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Abstract

In this present study, the classical problem of thdynamic
behaviour of a prismatic Timoshenko beam resting an elastic
foundation and subjected to a variable magnitude wirgy load, which is
harmonic, is investigated using analytical approachThis problem is
treated by considering three different types of stla foundations of
which the rigidities are assumed to be functions dfie position
coordinate in the axial direction of the beam. Iparticular, rigidities of
constant, linear and quadratic functions are usedThis is aimed at
investigating the dynamic stability of the forcedbrvating Timoshenko
beam and to know whether this depends on the formd anagnitude of
the stiffness of the elastic foundation used in thmam model. The
versatile Generalized Galerkin's method and Integraransform
techniques are used to handle the coupled secondleor partial
differential equations governing the motion of theibrating system.
Analytical solutions are obtained for both the tramerse displacement
and the rotation of the elastic deep beam. Analgtiand Numerical
results depict that for all the different forms dbundation considered in
this study, as the values of the foundation moduliscreases, the
transverse displacement response of the beam dee®alt is also found
that the critical velocity of the vibrating systenmcreases with an
increase in the values of foundation modulus. # eéqually observed that
when an elastic foundation whose rigidity is of thrguadratic form is
used as a bearing member for a Timoshenko beam actigid to a fast
traveling load the risk of resonance is sufficiegtteduced.

KeywordsDynamic behaviour, moving load, elastic foundatigbrating system,
resonance.

1.0 Introduction

The study of the dynamic behaviour of structuranmbers in the field of Engineering, Mathematical
Physics and Applied Mathematics is quite intergstand is of great technological and economical
importance, as some of the results obtained magppécable in understanding the dynamic behavidur o
roadways and runways. Therefore, the complex jsedgtroblem of the dynamic response of engineering
structures to moving concentrated loads has beemgionsiderable attention during the past years.

These structural members are often modeled as iomendional element (e.g. beams, rods and membrane),
two-dimensional elements (e.g. plates) or threeedsional elements (e.g. shells) on or without mlast
foundation. Scholarly publications on the vibratianalyses of plates on elastic foundation or beamds
beams on elastic foundation under the action ofingploads are numerous in literature [1]. Among
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several authors who have worked extensively incttiral dynamics are [ 2 ] studied the correction fo
shear of the differential equation for transverg@ation of prismatic bars. [ 3] studied the tremise
oscillations of beams under the actions of moving

variable loads. [4 ] studied the critical speedd the response of a tensional beam on an elasincation

to repetitive moving loads. [5] studied the dynarbehaviour of multi-span beams under moving loads.
[6] who the dynamic response of rectangular plaite wioving mass. [7] studied Dynamic behaviour of
non-uniform Bernoulli-Euler beam resting on elagbandation and traverse by loads moving with non-
uniform velocity. [8] studied the effect of an adidmass to the dynamic response of a prestressdeidta
beam traversed by moving masses to mention, but few

However, in all the aforementioned works, a Berh«tliler beam is the model often employed. It has
been reported in the literature that when such bemael is used to study the beam behaviour, theewav
velocity solution in the beam becomes unreasonatitén the high frequency range and this phenomenon
implies that the theory may lead to erroneous tesuhen a beam is subjected to a fast traveling loa
[9,10]. Thus, to obtain a more reliable and aceurasult the effects of shear deformation andtooga
inertia factor must be incorporated into the beaondeh and this is termed Deep or Timoshenko beam
model. The effects due to the rotatory inertia dr@deviation of the beam cross-section after dedition

are taken into account in the governing equatiofihese, effects lead to significant improvement in
comparison with the classical Bernoulli-Euler beaodel [11]

