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Abstract

We proof the existence of the infinite volume dynas for spin
systems as the thermodynamic limitd = Z%) of the finite volume
dynamics within the framework of non commutatig, —spaces .
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1.0 Introduction

The Mathematical theory of quantum stochastignamics or quantum dynamical semigroup started
the seventies with the celebrated works ofi@46] and Lindblad [13].Quantum dynamical semigro
can be viewed as a generalization of classicatkMasemigroup on the Abelian algebra of functions
some space, they are semigroup of completely pesitilentity preserving maps on an operator algebra
[17].

The description of infinite quantum spin systemdaisless advanced than the one for the classasg,c
there is a lack of satisfactory description of guamstochastic dynamics. In the quantum case,riush
harder to construct a Markov semigroup that witisfa the requirement of a detailed balance coaditi
with respect to a KMS state [14].

However, we will show that having at our disposaka of families of interpolating non commutativg —
spaces from which to choose, we can apply the adissufficient condition given in[14] to construm
infinite volume translation invariant Markov senvgps of spin flip type as the thermodynamic liwfit

the corresponding finite volume dynamics, with tlesired property for operators of the fQ:ﬂ_er_r P,

The extensive literature on the subject and itsliegions on various areas is cited in references
[1,2,3,4,8,10,11,12].

2.0 Non Commutative L, —Spaces and Quasilocal Algebras

2.1.Quasilocal (spin) Algebras

LetZ% be a d-dimensional integer lattice ,affddenote the family of all its finite subsets. By we will

denote an increasing sequence of finite volumeadimg all the latticez*. Given a sequenci, },.- we
will call its limit asA — Z¢ through the sequend® by lim= Fj . )
Let M be a quasilocal von Neumann algebra with ndkrh  defined as the inductive limit over a finite

dimensional complex matrix algebra A . It is natdcaview A as a noncommutative analog of the space

of bounded continuous functions.
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Forasety € ¥, let M, denote a subalgebra of operators localised is¢heX , i.e the subalgebra in
M isomorphic to4*.

or arbitrary subse#, = Z¢ we define M, to be the smallest (closed) subalgebraksf containing

Uir,: ¥ e F X c Al .An operatorf = M will be called local if there is sontee F such thatf = M.

By M., we denote the subset.3f consisting of all local operators . We will demby A" .2 " the

local nonnegative and nonnegative operators gimgnfaite sety € F we have M = My @My

By -, xeF we denote a normalised partial trace mn , that is a completely positive map
Try : M = M, which preserves unit and Satisfies the followéongditions

vf e M, ghe My Try(gfh) = g(Try f)R

vf.g e M, Try(fg) = Trigp)

Remark: We recall that a positivity and unit preserving map for which (i) holds is called a conditional
expectation. Let Tr = lim; Tr, be the normalised trace @4 then we have

Tr(Try(f*)g) = Tr(f'Try(g) ) (2.1)
Let ¢ = {®, e M,},. be a quantum( Gibbsian ) potential of finite rng.e a family of selfadjoint
operators such that

Iell, = "FZxer lloyll <o (2.2)

X3

& ={d, Ml 7 isoffinite rangeR = 0,iff @, =0 for all ¥ € F.diam(X) > R.
We defined a Hamiltoniari , by setting

Ha(®) = Excn®s (2.3)
Hence we have the density matrix given by
—FH
P = o (2.4)

with g € (0, o= 1. A finite volume Gibbs statg, is defined as follows
e (F) =Trigf) (2.5)

And for sufficiently small g = (0,22 ) the following limit state ogM" exist and is given by

@ limz, @, (2.6)
The finite volume automorphism group associategat@ntialé is denoted by

ai' (F) = &*1Fa f 71Fs 2.7)
One has the following KMS condition for the finitelume statec,

on (F*9) = o4 (a2 Q)f) (2.8)

It is known, [4], that for a class of potentialsluding the potentials of finite range the followifimit
exists

a,(f) = lim,_ = af(f) (2.9)
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For every f £ M, and defines the automorphism group associatelaetinfinite volume statep |, in the
sense that the following KMS condition is satisfied

¢ (f'g)=9 (a_50g)f7) (2.10)

2.2.Non Commutative L,, —Spaces For Quantum Spin Systems On A Lattice

Let M be a quasilocal von Neumann algebra describe ¢tidde2.1 and lets;, be a finite volume Gibbs
state. Following [20, 22] we define thig(g,.t) , p £ [1.2) ,norms onM.

