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Abstract

In this paper we have reported the application of self
avoiding random walk (SARW) and evaluation of the
simulated annealing (SA) optimization method in solving the
Feyman problem which is an application of self ad voiding
random walks. From the results of simulation, graphs of the
shortest path among N randomly positioned cities for N=5, 10,
20, 25, 30, 35, 40, 45, 60, 65, 70, 200, 500, and 1000 were
sketched. We have equally studied the variation of root mean
sgquare value of the displacement <dy>, the mean square value
of the end to end distance d?, (persistence distance) and we
have compared the result with other theoretical results.
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1.0 Introduction

Self-avoiding random walk is a path from one painainother, which never intersects itself. Sucthpat
are usually considered to occur on lattices. Thaetrfamiliar form of self-avoiding walk is obtaindxy
enumerating all self-avoiding walks of length NcBw&a walk is described by a function [1].

The history of SARW began in the mid 1940s andg ¥uat papered by Orr in 1947 [2]. In 1954,
Hamersley proved that the N-step SARW grow liRewhere N is the connective constant.
The main characteristic of SARW is the infinite nwyn of the walk, resulting from excluded volume
constraint. This property raises question whetinenaial bias persists along the entire walk, affeéct the
distribution of the end point. This problem wassfficonsidered by Grass Berger in 1982 [3] who
investigated the dependence of the persistencehlemgthe number of steps of two-dimensional SARW.
The persistence length of a SARWds defined as the average displacement of thepeimt of an n-step
walk along the direction of the first step. He skowhat <g> = n’ divergesv=0.063. Base on exact
enumeration and monte Carlo (MC) data, the divargés logarithmic in n [3]. E. Eisenberg and A.lvara
2003 [3] showed that persistence length of 2-dinoerad SARW do not diverge neither as a power law no
logarithmically but rather converge to a constdiitey investigated the persistency problem by aiiadyz

icos(el k)

the decay rate of the angular correlation functligl)_rg) _l=a
j(n
C

n
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between the direction of the first step and thesfep of an n-step SARW on a square lattice. Thus

C1j ") described the average x component of thst¢p of the walk, and the persistence lengthvsrgby

n
the summation over j of the angular correlatiorat th< X, >=<d_ >= ZCl, j(n).
=1

(Hl, j(k)) is the angle between the directions of the fisp @nd the'} step of the walk.

The generator of SARW statistics or distributiomdtion Gy, which represent the number of N-
stepped SARW configurations with end -to-end distan is not Gaussian as in the case of random walk

(for random waIkGN (r) = exp(—r2 /N) [4]. From the distribution function (), one obtain the

asymptotic behavior of various movements The dtas of SARW, are determined by the connectivity
constant i/ which is non-universal and depend on the lattygees, and the universal exponents like the

radius of revolution exponentwhich depends on the lattice dimension d. The trafthe (total) number

Gy Z(ZrGN (r)) of walks with steps size N is determined by thennemtive constant

,u:[i, N - 00] and the radius of revolution\Pf the SARW grows with N as ‘NExtensive
N-1
numerical studies gives u=, |#2.638, 4.151 and 4.684 for square, triangular sintple cubic lattices
respectively [5]. Theoretical studies gives theueabfv=v,® =3/4, 0592+0.003 and % for d=2, 3 and 4
respectively (the subscripstand for a pure lattice) [5].

E. Eisenberg and A Baram (2003) [3] showed thap#msistent length for all temperature range (Low
D r’G (r)exp(_M‘]j ) 2 2

N kT ) and that at high temperaturesdy >= N~
ZGNM (I’)EXp(liv'_l_Jj

The study of SARW encompasses a broad range of afe®lathematics, Biology, Chemistry and
Physics. In our paper we have studied an examp®A&W: The Fey man Problem due to its academic
significances and its real World applications. TFey man in our context is a person with a dubious
character. The Fey man problem is generally defthe task of finding the cheapest way of conngadti
cities in a closed tour where a cost is associaftteach link between the cities. The proverbiay Fhan
visits N cities with positions ¢xy;), returning finally to his or her city of origifcach city is visited once.
This problem can be considered as a constrainhoonstraint optimization problem, which in gendsal
non-linear and potentially nonconvex. A reliablduson to the Fey man problem is obtained using
stochastic optimization methods such as the Simdldtinnealing (SA) or genetic algorithm (GA). Even
though these methods provide no formal guaranteglétal optimization, they are reliable strategiesl
offer a reasonable computational effect in therojztation of multivariable functions [6].

In our work, we have used the method of Simulateefaling which is an individual optimization
technique. The Fey man problem belongs to clasmiafmization problems for which the objective
function has many local minima (or local maxima).fractical cases, it is enough to chose from these
minima, a minimum even if not absolute. The Anrmgglinethod manages to achieve this, while limitisg i
calculations to scale as a small power of N.

2.0  Methodology

2.1 Problem formulation.

and high) is <d? >

The cities are numbered i=1...N and each has codeding,y;)). The objective function in it

simplest form, E is taken just as the total leraftthe journey

E=L=y(x ) (%~ Vo)
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Starting in an initial stateox we pick up another state from the neighborhoodk.,oéind we
compute the

quantityAE = E(x) - E(X,). Then if AE > 0, It would be accepted according to the Bo#tmmfactor exp(-
AE/KT), where T is an external control interpretesl aatemperature and E is the cost function of the
problem. If AE<O, the state is always accepted. This is an iteragtochastic producer [7], and at low
temperature, it expected that it will jump betwdew cost (low energy) configurations. In this casar

function is the unconstrained function.

