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Abstract

A form of variational method for calculating the ground state
energy of a quantum mechanical system is considered. The method
is based on a systematic construction of a trial variational function
at each step of the calculation of the ground state energy. The
construction involves introducing more variational parameters to
the trial wave function such that; the more variational parameters
retained, the more accurate the calculated ground state energy. The
method is tested using two different quantum mechanical systems.
Good agreement between the calculated ground state energy and the
corresponding exact value is found. The forms of the wave function
in the transition from one step of the calculation to the next are also
obtained.

1.0 Introduction

Variational method is one of the approxioa methods, which is popularly used in estimatihg
ground state energy of quantum mechanical syst€hes.accuracy of the method is absolutely dependent
on the optimum choice of the trial variational ftion. Once a right choice of the trial variatiofahction
is made, more accurate ground state energy isnaotai Hence, one may conclude that, making an
optimum choice of the trial function is the majaoplem of the variational approximation. To solbaitt
problem, this paper target at constructing a simptecedure that involves steps for successive
“improvement” of a trial function ; with the aimf@btaining best trial function and hence most aat
approximation to the ground state energy of théesysinder consideration.

The construction starts with the Eigen valuerf of Schrédinger differential equation given as:
HY = FW
(1.1)
Where His the Hamiltonian of the systen® and Eare the wave function and energy Eigen value
respectively.
Following the approach of [1], equatiGh.1} can be expressed in matrix form. We thereforeasgmt the
function# in the form of series as:
w=F,Cplm)
(1.2)
Wherec . are the expansion coefficients and the functismisform an arbitrary complete orthonormal set.
Using equation$1.1) and(1.2) we obtain:



HY C.lm}=EX_C,lm)
(1.3)
Simplification gives

H(C’.Jr.}' Z C.,Imll): Ei:{,lr:;-:z C‘_‘-mll.)

Colln) + X n Con Him) = CoEln) + X on ECp Im) 1.4)
Further simplification and manipulation of equatidr4) gives

C.(E=H,,) =Y znCom Hum (1.5)

Subsequently frorfil.2} and(1.5) using the simplified form cf ,, we obtain:

HemHmn Hpm HmpHpn .
E= Hr” + Em-—-n E—Hypem + Ep-iin:q}(E an-n}rE H--I +- (16)
_ HmpHpn N
¥Y=C, (In} +3 Zim=ng_, Im}I + Ep.rinfn‘ (E—Fimm) (E—Fipg) Im) + ) (1.7)

Equationsg(1.6) and {1.;] give the matrix form of and¥ .

H,_.. s the matrix element of the operaton the statesm }and|=} of some arbitrary complete
orthonormal basis; anf, is a normalisation constant. If we tae= H, + . whereHis the unperturbed
Hamiltonian,V" is the perturbation; and as basis functions chidws&igen functions dff ;. it is then
shown in [2] tha‘!.:l &} and(1.7) can reduce to:

E= Hrn + Emf:r 'Hrerqn += Emp':n H HmpHpn +- (1-8)

v =c, (|n} + 2 Bomtom) Honn 1) + 2= Bompzr Homg Hon I} + ) (1.9)

It is further shown in [2] that, using the propedf/completeness of the basis function, all terrh¢he
series(1.8) can be expressed as the expectation values ofpidatorsH, H*, H?,... corresponding to a
particular statén}.

l.e.
€ =Hpy (1.10)
Em‘f:n'Hanmr: = (H:}nr — Hyn&y (1.11)
Em_:"::r 'H H"'.I;:IH;:IH +e = {Hsjrm - (H:}nnﬁ. - Hnr:E: (1.12)
Equation(l,S} is then expressed as:

1 1
'E:E1+EE: +EE3+'" (113)
Where,

€ =Hpnoe; = (H:}nrz — Hppe65 = {-Hs}::n - l:";“f:-]rlr'.‘f: — Hppes
This implies that generally,

= (H?)pp — (H? 1) 6 — (HP 7). Hon€pa (1.14)
Slmllar analysis usind@il.3) shows that
{ Lm(zn) Hpp M) = (H—g)In) }

Emp(:n‘.lenp pnlm} =(H?—gH _Eg)lﬂ}

This property of the wave functicii.2) given by(1.15) is the basis used to construct a successive trial
variational function.

(1.15)



Since the wave functici1.9) is formally the exact solution of the Schrédingguatior{1.1) . Now let us
modify it.

