
Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 119 - 132 
Influence of Elastic Foundations on … B. Omolofe  J of NAMP 

Journal of the Nigerian Association of Mathematical Physics 
Volume 16 (May, 2010), pp 119 - 132 

© J. of NAMP 
 
 

Influence of Elastic Foundations On The Motion And Critical Velocity of  
Timoshenko Beam Subjected To Fast Traveling Load. 

 
B. Omolofe  

Department of Mathematical Sciences, Federal University 
Of Technology, Akure Ondo State, Nigeria. 

1Corresponding author: e-mail: babatope_omolofe@yahoo.com , Tel. +238035643019 
    

Abstract 
 
          In this present study, the classical problem of the dynamic 
behaviour of a prismatic Timoshenko beam resting on an elastic 
foundation and subjected to a variable magnitude moving load, which is 
harmonic, is investigated using analytical approach.  This problem is 
treated by considering three different types of elastic foundations of 
which the rigidities are assumed to be functions of the position 
coordinate in the axial direction of the beam.  In particular, rigidities of   
constant, linear and quadratic functions are used.  This is aimed at 
investigating the dynamic stability of the forced vibrating Timoshenko 
beam and to know whether this depends on the form and magnitude of 
the stiffness of the elastic foundation used in the beam model.  The 
versatile Generalized Galerkin’s method and Integral transform 
techniques are used to handle the coupled second order partial 
differential equations governing the motion of the vibrating system. 
Analytical solutions are obtained for both the transverse displacement 
and the rotation of the elastic deep beam.  Analytical and Numerical 
results depict that for all the different forms of foundation considered in 
this study, as the values of the foundation modulus increases,  the 
transverse displacement response of the beam decreases.  It is also found 
that the critical velocity of the vibrating system increases with an 
increase in the values of foundation modulus.  It is equally observed that 
when an elastic foundation whose rigidity is of the quadratic form is 
used as a bearing member for a Timoshenko beam subjected to a fast 
traveling load the risk of resonance is sufficiently reduced. 

 
                 Keywords: Dynamic behaviour, moving load, elastic foundation, vibrating system, 
resonance. 
 
1.0 Introduction 
 
 The study of the dynamic behaviour of structural members in the field of Engineering, Mathematical 
Physics and Applied Mathematics is quite interesting and is of great technological and economical 
importance, as some of the results obtained may be applicable in understanding the dynamic behaviour of 
roadways and runways.  Therefore, the complex practical problem of the dynamic response of engineering 
structures to moving concentrated loads has been given considerable attention during the past years. 
These structural members are often modeled as one-dimensional element (e.g. beams, rods and membrane), 
two-dimensional elements (e.g. plates) or three-dimensional elements (e.g. shells) on or without elastic 
foundation.  Scholarly publications on the vibration analyses of plates on elastic foundation or beams and 
beams on elastic foundation under the action of moving loads are numerous in literature [1].  Among 
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several authors who have worked extensively in structural dynamics are [ 2 ] studied the correction for 
shear of the differential equation for transverse vibration of prismatic bars.  [ 3] studied the transverse 
oscillations of beams under the actions of moving 
 
 
variable loads.  [4 ] studied the critical speeds and the response of a tensional beam on an elastic foundation 
to repetitive moving loads.  [5] studied the dynamic behaviour of multi-span beams under moving loads.  
[6] who the dynamic response of rectangular plate with moving mass.  [7] studied Dynamic behaviour of 
non-uniform Bernoulli-Euler beam resting on elastic foundation and traverse by loads moving with non-
uniform velocity.  [8] studied the effect of an added mass to the dynamic response of a prestressed Rayleigh 
beam traversed by moving masses to mention, but few. 
However, in all the aforementioned works, a Bernoulli-Euler beam is the model often employed.  It has 
been reported in the literature that when such beam model is used to study the beam behaviour, the wave 
velocity solution in the beam becomes unreasonable within the high frequency range and this phenomenon 
implies that the theory may lead to erroneous results when a beam is subjected to a fast traveling load 
[9,10].  Thus, to obtain a more reliable and accurate result the effects of shear deformation and rotatory 
inertia factor must be incorporated into the beam model and this is termed Deep or Timoshenko beam 
model. The effects due to the rotatory inertia and the deviation of the beam cross-section after deformation 
are taken into account in the governing equations.  These, effects lead to significant improvement in 
comparison with the classical Bernoulli-Euler beam model [11] 
Until recently, the effects of shear deformation and rotatory inertia on both the dynamic response and the 
critical velocity of a Timoshenko beam were rarely discussed.  The problem of vibration of multi-span 
Timoshenko beams has been studied by [10].  His study shows that the effects of rotatory inertia and shear 
deformation cause the modal frequencies of the Timoshenko beam to be less than those of the Bernoulli-
Euler beam.  In the same vein, the problem of thick beams under the action of a variable traveling 
transverse load was taken up by [12] and in his study, he found that the transverse response of a deep beam 
decreases as the moving load frequency increases. Nevertheless, their methods of solutions are not suitable 
for cases where the governing equations of motion possess variable coefficients [10, 12] and also in these 
studies, the effect of elastic foundation on the deflection and critical velocities of the Tomoshenko beam 
were not investigated.  To the best of author’s knowledge, studies on the influence of elastic foundation on 
the critical velocity of a vibrating system involving a Timoshenko beam resting on elastic foundation has 
not been reported in literature.  The specific aims of this study therefore, are to determine the effects of 
elastic foundations on the critical velocities and transverse displacement response of uniform Timoshenko 
beam, to clarify whether the critical velocity of a moving load problem involving Timoshenko beam model 
depends on the types and form of the bearing member incorporated into the beam model and to deduce 
which of the three types of the foundations in this study could be regarded as the most efficient bearing 
member. 
 