Until recently, the effects of shear deformatiom aatatory inertia on both the dynamic response taed
critical velocity of a Timoshenko beam were rardigcussed. The problem of vibration of multi-span
Timoshenko beams has been studied by [10]. Haysthows that the effects of rotatory inertia ahéas
deformation cause the modal frequencies of the $imaoko beam to be less than those of the Bernoulli-
Euler beam. In the same vein, the problem of thielams under the action of a variable traveling
transverse load was taken up by [12] and in hidysthe found that the transverse response of a loesm
decreases as the moving load frequency increass®rtiieless, their methods of solutions are naalsia

for cases where the governing equations of motmssgss variable coefficients [10, 12] and alsdésé
studies, the effect of elastic foundation on th#edéon and critical velocities of the Tomoshenkeam
were not investigated. To the best of author’'swiedge, studies on the influence of elastic fouimtabn

the critical velocity of a vibrating system invahg a Timoshenko beam resting on elastic founddiams
not been reported in literature. The specific aohshis study therefore, are to determine thectéfef
elastic foundations on the critical velocities @rahsverse displacement response of uniform Timudshe
beam, to clarify whether the critical velocity ofreoving load problem involving Timoshenko beam mode
depends on the types and form of the bearing meinberporated into the beam model and to deduce
which of the three types of the foundations in #tisdy could be regarded as the most efficientibgar
member.

2.0 PROBLEM DEFINITION

A uniform Timoshenko beam resting on elastic fouimfaand traversed by variable magnitude moving
load is considered. The beam’s properties suchameant of inertia | and the mass per unit lengthof

the beam do not vary along the span L of the bedrhe beam is assumed to maintain contact with
subgrade reaction modulus K. Further, there arickion forces at the interface. The deflectiarx, t)

from the equilibrium and the rotatiam(x,t) of the beam under the action of a variable mageitmoving
load is described by the system of partial difféisdriEquations [11]

AW (x,1) = K * GAW,, (x,t) U, (x,1)) + P(x,t)
(2.138)
and

10U, (x,t) = EIU, (1) + K * GAW., (x,t) U (x,1))
(2.1b)
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If the elastic foundation is incorporated into the beamaiqns above, then after some rearrangements one
obtains

PG K*GF[azw(zx’t) - (X")} SRV (1) = P(x 1)
ot )4 ox
(2.2a)
and
g QU1 ()2(’ O, K*GF[GW(X’D —U(x, t)} - IpLU (f't) =0 (2.2b)
[3)4 0X ot

as the coupled second order partial differentiala¢gion governing the motion of Timoshenko beamimgst
on elastic foundation and subjected to variablenmitage moving load.

In the above equationg, is the constant mass m of the beam per unit lelhgitt is a constant dependent
on the shape of the cross-section, G is the modaflgdasticity in the shear, F is the cross-secti@nea,
P(x,t) is the harmonic moving force, E is the Yosngodulus of the beam, is the constant moment of
inertia of the beam cross-section apdis the mass of the beam per unit volume and K(xié rigidity of
the elastic foundation.

The boundary conditions at the end x = 0 and xisdiven by

W(0,t) = 0; uio,) =0
OW(L,t) _ 0 oU(L,t) _ 0
ox : Ox (2.3)

and the initial conditions are

W(x0)=0=2WXO) andy (y g) = 0= VX9 (2.4)

ot ot

The variable magnitude moving ford&(X,t) which is harmonic acting on the beam is given by

P(x,t) = PCoswtd(x - c;t) (2.5)

where G is the frequency of the loagd; is the velocity of the"l particle of the system an6(°) is the

dirac-delta function.
Furthermore, in this present study, we shall carsidastic foundations of three different form igiidities
[7,13] namely,

a) K(x) =K,
b) K(x) = K, (bx+1)
o KO =K[fax-bx+ox) (2.6)

Evidently, a closed form solutions to the simultaue second order partial differential Equation242and
(2.2b) do not exist. Consequently, an approxinaalytical solution is sought to obtain some vital
information about the vibrating system.