Suppose that as variational function we take timetfan (1.9}, having replaced in it the unknown energy
E by corresponding variational parametas

Then, equatioiil.?) is modified to

wlk :f:ﬂ(|m+51 Z Hypn I} + 65 Z Hypy Hylm) + -+ + Gy, Z Hypg i - Hpp ) (1.16)

mi=m) mpl=n] TPl L2

Wherek Is an index that indicates the highest numbermoiftional parameters retained inié).
Now, retaining one variational parametei(in1é) gives

i = cn( n) + G, z Hpn Im!) (1.17)
mlxn

L1

Similarly retaining two variational parameters give

w(2) = cn( In) + Gy Z Hppp Im) + G Z Honp Hon lm) (118)
mi=n) mpl=n)
Using equatiori1.15} , equation$1.17) and1.18) reduce to:
w't) = ¢ {(1—6G,e)n)+ G,Hn)} (1.19)
@ = {(1 - G,e — G,6&)In) + (G, — G,&,)HIn) + G, H?|n)} (1.20)

Equations(1.12} and{1.20]} are the implicit form of the constructed trial veafiunctions corresponding to
retaining one and two variational parameters reggdg. They are the wave functions used througttbist
paper. That is the work is limited to retaining tighest number of two variational parameters; ¢fothe
larger the number of parameters retained the nmrerate the result.
The expressions given by equatidris1s) and (1.20) are fully defined when the Hamiltonian and the
respective variational parameters are known.
To determine the variational paramei&ysit is necessary to take into account the vanmioheory.
From Rayleigh-Ritz variational principle in [She quotient
[y *Hy dr ;
Ty pdr —
Is an upper bound to the least Eigen value of th@ntym mechanical system described by the time-
independent HamiltoniaH.
When v is the exact wave functioliff} = E. The quotient of equatiofiL.21) is evaluated such that the
variational parameters; contain iny: give the values that satisfy the following miniatisn condition:
a{H)
da.
Applying the variational theory to the case at hamel obtain
(@ |H|e®) 5 )
= F0e®) " 3G - Op=12..k (1.23)
For the case= 1 , i.e. when allowance is made for only one vaviazdi parameter; equatiof1.23]
becomes:
. {tp*'.i?'|H|np*'_1?'} o)
~ (pp®) \1.24,
Subsequently, using equatié2}, we obtain

{H) = (1.21)

0, i=12,.. (1.22)




_ =1 + 2515: + 51353
1+ Gle,

(1.25)

Equatior(1.25] gives the expression of the energy when one vamiatparameter is retaine@. is
evaluated from the minimisation condition of theiaional theory.

dE
—=10 1.26
3G, (1.26)
This gives:
26, + 2G5 26y65(ey + 26,65 + Gl

2 T1€3 162(e ,_.1‘,,61 3)=L‘I (1.27)

1+ Gfeg (1+Geg)?
&, is then obtained as:

—e6, 44l + 8, — e F 4+ 5 .

6y = 5 (1.28)

Equation (1.28]) gives two expressions fof,.But it is necessary to choose the solution thatnwhe

substituted

in(1.25), ensures fulfilment of the inequality

E<eg (1.29)

This inequality gives the simplest estimate oféhergy in the variational scheme.

For the cases 2, i.e. when allowance is made for two variatiopalameters; equaticil.23) becomes:

_ ,:Eu g .||,

Subsequently, using equatiéh.20), we obtain

poat 2G. e, + (?G: +Giley + 25.‘1?: £, + Gle. (131)
1+06 6.+ 26,0665 + G2 ¢y

Equation(1.31) gives the expression of energy when two variatipasameters are retained.

Similarly by employing the minimisation conditior the variational theory the following equationsree

obtained.

{1.30)

26, + 26,6, + 2G. £, (26,6, + 26, 6;)(e; + 26,6, + (6] + 26 )eg + 26,6y 64 + GF &)
1+ Ei:f: +2I51_G:E= + G::E-:I. - {1 + G._:'E: 1 26.: E: €2 + G::E_.,.‘-l:

=0 (1.32)

2e; + 26y + 26565 (26,65 + 26,6, )6, + 26,6, + (67 + 26, )3 + 26,65 + G &)
1+ Gle; +26,6.6; +Cley (1+Gie, + 26, Gyex + GPe,)°

=0 (1.33)