1
(-t) () 1[Pe

L @-t) @)
||XD||¢;= Tr|p2PU 002 x0.2 |7 p3° (2.11)

i-r i-1

with x, = 5. x p. *. We have ourL,(g,.t) , given by
oot
LP(¢,\,t) = {puz Xxp2 OM,:xOM, 0<t< :I_,”XD”p < oo} (2.12)

In particular for= 2, the corresponding norm is given by the followsoglar product
1 i-r 1-r 1 i-r i-t
{xpyady, =Tr ( i (2 x"p,= Vo (B ¥ _.s*_.LT‘l] (2.13)

The properties of the norm are collected by thieong theorem
THEOREM 2.1. Forx .y, € M, andp.g € [1.==) we have

Foranyce C
0 < llexyll, = lel. llx i, (2.14)

Holder inequalities
{x.ﬁ.-.‘f_t:'_h-_xl = "1'.1 "_:1 |.‘}'.'-_ |q- (2.15)

With p.q = [1.=) suchthatp~* + ¢~* =1, and ifp = g. we have

lxgll, < llxyllg = llx 8 (2.16)
Minkowski inequality
XaT Ma |,'.1 < | Xy |._: + 1wy llp (2.17)

2.3. Generalized Conditional Expectation

Forx eF. LetE,,:M — M be amap define as follows
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o (1) o () 218
Exm[pmz fp,? J:TRX VED[pDZ fp,? Jyxm

@) ) ;
where  p.2 f p,2 OM, and Jyq nym(]/z) with me(s):pé(TrxpE)_S

The mapE; ., is completely positive with the following propexsi

PROPOSITION 2.1

() EXD( o7 p(l;‘)]zo Positive (2.19)
(ii) E..(1)=1 Unit peeving  (2.20)
(iii) ) Sy 1t 6 )

Ext(p fp[z)E (,0 fpmz)SEXD(pmzfpmz)(pEzfpmzj

Kadison-Schwarz Inequality (2.22)
: @) ) @) )
(iv) Exz(ﬁ 2 fp2 } <lpzfp? Bounded (2.22)
) @0Y]° ) ), ,
V) {Exu(pﬁ f 2 H :Exu(pmz f P2 J Invariance 42)
. @) ) ) ) @) ) @) )
("')<Exu(p¥ f p.? }[pgz 9.2 ]>:<[p52 X ].Exg[pmz 90,2 ]>
L,-Symmetry (2.24)
Remark; Ingeneral Ej . II.‘:'}_- " 'L'flii'-] = Epa(h)

3. Stochastic Dynamics
3.1 Lindblad -Type Generator

The generator of a quantum dynamical semi- groupsd,isa:ussed in Lindblad [13], where in that paper h
gave the explicit form of the generatorLa(sx % +|[H x] to have a dynamics that

describe irreversible processes like d|SS|pat|one VWI|| need a generator of the form
X)‘%{lﬂ(l). x} we choose our completely positive mgyfx) to be a generalized conditional

expectation. We begin by defining the generataufdynamics.

We define the operator, :M - M by

1t o) g o1t 31
xu[pu f p2 ] xu[pu e ]—Z{Ex,u(l),[pﬁfpﬁ }} (3.1)

Journal of the Nigerian Association of Mathematic&hysics Volumel6 (May, 2010) 85 — 94

The Infinite Volume Quantum Stochastic Dynamics.Ibrahim, Tijjani And OnyeoziliJ of
NAMP



Then Lx,u has the following properties

PROPOSITION: 3.1

. 1-t 1-t
(i) Lxm[pmz 1p7 J =0 (3-2)
. )Y o)) -
(i) Lx,m(puz f pDZJ ={LX,D(pD2 f p2 JJ L —Invariance (3.3)
e\t I S A VA S O T
@, (puz f o2 ] (puz f p&] ~Ly s (puz fpﬁ} (puz f p&]
SRS oot it

_(puz f pDzJ Lx,u[puz f p2 JZO Dissipation (3.4)
- o) ot 1t o1t oo .
(iv) <Lx,m[p52 f p2 ].(,052 gp2 J> :<[:052 f p2 ]. L(puz gp2 J> symmetric (3.5)

' -t 1 -t e

leeseT 7o) <o rar| (3.6)

With this propertyLX’D is al —invariance, bounded symmetric, pre-markov generator

Let ptx’D = eth'D be the corresponding finite volume dynamicsai the following properties.

PROPOSITION. 3.2

, Positivity preserving
0] . (3.7)
prfy20: f,OM,

(ii) Unity preservini (3.8)
pro(n)= 1,
(iii) L, - Symmetry (3.9)

<ptx’DfD-gD>: <fDl ptx'DgD>

Contrative
(iv) (3.10)
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(vi) Invariance (3.11)
¢:(p1x’D fm): ¢:(f:)

3.2 Jump-Type Stochastic Dynamics For The Infinite/olume (The Spin-Flip Case)
We define the discrete gradient as follo@s f, = f, —Tr, f , jO z% then the Triple bar norm for

f, M, is given by H| fmm = ZHOJ- fDH If the triple bar norm is finite we denote BM; LI M the
joz

sub algebra of local operators that have a fimiget bar norm. This algebra is dense MO For X a
finite setin F . Where F s the family of finite subsets a2’ Let [ (fD) = E,., (fD) - f, be apre-
markov elementary generator such that the closefiees an elementary generator. Wh(Eg+j is a2-

positive unit preserving map ol ; such that

S (M D) UM +,; Define a finite volume generatot®" as follows L = Z L,.; The generator
. oo
L*" is a well define bounded operator on all the algdd Define also an infinite volume generathf

formally by the same formula witlh_ = Z° thatis, L* = z Lx+j . For this to be define on a large
joz¢

domain, we will require that the elementary gerwrat, , . satisfy the following regularity property.