2.0 PROBLEM DEFINITION 
  
A uniform Timoshenko beam resting on elastic foundation and traversed by variable magnitude moving 
load is considered. The beam’s properties such as moment of inertia I and the mass per unit length µ  of 

the beam do not vary along the span L of the beam.  The beam is assumed to maintain contact with 
subgrade reaction modulus K.  Further, there are no friction forces at the interface.  The deflection ( , )W x t  

from the equilibrium and the rotation ( , )U x t  of the beam under the action of a variable magnitude moving 

load is described by the system of partial differential Equations [11]  
 
 

( ) ),(),(),(*),( txPtxUtxWGAKtxW xxxtt +−=µ     
 (2.1a) 

and 

  ( )),(),(*),(),( txUtxWGAKtxEIUtxUI xxxtt −+=ρ     
 (2.1b) 
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If the elastic foundation is incorporated into the beam Equations above, then after some rearrangements one 
obtains  
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as the coupled second order partial differential equation governing the motion of Timoshenko beam resting 
on elastic foundation and subjected to variable magnitude moving load. 
In the above equations,µ  is the constant mass m of the beam per unit length L, K* is a constant dependent 

on the shape of the cross-section, G is the modulus of elasticity in the shear, F is the cross-sectional area, 
P(x,t) is the harmonic moving force, E is the Young’s modulus of the beam, I  is the constant moment of 
inertia of the beam cross-section and ρ  is the mass of the beam per unit volume and K(x) is the rigidity of 

the elastic foundation. 
The boundary conditions at the end x = 0 and x = L is given by  
 

W(0,t) = 0; U(0,t) = 0 

0
),( =

∂
∂

x

tLW

; 
0

),( =
∂

∂
x

tLU

       (2.3) 
and the initial conditions are 

t

xW
xW

∂
∂== )0,(

0)0,(  and 
t

xU
xU

∂
∂

==
)0,(

0)0,(      (2.4) 

The variable magnitude moving force ),( txP which is harmonic acting on the beam is given by 

)(),( tcxtPCostxP i−= δω        (2.5) 

where ω is the frequency of the load ic  is the velocity of the ith particle of the system and ( )•δ  is the 

dirac-delta function. 
Furthermore, in this present study, we shall consider elastic foundations of three different form of rigidities 
[7,13] namely, 

a) oKxK =)(  

b) )1()( += bxKxK o  

c) ( )32)( cxbxaxKxK o +−=        (2.6) 
 
Evidently, a closed form solutions to the simultaneous second order partial differential Equations (2.2a) and 
(2.2b) do not exist.  Consequently, an approximate analytical solution is sought to obtain some vital 
information about the vibrating system. 
 