2.2 Simulated Annealing (SA)

Simulated annealing is a stochastic optimizatemhhique inspired by the thermodynamic process
of cooling of molten metals to attain the lowestefrenergy state [6]. Starting with an initial smnotand
armed with adequate perturbation and evaluatiowrtioms, the algorithm performs a stochastic partial
search of the state space. In minimization probleumhill moves are occasionally accepted with a
probability controlled by a parameter called animgatemperature, dx . The probability of acceptance of
uphill moves decreases agaldecreases. At high temperatures, the search isshlgreedy. At zero
temperature, the search becomes totally greedyighaily good moves are accepted [6]. The coréhef t
algorithm is the metropolis procedure, which sinesathe annealing process at a givep [Metropolis
1953] [8]. The metropolis criterion is used to gacer reject the uphill moves. Several algorithnaséh
been proposed for SA method. We have used theitdgoproposed by Corana et al (1987) [9] because
previous papers have reported it reliability anficiefncy in thermodynamic calculations (Hendersbale
[10], Rangaiah, 2001 [11]).

The metropolis algorithm has the function of seftup the initial routes of the Fey man and
printing final results. For each value of densitgliooses random coordinates x(i), y(i) using titereutine
ran 3, put an entry of each city in the arrayR). The array indicates the order in which thigesi will
be visited. On the original specified path, théesitare in the order i=1...N so that the sample progra
initially takes IPTR (i) = i (it is assume that tRey man will return to the first city after visig the last). A

call is then made to anneal, which attempts thetssioalternative route, which is recorded in theya
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3.0 Results of simulation
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figure (h)
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The figures (a)-(r) shows the Fey man problem gsblwesimulated annealing.

The cities are represented by the black squaresivadath are randomly occupied. The shortest pathngm

N randomly positioned cities is shown in each c@ibat is the optimized path). We have studied the
numerical results for N=5, 10, 15, 20, 25, 30, 88, 45, 50, 55, 60, 65, 70, 200, 500 and 1000. &hes
results are shown above on the figures (a)-(r)ees@ely. For N=1000, the displacement of the Fenris
practically on a straight line. For values of Naje¥ than 1000 (N>1000), no results were obtaiviésl can
say that N=1000 is a critical value.

Figure (s) shows the variation of the root mearasgwalue of the Fey man displacement and figujes (
shows how mean square of the end to end distaaces with the number of cities. A careful looktlag

figures (t) and (s) indicates that the mean sqahtiee end to end

distance is proportional N (that is< d,ﬁ >= NZ") and that the variation of mean square distance is

proportional to N2 (that is Ady O N%) respectively which are in good agreement witieotheoretical

results [3], [12].

4.0 Some applications of the Fey man Problem (FP).
Much of the works on the FP are not motivated gaiapplication, but rather by the fact that des

an ideal platform for the study of general methdldst can be applied to a wide range of discrete
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optimization problems. This is not to say, howeubat the FP does not find application in manydfel
Indeed, the numerous direct applications of thebRiry life to the research area and help to difettire
works.
The FP naturally arises as a sub problem in mamsportation and logistics applications, for exanrtpke
problem of arranging school bus routes to pickhegdhildren in a school district. More recent aqgtions
involve the scheduling of service calls at cablen§, the delivery of meal to homebound persons, the
scheduling of stacker cranes in warehouses, thengpaf trucks for parcel post pickup .
Although transportation applications are the madtral setting for the FP, the simplicity of thedabhas
lead to many interesting applications in other aréaclassical example is the scheduling of a meeid
drill holes in a secured board or other objectghls case, the holes to be drilled are the céies the cost
of travel is the time it takes to move the drilladefrom one hole to the next. The technology faltiniy
vary from one industry to the other, but whenever travel time of the drilling device is a signéit
portion of the overall manufacturing process thba,FP can play a role in reducing cost. Here angesof
these applications.

FP’s implementation can be used by ai samductor manufacturer to optimize scan chains in
integrated circuits. Scan chains are routes indude a chip for testing purposes and it is usedul t

minimize their length for both timing and power sea

FP can be used to locate cables to deliver poweel@ctronic devices associated with fibre optics
connections to homes

It is used to optimize the sequence of celestifdaib to be imaged in an interferometer prograne gbal

of the study is to minimize the use of fuel in &tigg and imaging manoeuvres for the pair of sl
involved in the mission (the cities in the FP dre telestial objects to be images, and the costeél is
the amount of fuel needed to reposition the twelbtes from one image to the next).

It can be used as a tool for designing fibre optieaworks. The FP aspect of the problem arisethén
routing of sonet rings, which provide communicasidimks through a set of sites organized in a rifige
ring structure provides a backup mechanism in odise link failure, since traffic can be reroutedtie

opposite direction on the ring.

5.0 Conclusion

From the numerical study of the FP and its appbeoat we can conclude that the FP is very important
the society as it is used in daily life activiti®¥e hope that this work shall be one day exploitgdsome
industries as a practical example in our countrg also to solve some problem of road construction i
urban area so as to minimize transportation costh@pe that in our future studies, we shall sdiesame

problem in more than 2 dimensions which is moréiséa
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