges, rails sleepers, roadways and rairpo
runways, pipelines, etc [1]. For a beam restingaron-linear elastic foundation, the force exetigdhe
foundation on the beam opposes displacements ofb#@n’s centroidal axis. As a result, various
investigations have been carried out on this stbjat considered the problem of elastic beam uritler
action of moving loads. In his study, the massheflbeam was considered much smaller than the niass o
the moving load. [3] later considered the problefrsimply supported finite beams lying on an elastic
foundation and traversed by moving loads. In hialysis he assumed that the loads were moving with
constant velocities along the beam. Recently, pdiscdered the response of a thick beam under tienac

of harmonic variable concentrated force moving aturdform velocity. The method of integral
transformation was used, in particular, the fikurier sine transform is used for length co-orttirend
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the Laplace transform for the time co-ordinate.u8oh, which converges, was obtained for the défiec
of simply supported thick beam. The effect of amst foundation on the transverse displacemerhef
beam was analyzed

for the problem. [5] investigated the dynamic resgoof finite elastic beam under the influence of a
dynamic load moving with constant speed. [6] anadiythe influence of foundation stiffness and axial
force on the vibration of thin beam under varididemonic moving load using the method of integral
transformation. In all the aforementioned, no cdestion has been given to the effect of variable
foundation on the transverse displacement of unéantitin beam subjected to moving loads. Thus, this
work is set to investigate the influence of expdiadly decaying foundation and axial force on the
transverse deflection of undamped simply-suppathigdbeam (Bernoulli-Euler beam) under harmonic
load of variable magnitude.

2.0 BASIC EQUATION OF MOTION

The motion of a concentrated force P(x, t) movihg aniform speed v along a uniform beam of lerigth
the positive x- direction is considered. Neglectihg influence of damping and rotatory inertia eotion
factor, the effect of the axial force on the dynardeflection V(x, t) under moving load of the beam
structure resting on a non-uniform elastic fourmtatkK(x) is examined by solving the governing fourth
order partial differential equation of motion oétform

pr Vs p 8o o SVED L g ()Vint) = PG o)
@.1) a B
where x = spatial coordinate, t = tingé';—_ = " partial derivative with respect to X,
El = flexural rigidity of the beam, | = constant ment of inertia of the beam’s cross section abbat t

neutral axis, E= Young's modulus, P(x, t) =applehcentrated load, N= axial force, p= mass per unit
length of the beam, K(x) = non-uniform foundatiamétion.

Furthermore, the ends of the beam x = 0 and xare assumed to be simply supported. Thus, the
boundary conditions are

V(0.0 =0=V{o: Ve _ g = EVED
dx= dxs
(2.2)
Without loss of generality, one can consider tligainconditions of the form
v '!. 0-.| —0= E"I.-_,f o
(2.3)

On one hand, the exciting force moving on the besataken to be of the form

F(t)olx —ct),0sct <1

P(x.t) | ; ot

W

(2.4)
where P (t) is assumed to be a harmonic forcing functiveig by
F}f:] = F, cosflt
(2.5)
P, is the amplitude an@ is the driving circular frequency azﬂ{[) is the unit impulse or Dirac delta

function defined as
ra

5(x— )}

0. x
lw, x=

{

{
(2.6)

with the property;
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. [ 0, £<0
ffolx=8)fx) ={f(€). O0<f<l
l 0, Ex=1
(2.7)
while on the other hand, the elastic foundatiotakéng to be of the form

K(x) = Kye %, a =0,
(2.8)
where K} is the bedding constant of the foundation material
Introducing equations (2.4), (2.5) and (2.8) irdl] yields

v (xr] Twxey 3V x L) P

El = ."."a 3z T K.e Vix.t) = P, cosQtS(x — et
Ax r ¢ - : ‘
(2.9)

3l

3.0 SOLUTION PROCEDURE

In order to obtain the analysis of the dynamic dispment response V(x, t) of the beam structureeund
concentrated load, the normal-mode method of dyoeaamalysis [7 - 11] is employed. This technique
assumes that any displacement function V(x, t)tfier beam or beam-like structure can be developed by
super-imposing suitable amplitudes of the modeglwftion. When the beam performs one of its natura

modes of vibration, say, (X,t) itis given as

Vi (x,1) = 9,(X)0,(t)
(3.1) thus the tad@placement is seen as the
sum of the modal components which is given by