PROBLEM AND SOLUTION

In order to solve the beam problem above, we sisallthe versatile solution technique called Gatéski
method extensively discussed in [7] often usedlwisg diverse problems involving mechanical
vibrations. This solution technique involves sotyiequations of the form

O()-P=0 3.1)
where,

O s the differential operator, V is the structuradplacement and P is the traverse load actingen th
structure. To this effect, the solutions of theteyn of equations (2.2b) and (2.2b) are expressed a
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Vi)=Y RO (3.2)
and -
U ) =3 Y (0% (0 (3:3)

where the functiong), (x)and X, (x) are chosen to satisfy the pertinent boundary ¢iandi. Thus,

substituting equations (3.2) and (3.3) into thewiiameous ordinary differential equations (2.2ad é.2b
) we obtain

,uz B1)Q (x) - K * GF{i P OQ() - Z v (t)Xi’(x)} " K(x)i P (1)Q, () = P.Cosetd(x - c t)

(3.4)
and
b3 Yi(t)x:'(x)—K*GF{i RO~ Yi(t>xi(x>}— 10 EOX, (=0 (3.5)
Equations (3.4 ) and (3.5) after some rearrangesngeid
> {8009 - K * GF[ROQ0) - Y, (00X (0] + K(9R (0Q, (9} = P,Cosata(x -y ) (3.6)
and
3 {EXI00¥ (0 + K * GE[R Q00 - Y, 0 X, (9] - 108D X, (0} = 0 (3.7)

i=1
To determinep (t) and Y, (t) , the expressions on the left hand sides of thateans (3.6) and (3.7) are
required to be orthogonal to the functiog(x) and X, (x) respectively. Thus,
L n
[ > (B0 (- K*GF[RMQIE) - Y ()X (0] + KR (1Q (¥} - P.Cosata(x - G t)kQ; (x)dx =0

i=1

(3.8)
and

[ 3 {EXeov @+ K* GFIROQ( -Y X, (9]~ 1080 X, (01X, (=0 (3.9)

Considering only thé"iconcentrated moving force, Equations (3.8) and) (&fter some rearrangements
and simplifications yield

6., ))& + 6,0, R (1) + 6,0, )Y, () = P,CoswiQ, (c 1) (3.10)
and

Yo B0 + 1, @ DR O + (. DY O =0 (3.11)
Where
Integrals Q Qv, Q.. V..V, V. and their solutions are stated under appendix.

In view of the boundary conditions (2.4) at ends&and x = L, function€), (X) and X, (X) can be
chosen as
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QX = SniTm (3.12)

and
X, (x) = CosiTnX-
(3.13)
Thus, equations (3.10 ) and (3.11 ) are furthettewrito be of the form
6., 1)) +6,(, )P O + 6., Y, (0 = Poczosc«mn‘il]t

(3.14)
and

Yal, B +ys (L DR M+ ()Y 1) =0
(3.15)
which after some simplifications and rearrange mgigtsl

0,0, )0+ 6,(, )P )+ 6, (. )Y, © :Z[
(3.16)

Sin(w+lj_m‘ )t —Sin(w_ |J_mi )t}

and
Yals B +ys (L DR M+ ()Y 1) =0
(3.17)
Subjecting the system of ordinary differential Btjons (3.16) and (3.17) to a Laplace transfornmeef

()= Cea
(3.18)

where s is the Laplace parameter. Applying thgaintondition (2.4), we thus obtain the following
algebraic simultaneous equations

L. o 17T

(ﬁA(i,J')SZ+5’B(i,J'))Pi(S)+6’c(i,J')Yi(S)=5 L__- L
2 Sin(w+“f‘j Sin(w—“f‘j

(3.19)

and
(al DS? + e (. DN (D) +ve (i, DR() =0
(3.20)

Solving the simultaneous Equations (3.19) and {3o2@ obtains

T i’
w* L w= L - .-
P, - A EETR®))

S+ wr—— ST+ w———
P(s)=— L L <
R A AT R A A AT A S EA®)
(3.21)

and
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i i
w+ w-
L L

Fo . 2 .
s? +(a)+J m‘j s +(w—lm‘j
L L
Yi(s) =

A A S A A AR AT SR EIA®)
(3.22)
Equations (3.21) and (3.22 ) after some simpliiices and rearrangements lead to