PROBLEM AND SOLUTION  
 
In order to solve the beam problem above, we shall use the versatile solution technique called Galerkin’s 
method extensively discussed in [7] often used in solving diverse problems involving mechanical 
vibrations.  This solution technique involves solving equations of the form 

0)( =−Θ PV        (3.1) 

where, 
Θ is the differential operator, V is the structural displacement and P is the traverse load acting on the 
structure.  To this effect, the solutions of the system of equations (2.2b) and (2.2b) are expressed as  
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where the functions )(xQi
and )(xX i

 are chosen to satisfy the pertinent boundary conditions.  Thus, 

substituting equations (3.2) and (3.3) into the simultaneous ordinary differential equations (2.2a ) and (2.2b 
) we obtain 
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Equations (3.4 ) and (3.5) after some rearrangements yield  
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and 
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To determine )(tPi

and )(tYi
, the expressions on the left hand sides of the equations (3.6)  and (3.7) are 

required to be orthogonal to the functions )(xQk
and )(xX k

 respectively.  Thus, 
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and 

[ ]{ } 0)()()()()()()(*)()(
1
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=−−′+′′∑∫

=

dxxXxXtYIxXtYxQtPGFKtYxXEI jiiiiiiii

n

i

L &&ρ   (3.9) 

            
Considering only the ith concentrated moving force, Equations (3.8) and (3.9) after some rearrangements 
and simplifications yield 
 
 )()(),()(),()(),( tctQCosPtYjitPjitPji ijoicibia ωθθθ =++&&    (3.10) 

and 

 0)(),()(),()(),( =++ tYjitPjitYji icibia γγγ &&     (3.11) 

Where 

Integrals Qa, Qb, Qc, aγ , bγ , cγ and their solutions are stated under appendix. 

 

In view of the boundary conditions (2.4) at ends x = 0 and x = L, functions )(xQi and )(xX i can be 

chosen as  
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L
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π=)(        (3.12)  

and  
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 (3.13) 
Thus, equations (3.10 ) and (3.11 ) are further written to be of the form 

  
L

tcj
tSinCosPtYjitPjitPji i

iCiBiA

πωθθθ 0)(),()(),()(),( =++&&    

 (3.14) 
and 
 
 0)(),()(),()(),( =++ tYjitPjitYji iCiBiA γγγ &&      

 (3.15) 
which after some simplifications and rearrangements yield 
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 (3.17) 
 Subjecting the system of ordinary differential Equations (3.16) and (3.17) to a Laplace transform defined 
as 

   ( ) ( ) dte st−∞
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 (3.18) 
where s is the Laplace parameter.  Applying the initial condition (2.4), we thus obtain the following 
algebraic simultaneous equations 
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 ( ) 0)(),()(),(),( 2 =++ sPjisYjisji iBiCA γγγ      

 (3.20) 
Solving the simultaneous Equations (3.19) and (3.20) one obtains 
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and  
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Equations (3.21 ) and (3.22 ) after some simplifications and rearrangements lead to 
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where α  andβ  are clearly defined on the appendix page. 

Furthermore, we note that, 
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Thus in view of (3.25) and (3.26), equations (3.23) and (3.24) can be rewritten as 
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which after some rearrangements and simplifications give 
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In what follows , the Laplace inversion of equations (3.29 ) and (3.30 ) is sought.  To this effect, we employ 
the following representations  
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so that the Laplace inversion of the equation (3.29) is given as the convolution of if ’s and ig ’s defined as 
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Thus the Laplace inversion of (3.29 ) is given by 
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where 
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where solutions of integrals (3.36 ) are presented under the appendix. 
Thus in view of equation (3.2) taking into account (3.35) one obtains 
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which represents the transverse displacement response of the prismatic Timoshenko beams resting on 
elastic foundation and subjected to variable magnitude moving load. 
Similarly,  
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which on inversion yields 
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which is the rotation of the uniform deep beam under the action of variable magnitude  moving load. 
Following the same arguments as those presented in [15], it is can be shown that the series solutions (3.37) 
and (3.39) converge rapidly. 
 
 
 
 
4.0 DISCUSSION OF THE SOLUTION 
 
In studying an undamped system such as this, it is desirable to examine resonance phenomena, because the 
deflection of a Timoshenko beam under the actions of traveling load may grow without bounds.  The 
velocity of the load which brings about resonance effect in the vibrating system is termed critical velocity. 
Equation (3.33) clearly shows that the prismatic elastic deep beam resting on elastic foundation will 
experience resonance effects whenever 

[ ] [ ]2),(),(),(),(),(),(),(),(4 jijijijikijijiji ABCABCCB γθγθγθγθ +=− ,   (4.1) 
2
1

2
1 λβ = ,  

2
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2
1 λβ = ,        (4.2) 
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1

2
1 λα = ,  

2
2

2
1 λα =         (4.3) 

It is also observed that for all the forms and types of the foundation rigidities considered in this study, as 
the foundation modulli increases the critical velocity of the dynamical system increases thereby reducing 
the risk of resonant effects. This implies that elastic foundations of the form of rigidities considered in this 
study would produce a stabilizing effects on a Timoshenko beam constantly subjected to a fast traveling 
loads.  This result agrees with what has been reported earlier [14]  
 