VX =3 4,090,

(3.2)
where @ (t) are the modal amplitudes representing the timemgncy of the displacements agix)

are the normal-mode shape functions of the bearsurAgg the beam structure is undergoing harmonic
oscillations, the shape function of the beam ie fransverse vibration can be written as
@, (x) = sind, x+ A cosd, x + B sinhix 4+ C coshd x
(3.3)
The constants,,. B,,.C, and the mode frequencié¢g can be determined by using the boundary comditio
associated with the beam structure. For simply supd end conditions, it can be shown that
A, =B, =(,=0.and i _ == (n=0,1,2,...) (3.4)

which results in
9, (x) = sin—
(3.5) ’
For simply supported edges, X=0 and X=L, the stapetion of vibration takes the form
V(e t) =T¥_,8,(t)sin =
(3.6) '
Substituting equation (3.6) into equation (2.9) oibtains

e d X S - - . X Y
EL;HEI () 0@ + N (T°) 60 + ) +Kye~=6(t) sin%} — PFycosQtdlx —ct) =0
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3.7) wh#res the first derivative of with respect

tot
Assuming @, (X) and @,,(X) are any two mode-shape functions of the vibrasiygtem corresponding to

the circular frequencieg,, andi, respectively, the mode superposition procedureires| that for any
such two mode-shape functions, the orthogonaligtiomship for transverse vibration is

[0 (08, (dx =

0
(3.8)
where the symbaé,,,. is the kronecker delta defined as

Z
Jnm:{o, n#zm
1, n=m

(3.9)

. M7X
Multiplying equation (3.7) bglnl— and integrating over the beam spiamith respect to x, one obtains

A Lt . " \ 1 s i e
[ F[Er (—r 8,(8) + N(=) 6,(2) + ub, (8) + K 676, (:_J] sin— sm"—} — J, P, cos Qt sin— 6 (x —
c,t)dx =10

(3.10)

Equation (3.10) can be rewritten as

ERal6 () + G () + G (t) + G(D)] = Q(D) (3.11)
where

G, (2) =&, f 51:1—5 '1ﬂd1 (a))

G, (t) = %{—] a,(t) f sin;sinm?x dx (b)

Gy (2) = l{“—\l 8,(t 1f si n—s nkdx (c) (3.12)

G,(t) =n" 8, () [, i"'"r*sn—swr—dx (@)

Q{"l——cniﬂ I 8 — ¢ t‘rsm—m (#))

In view of Equations (3.8) and (3.9) and the pererf Dirac delta function in equation (2.7), the
evaluation of mtegrals in (3.12) yields

Troa[6,0 + H,8,(6) + H.6,(t) + H;8,(¢)] = F cos Qe sin™ > (3.13)
where

Fo r_ (3.14)
After some rearrangements, equation (3.13) becomes

¥=_[6,08) +v%8,(t)] = F cosQt sin TF"TI_:'" (3.15)
where

]’::H:+H:+H] (3'16)

_ e famy* _ N am? _ Ry [(amm)? fgmaiy)
Hy = :(_‘ll ' Hy= :(_) - H: T u U Gamaies ] (3.17)
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In what follows, the fi mode of vibration of the'hparticle is considered. The non-
homogeneous second order ordinary differential Bgu#3.15) is now subjected to Laplace transforamat
defined as

6(s) = [ 6(t) e dt (3.18)
with the inverse, _
6(0) = = [ 6(s)e™ ds (3.19)

where the path of mtegratlon is a line parallethe imaginary axis at Real s=a and extending frem
@ to + = and

P =

*:_—t"-"" 8(sleTds =1l My g (s—s)8 (3.20)
Introducing equation (3.18) into equati_on (3.1%) amptting the initial conditions equal to zero, ofains
(5% + y)a(s SR (3.21)
where A_ ‘x
=(Z=+9). 5= (F-9) (3.22)
Thus
=t [ B . B
8(s) = " F L«-s: -~-s:] (3.23)
It remains to obtain the Laplace inversion of ecqma(B 23). Thus, equation (3.23) can be rewritien
(s k! 4 B
6G) = F s + e ) (3.24)
Introducing equation (3.19) into equation (3.24% Laplace inversion of (3.24) as defined in [} i%
a(t) = FLA, () + A, (8)] (3.25)
Where
A0 =200 A By a0 =200 f‘_} ds (3.26)

In order to evaluate the above integrals in (3.8 residue theorem defined in [9, 12] is employed

The singularities in the integrals are poles. Thaaminators of the integrands of &) and A,(t) have
simple poles at

5= 1V, 5= "'.'.? F = +'H-

Evidently, it is stralght forward to show that
At = —-_—S—s inyt — _,'i,_ gin B, ¢ (3.27)
At) = :3:55—:5&1}-: - —_E_—,— sin 8¢ (3.28)

Substituting equations (3.27) and (3.28) into eigna3.25) yields

6() = — (sinyt — sin;t) + == (sinyt — sinf;1)] (3.29)
Thus, in view of equat|0n (3 27) the displacenfanttion in equat|0n (3.6) can be given as

By nRX
Vix.t) = .._1.“"11

,_,,~ (sinyt —..:1..#-1‘_]-—1,5—,{_.:1]& —sinfi; J]_.'t— (3.30)

The expression in (3. 30) represents the trans\aeection (or displacement response) of the teresie
beam under the action of a harmonic moving load winiform velocity and resting on exponentially
decaying foundation.