7 | Ve (is)

a)+E w—ﬂ P2 I
_R L N (ABEEIA®)),
Pi(S)_ZR i\ jm V| (82 +a?)s® + B2
) sz+(a)+'j sz+(a)—'] ' '
L L
(3.23)
and
w+! w—ﬁ
- R L L A0N))
Yi(s)_ZR i 2 i\ |(s?+a?)s?+B?)
" sz+(w+'] sz+(a)—'] ! '
L L
(3.24)

where@ andf3 are clearly defined on the appendix page.
Furthermore, we note that,
Yl )S" +ye () _ ye @) =yal)ay | vl D)8 = yc )

(s2+azss+p7)  (BF-aifs?+a?) (B2-a)s+p?)
(3.25)
and
Ve, ]) _ Ve, ]) _ Ve, )
(s +azfs?+p2) (B -at)s? +a?) (B2 -a?)s*+5?)
(3.26)

Thus in view of (3.25) and (3.26), equations (3.23) (3.24) can be rewritten as

P(s) = R /11 _ /12 yA(iij)lglz_yC(i!j) 1 _yA(i,j)af—yC(i,j) 1
O Tk )| e R e (Fead)
(3.27)

vige-Po A A Y ye@D (1 ) vl (1
' 2R (P + 22 2+ (,Bf—af) (sz+a'f) (,Bf—af) (sz+,312)
(3.28)

which after some rearrangements and simplificat@give

and
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P(s) = PYa(, B Ry, ]) A B,

I ZRA(,BIZ —0'12) ZﬂlRA(ﬁf —alz) s? +/]12 g2 +1812
[Py, Pyl A a,
_ZRA('Blz _a,12) zalRA(ﬁlz _alz)_ s* +/]f s? +CJ'12

PG DB R A B,
(2R(B7-a7) 2BR.E-al)| s+ K 7+ B

RILIA A () N a
| 2R, (B2 -a?) 2a.R,(B2-a?)| s*+ A2 ) *+a?

(3.29)
and
Y-(S):— PoyB(irj) /]1 B 1 _ /11 1 _ /]2 1 _ /]2 1
‘ R,(pi-a?) ST+ X S -p S 4k S -af S+ S -p S+E S-a
(3.30)
where
(3.31)

In what follows , the Laplace inversion of equaidB.29 ) and (3.30 ) is sought. To this effee,amploy
the following representations

_ A __B
gl(s) - Sz +/132_ fl(s) - 52 +ﬁ12
(3.32)
— /12 — al
gZ(s) - Sz +A§ fZ(S) - Sz +a12
(3.33)

so that the Laplace inversion of the equation (Bi2given as the convolution ofi 's and g; ’s defined as

t fi(t—u)gj(u)du where |. =123......

f,0g, = | j=123.....

0

(3.34)
Thus the Laplace inversion of (3.29) is given by

S L VX Y71 ) VO I Y/ (09 A Y/ L S I ¥
I 2RA(ﬁ12 _‘712) 2181RA(1812 _alz) ) 2RA(ﬁ12 _‘712) 20’1RA(1812 _alz) °
{ Rval. DB _ Roye(.i) }HC{ Rval.Day _ Ryc(.i) }HD

ZRA(ﬁlz - alz) zﬁlRA(IBIZ - alz) ZRA(,Blz - 0'12) ZﬂlRA(ﬂlz - af)
(3.35)

where
t . t .
Ha :-[0 Snﬂl(t_u)SMIUdu’ He :.[0 Snal(t—u)9M1UdU
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Hc =£ Sng,(t-u)Snd,udu,  H, =J'; Sina, (t -u)Sind,udu

(3.36)
where solutions of integrals (3.36 ) are presenteter the appendix.
Thus in view of equation (3.2) taking into acco($185) one obtains

-\ PVal, DB Ryc(ii) | Rvalias Ry (0)
\Ni(X't)_z {|:2RA(1812_G12) zﬁlRA(ﬁlz_alz):|HA |:2RA(1312_H12) zalRA(ﬁlz_alz):|HB

i=1
{ Rva(. DB _ Rye(ii) }H { Rval.Day _ Rye(,i) }H }xgnim
2 2 2 2 c 2 2 2 2 D
ZRA(:Bl —-a; ) ZﬁlRA(ﬂl —-a; ) 2RA(:31 —-a; ) ZalRA(:Bl —-a; ) L
(3.37)

which represents the transverse displacement respafrihe prismatic Timoshenko beams resting on
elastic foundation and subjected to variable mageitmoving load.