5.0 COMMENTS ON THE NUMERICAL RESULTS 
 
In order to present some typical results in this study, an elastic beam of length L = 12.192m is considered.  
The velocity 

ic of the moving load is taken to be 8.128 meters/ second.  The values of foundation moduli 

are varied between 0 3/ mN and 10000 3/ mN  and the value of the natural frequency ω  is taken to be
3

2π .   
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Figure 1 displays the deflection profile of an elastic deep beams resting on variable elastic foundation of the 
form ‘a’ and subjected to variable magnitude moving load.  The figure shows that as the value of 
foundation stiffness Ko increases the deflection of the beam at various time t decreases.  Similar results are 
displayed in Figures 2 and 3; respectively for the elastic foundation of the form ‘b’ and form ‘c’.   
For the purpose of comparison, the deflection profile of the timoshenko beam for all the elastic foundation 
types considered in this study is illustrated in figure 4.  It is clearly seen from the figure that the response 
amplitude of the beam is highest for the elastic foundation of the form ‘a’, while the transverse 
displacement response of the beam is the lowest for the elastic foundation of the form ‘c’ which implies 
that an elastic foundation of the quadratic form acts as the most efficient bearing member. 
Figures 5 and 6 which are the graphs of the critical velocity for resonant conditions (4.2) and (4.3) have 
been plotted against the foundation stiffness Ko for all foundation types considered.  The graphs show that 
as the Ko increases, the critical velocities of the dynamical system increases.  It is equally observed that the 
foundation stiffness of the form ‘c’ produces the highest critical velocity.  Thus, the risk of resonance is 
sufficiently reduced if the foundation stiffness of the form ‘c’ is used as the bearing member to support an 
elastic structures under the actions of fast traveling load. 
 
6.0 CONCLUSIONS 
The Generalized Galerkin’s method and Integral Transform technique has been used to solve the problem 
of an elastic deep beam resting on elastic foundation and subjected to a harmonic variable magnitude 
moving load.  Analytical solutions have been obtained for both the deflection and the rotation of the beam.  
The objective is to study the behaviour of the Timoshenko beam when subjected to the moving load. In 
particular, the effect of foundation stiffness on the dynamic stability of the vibrating system is investigated.  
Analytical solution and Numerical result in plotted curves show that, as the value of foundation stiffness Ko 
increases the deflection profile of the deep beam decreases.  It is equally observed from figures 5 and 6 that 
the critical velocities of the dynamical systems increase with an increase in the values of foundation 
stiffness Ko for all the types of the elastic foundation considered. This, suggests that in general, higher 
values of foundation stiffness Ko reduce the risk of resonance in a  
 

dynamical system involving uniform beam under the action of a moving load irrespective of the foundation 
type considered.  Finally, it is clearly seen that the critical velocity of a prismatic deep beam resting on 
elastic foundation and traversed by fast traveling load depends to large extent on the type of the elastic 
foundation on which the beam is supported. 
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Fig 1: The transverse displacement response of Timoshenko beam  
                                        subjected to variable magnitude traveling load for various values  
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           of foundation moduli K0 for the foundation type 
0)( KxK =  
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Fig 2: The transverse displacement response of Timoshenko beam subjected to 
          variable magnitude traveling load for various values of foundation moduli K0  

          for the foundation having rigidity of the form  )1()( += bxKxK o
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Fig 3: The transverse displacement response of Timoshenko beam subjected to  
        variable magnitude traveling load for various values of foundation moduli K0  

        for the foundation having rigidity of the form ( )32)( cxbxaxKxK o +−=  
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Fig 4: Comparison of the deflection profile of Timoshenko beam subjected to variable  
           magnitude traveling load for all the three types of foundation for K0 = 10000  
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Fig 5: Comparison of the critical velocities of Timoshenko beam subjected to  
          variable magnitude traveling load for all the three types of foundation for  
          various values of K0 when 2
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Fig 6: Comparison of the critical velocities of Timoshenko beam subjected to  
           variable magnitude traveling load for all the three types of foundation for  
           various values of K0 when 2
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APPENDIX 
The following are the evaluated integrals which are made use of in this work 
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In view of (3.12) and (3.13), integrals (A1 ) to (A6 ) become 
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which are thus evaluated to give 
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In equations (3.23) and (3.24),  
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where 
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It is straightforward to show that 
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In view of (A21), integrals (3.36) are thus evaluated and one obtains,         
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