i

Definition: The operatorL,,; is calledregular if and only if there are positive constadn%(k, with

i

j.kOz% suchthat L, fo| < D by [0, fo
joz8

(3.12)

Sup

And -

X — X
Y b =b* <o
Our objective will be to give a condition which @lls us to construct an infinite volume dynamics

ptx,t >0 as a limit of a finite volume dynamics in a wéyat ensure the feller property. i.e

pM,OM, “We will also study the ergodicity of such dynamip$ in our next work.

The CX conditions on the elementary generatoLs,

Definition: The elementary generators ja z° satisfy CX-condition if and only if there are

X+j !

positive constant®,"’ for k,c0z" suchthat  a.");; =ay’ foranyi 02z’

and for any f, M, we have H[@k, Lx+j](fu)” < Za;;i||ac f
o

with

| 1« a." 1 N
i — 2 < oo (i) — a’ <k<1
|X| k,C%d k |X| kEIx°+zj,chd
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Theorem. 3.2

Suppose the operatord_, .. are regular and that th@X(i) condition is satisfied. Then the following

j
limit exist and defines a quantum Markov semigronpM

X = lim B*"
Fo (3.13)
Proof
P [ | P 0
For O0F,i=12Letp, =€ =p/
Then we have
d 2 _ Al — d 2¢ _ d 1
&(psfﬂ pst)_£pst @psf
=L, p52 fD - Llpifu
=Lpif - Lpefo+Lpefy - Lpef,
:Lz(pg fy- pifm)"'(l-z_l-l)pifm (3.14)
Hence
d d d
e p2,(p2 .- pifu):£ RS Rl (A
=-L,p.pefo+ il Pl fo+ Loptope fo - plLupefs
= pio(L, —L)pifo (3.15)
Integrating this equation from 0 to t, we have
t d t
[ ezt = pit) = [ds py(L, - i,
0 0S 0 (3.16)
and by the contractivity property of the semigraumpthe left hand side we have
t
P2 fo = pifo| < |[ ds plL (L, - L)pif,
0
Using contractivity on the right hand side we have
t
p52 fy- pngH S IdS(Lz - Ll)pi f
0 (3.17)

We study carefully the expressio(l_2 - Ll)pifu- The difference of two elementary Markov genemtor
equals to an
elementary generatd::X+j . Itis sufficient to study forj [ ¢ By regularity assumption we have

L, pifo|< Yy fo, ity 100/0 (3.18)
kOzd

we study the termd, p.* f,

using the differential equation in [14]

d d
(0P 1 )=0, S P, =0,Lp
ds® ° ds ° )

We have the following
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d
—5P (0 fa]=-hpqz(0kp5 fmj"' P20, Lp*f,
ds S-S S S-S S

=P Ak fomp Lo
= pig(akH_Llak)pgi fs = pig[ak,Ll]pgml f5

(3.19)

(3.20)
Hence we get

oo (0p2 1) =2 b2 ([ Lo

ds e

Integration of this equation and using contragfiitroperty of the Markov semi-group we have the
following.

o)l
ot o o)

i (0P 1| - Py (o, pe )IZDlgdqu[[a L Jpl 1, )
P2 0,05 1)= 0, P2 1)+ X [ ([ Lo 1.

i, o
Joupc t] <o, 1+ 3 [
i0d o

o0 1 <o, 1]+ X [ds
i0h o

k' =x+j

k' =x+]j
(3.21)
If the ConditionCX () is satisfied, the right hand side become bounged b
|0 p2 1] <, fD+jdsz[z Xl pElfDJ
Wherez akC is a translation invariant matrix
Let g k)=Yas = Yalsk{<ow
k1(:1]zd
Hence
o, p2fo] <[, fo] + [dsY a, (k)o. ps £
o 00
Therefore
lo,pet o] <[o. foll+ X a o et 1.
<o, f .
<loct]+2(e™) fo.pif
c k,c
lop o< > (e= ). 1. (3.22)

Using the prewous relations (3.17), (3.18), (3,22)e have

;| st Ybile (= )clo.f.]

k,c0z¢
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Hence for any, 0 z¢ containing a set ; we have
Pty = pit o < £ S b (e™ ) ofo. o]
jOcf ke

(3.23)

The summability properties of the matriclagxk on the right hand lead us to conclude that thet lim

prf, = "Ln prof, .Exist for all local eIementst [JM, .Hence by continuity in the norrﬂ?”, it exist

also for anyf OM.

Conclusion:
We have been able to establish the existence woffiite volume stochastic dynamics , in our hexork
we intend to show that it has exponential decagqtalibrium and is strongly ergodic
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