4.0 Discussion Of Analytical Soluton
In a beam vibration problem such as this, with dagpeglected, one is interested in the resonance
conditions of the dynamical system. These are timmdi under which any of the exciting circular
frequencies coincides with one of the natural feagpies of the dynamical system, thereby making the
amplitudes of displacement grow without bounds.
In this case however, equation (3.30) reveals thataxially-tensioned thin beam under harmonically
moving load deflects continuously with time when

y* =87 and y* = Bf (4.1)
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The expressions in equation (4.1) show that thie sthresonance of the thin beam is dependent @h ax
force and foundation stiffness. At this junctureecseeks the critical speeds at which these resenan
conditions occur. The critical speeds at the rebpestates of resonance are

C,, =y -l (4.2)
C..=lr + ¢l (4.3)
where v == (4.4)

From the equations (4.2) and (4.3), it is straightirrd to examine the effects of the various patarse
such as axial force and foundation stiffness orbtem dynamical system.

In what follows, the effects of various pertinemtrgmeters on the displacement response of the badm
the critical speeds of the dynamical system aréyaed.

5.0 NUMERICAL ILLUSTRATION

For the purpose of numerical illustration of analgt results obtained for the dynamical beam probléne
uniform beam of length 12.192m with flexural rigidiE! = 6.068 = 10°Kgm?® /sec is considered. The
transverse deflection profile at various tinteghen the foundation stiffness is fixed and thebfarce (N)

is varied between ON and 2,000,000N and equally toofixed axial force, the transverse deflection
profile at various times when the foundation s&fs which is varied between ON and 40000N are shown
in plotted curves as presented in Figures 5.1 ahdespectively. Figure 5.1 shows that for fixetliea of

K, the displacement response of the beam is ifdha of an exponentially decaying harmonics which
eventually disappear as the effect of axial focmcreased, while figure 5.2 indicates that fgedi N, the
transverse deflection of the thin beam decreastsimgreases in the values of the foundation stgf In
figure 5.3 and 5.4, the respective graphs of titeal speed {,, or C,., both follow like patterns) against
various values of K and N are displayed. Figure $h8ws that the critical speed decreases as tla axi
force effect increases, indicating that the stniadtdesigns are more stable and reliable for high&res of
axial force while figure 5.4 shows that criticalesigl increases as values of foundation stiffnesgases,
thereby reducing the risk of resonance.

6.0 CONCLUSION

This paper examined the transverse deflection bighly tensioned-uniform thin beam resting on an
exponentially decaying foundation and traversethdmynonically varying moving load.

The governing differential equation of motion oétheam, assumed to be simply-supported and resting
variable Winkler elastic foundation, is a non-homogous fourth-order partial differential equatioithw
variable and single coefficients. The solutionhe tlynamical beam problem is obtained, using thiaoae
of normal-mode analysis in conjunction with the hoet of integral transformations and the Cauchy
residue theorem. This solution is analysed anddistinct resonance conditions of the dynamicalesyst
emerged. Numerical analysis is carried out anctheay revealed the following results.

For fixed values of K, the displacement responsthefbeam is in the form of an exponentially decgyi
harmonics which eventually disappear as the effeakial force increases

For fixed values of N, the transverse deflectioringf thin beam decreases with increases in thesalll
the foundation stiffness.

Critical speed decreases as the axial force eiifectases, which suggests that the structuradssire
more stable and reliable for higher values of afdede.

Critical speed increases as the foundation stiffiesreases, thereby reducing the risk of resonance
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Figure 5.1. Deflection profile of simply supported
uniform beam under the action of harmonic forces
for various values of axial force and fixed value of

foundation stiffness K = 40000
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Figure 5.2. Deflection profile of simply supported
uniform beam under the action of harmonic forces
for various values of foundation stiffness and fixed
value of axial force N = 20000
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Figure 5.3. The graph of Critical Speed against
Foundation Stiffness
18
o 16
5 14
5 12
§ 10
& s
T 6
2 4
o 2
0+ ! ! ! ! :
o] 100 200 300 400 500
Foundation Stiffness

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 133 - 140
Transverse Vibrations Of Axially Tensioned ...

J. M. Tolorunshagba J of NAMP



Figure 5.4. The graph of Critical Speed against Axial
Force
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