Similarly,

RPve(.j) |1 1 1 1
Y (t) = ——=2¢2 —H,-—H,-—H.+=—H
R(p-af) B " @t B
(3.38)
which on inversion yields

— N _ POyB(i’j) _ 1 _ _ 1 % i 7X
U|(Xat) ; {m{(HA Hc) Ha (HB HD)alD:|} Cos L
(3.39)
which is the rotation of the uniform deep beam urtde action of variable magnitude moving load.
Following the same arguments as those presen{éd|init is can be shown that the series soluti@37)
and (3.39) converge rapidly.

4.0 DISCUSSION OF THE SOLUTION

In studying an undamped system such as thisdiegsgable to examine resonance phenomena, bedwuse t
deflection of a Timoshenko beam under the actidntaveling load may grow without bounds. The
velocity of the load which brings about resonariecein the vibrating system is termed criticalogty.
Equation (3.33) clearly shows that the prismatiasét deep beam resting on elastic foundation will
experience resonance effects whenever

46, (. 1)ve (1) =6 (. Do (K] =646, 1)ye 6. )+ 65 (. D)ya DI @.1)
Bl=A BI=X (4.2)

It is also observed that for all the forms and g/péthe foundation rigidities considered in thisdy, as
the foundation modulli increases the critical vipof the dynamical system increases thereby reduc
the risk of resonant effect$his implies that elastic foundations of the forfirigidities considered in this
study would produce a stabilizing effects on a T8henko beam constantly subjected to a fast trayelin
loads. This result agrees with what has been rep@arlier [14]

5.0 COMMENTS ON THE NUMERICAL RESULTS

In order to present some typical results in thiglgt an elastic beam of length L = 12.192m is atersd.
The velocity ¢, of the moving load is taken to be 8.128 metersbiseéc The values of foundation moduli

are varied betweenN)/ m*and 10000N / m® and the value of the natural frequengzyis taken to h&” .
3
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Figure 1 displays the deflection profile of an gadeep beams resting on variable elastic foundaif the
form ‘a’ and subjected to variable magnitude moviogd. The figure shows that as the value of
foundation stiffness Kincreases the deflection of the beam at varione tidecreases. Similar results are
displayed in Figures 2 and 3; respectively forefestic foundation of the form ‘b’ and form ‘c’.

For the purpose of comparison, the deflection fralf the timoshenko beam for all the elastic faatiah
types considered in this study is illustrated gufe 4. It is clearly seen from the figure tha thsponse
amplitude of the beam is highest for the elastionftation of the form ‘a’, while the transverse
displacement response of the beam is the loweghéelastic foundation of the form ‘c’ which ingdi
that an elastic foundation of the quadratic forits @&s the most efficient bearing member.

Figures 5 and 6 which are the graphs of the clitietocity for resonant conditions (4.2) and (4tZve
been plotted against the foundation stiffneg$oK all foundation types considered. The graphmsasthat

as the K increases, the critical velocities of the dynamngystem increases. It is equally observed that th
foundation stiffness of the form ‘c’ produces thighest critical velocity. Thus, the risk of resana is
sufficiently reduced if the foundation stiffnesstbé form ‘c’ is used as the bearing member to ettpgn
elastic structures under the actions of fast tiagdbad.

6.0 CONCLUSIONS

The Generalized Galerkin's method and Integral $fiem technique has been used to solve the problem
of an elastic deep beam resting on elastic fouodatind subjected to a harmonic variable magnitude
moving load. Analytical solutions have been ol#difor both the deflection and the rotation of ileam.
The objective is to study the behaviour of the T8ihrenko beam when subjected to the moving load. In
particular, the effect of foundation stiffness be tlynamic stability of the vibrating system isestigated.
Analytical solution and Numerical result in plottedrves show that, as the value of foundationreds K
increases the deflection profile of the deep beaanahses. It is equally observed from figurescbthat

the critical velocities of the dynamical systemsré@ase with an increase in the values of foundation
stiffness K for all the types of the elastic foundation conséde This, suggests that in general, higher
values of foundation stiffness,Keduce the risk of resonance in a

dynamical system involving uniform beam under tbgoa of a moving load irrespective of the foundati
type considered. Finally, it is clearly seen tthe critical velocity of a prismatic deep beam irgsion
elastic foundation and traversed by fast traveload depends to large extent on the type of thstiela
foundation on which the beam is supported.
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of foundation moduli ¢€or the foundation type (x) = K,
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APPENDIX
The following are the evaluated integrals whichraegle use of in this work

6,0, 1) = 1f, Q.(¥Q, (X)akx

(A1)
6,0.1)= ], [-K'GFQI09 + K(Q (0], (0ex "2
6.(,j) = K'GF jo X/ (¥)Q, (X)dx A3)
Vali 1) =10[ X (09X, (dx (Ad)
%, 1) = K'GF [ QX ()X, (o (A5)
and
AGE L EIX/(X)X, (X)dx - jo K'GFX; (X)X ; (x)dx (A6)
In view of (3.12) and (3.13), integrals (Al ) togAbecome
eA(i,j):j ,uSin—Sndex
(A7)
HB(i,j):J'OL [K(x)SinSinJm ( j K * GFsin % gind 7 |a
L (L L L A8)
6.(,j) = ( Jj Sin—Sndex
(A9)
Yal, j)——|,0.|. Cos—Costdx
(A10)
Ve (0, J)——K*GFJ' Cos—Costdx
L (A11)
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ve ()= —f { ( jCosLCosJL +K*GFCosTCosJIiR dx
(A12)
which are thus evaluated to give
0 i #
gA(I!J) = & |:J
2 (A13)
12
Kol 1 ”ZK*GFEJ:; K(x) = K,
2 L2 2 2
0,(i,j)= ok Lk LT L’f K * GF dzi; K(x) = K,x+K,
2 HYA
k21—l ]y 7272 K * GF = - K(X) = K, (4x—3x2 = X°)
2 8) L 2 _ (A1)
0 ER
6. (. ]) =
ek i=j
L 2 (A15)
- L
Vali,j)=-lp—
2 (A16)
yB(i,j):ﬂK*GFd:
L (A17)
2
yc(i,j):—( n2+K*GF]E|1
L 2 (A18)
In equations 3. 23) and (3.24),
o2 = RS _ R, |R_R
a, = 2 B = + 5
2R 4R? R 2R, (A19)
where

Ry =650, 1)yal0); Re =0 0)ye (1) +0 (L 1)yal)) Re =G N)yc () =6 (. 1)ye (1) (a20)

It is straightforward to show that

j SinB(t - u)SinAudu = BBQ”Bt [s NBtCosAt + Q(COSAICOSBI —1)}

(A21)
In view of (A21), integrals (3.36) are thus evakdhand one obtains,

BCosBt

BZ

{S nAtCosBt - 28 nBtCOSAt}

H, = ASnAL {Snﬁ’ltCosz]t+?;1(CosA tCosgt - 1)} ’Blcosﬂlt{Sn@tCosM—;;SnﬁltCosﬂl t}

B~ . B .
(A22) 0’13%|:S na,tCosht + 2L A (CosAtCosart - 1)} alczlosazlt {S na,tCosAt - Ag naltCos)Ilt}
x a, -A a,
(A23)_ 519 nAt {s NBiCosh,t+22 (COS/] tCosBt - 1)} ﬁ;CoSﬁl {s NAtCosl,t - 2,2 SinBtCos, t}
1 1
(A24),, _ aSnat Snat A, a,Cosajt A,
Hp Sna;tCosA,t +—= (CosA tCosa;t - 1) T_ Sina,tCosA,t ——= Sna,tCosA,t
a 1~ a

(A25)
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