G, andG. are determined by solvirig.32) and(1.33) simultaneously.
We now consider specific examples using the Hamidtios that describe some quantum mechanical

systems.
As example 1, we used a simple quantuchar@cal system described by the Hamiltonian:
d* .
H=———+4cos’x (1.34)
ax-
As basis function, we take plane wave normaliseshi& dimension. |.e.
1
W, = —e™ (1.33)
W2

To calculate the ground state energy when amiational parameter is retained, we recall thiofaihg
equations:



£, + 26. 65 + Giey
1+Gle,;

—6 6+ 4l + (g8, -6 F + 5

G, = -
2,

We need to calculate, ...£; in order to calculatez, and hencé. This is done in accordance with
equatior{1.14),

using plane wav#;, with wave vectok = 0 to ensure minimum value &f.
]

g =(H)= { W HWdx

“—i

This gives,
g, =2
(1.36)
In a similar manner using equatifh14) we obtained
e. =2 and ;=12
With these valued;; and £ are calculated as:
G, = —0.224745
(2.37)
E = 155051
(1.38)

To calculate the ground state energy when two tranal parameters are retained, we recall
€, +2G,e; + (2G, + Gi)e; +2G,G,e, + Gieg
1+ Gie, +2G;G,e; + Gigy
£, ande: are obtained in the same wayande: were obtained as:
g = 74 £ = 4592
Using the values ¢f; ...: , equationsg.72) and(33] reduce to
(4 + 246, + 1486)(1 + 267 + 246,G; + 7467) — (4G, +24G;) (2 + 4G, + 1486, G, + 4926} + 12(67 + 26;))
=0 (1.39)
4 + 148G, + 984G, )1 + 267 + 246,G; + 74G7)
— (246, + 148G;) (2 + 4G, + 145G,G; + 49267 + 12(G7 + 26;) )

,
1

b

=0 (1.40)
Solving (1.39) and(1.46) simultaneously gives

{6, = —0.310541,6;, = 0.0138294} (1.41)

Subsequentli is calculated as:

E = 134487 (1.42)

As our second example we consider a quantum mexdiagyistem described by the following perturbed
harmonic oscillator:
= - -— +o¢ x* (1.43)
Jdx- : !
Wheresz is some constant.
As basis function we used the wave function of farim oscillator

—_—

eglx) = (ﬁ:g,-"ra) g8 11 (1.44)

Wheref is the variational parameter.
£ is determined using standard variational procedsre



g = (6a)*" (1.45)
This implies that,
i,
a= Eﬂ (1.#6)

Equation(1.43) becomes

(1.47)
Equation(1.4 7 is used in association with equatiti¥) to calculate the matrix elements that aid the
calculation of ground state energy.

Since,
. . . = 3 P
={Ha* + b* = ¢*) =f Wl dx = 2B (1.48)
Similarly we obtained
H) 35 2 (1) = 661 () 46.-*6554 (5 4793865
b TYLAE - I.‘:‘ﬁﬂ T 12288 7 95304 B

With these values we can calculate the matrix etesz2.
To calculate the ground state energy when oneti@ra parameter is retained, we ne2d.. ..

. 1 .

CEmF o ST P
Using equation$1.25) and(1.2£) atx= - we obtained
G, = —0.0959673 (1.49)
Subsequently,
E =03532266 (1.50)
To calculate the ground state energy when two tianal parameters are retained, we negd &
L PN L

‘T 46087 "0 316864

With values ofs; ... €5, equations{l.j‘:fl and(1.73) reduce to

(E 42250 D00y ()4 L gici + 2pic,c, +

13515843 ] {.'rs r.'r’ﬂ_-‘i (E + Fe 136
o J BT

11 7 2304 44505 i1 2304
1355m3p¢aE _; 3 . ) _
4564 7L (67 +26,) =0
(1.51)
(588 [15188%, .1.:3;_4.1 & P 1358ptes rssgte, | ilempey (18 | e
Cos + mm0r + 7 isms ){j+ B G _S €162 + s )_[ 7R TTY j(?+T+
135158%6, 6, J3TEIRIRTE 59 30,y - ]_
1304 16564 +_§;-£ {5- +-G;} =0
(1.52)
Solving equation£1.57] and(1.52] simultaneously at = —we get
{G, = —0.155624 s = 0.0039751] (1.53)
E is then calculated as:
E=0.53102 (1.54)

RESULTS AND DISCUSSION

Generally the inequaliti <&; obtained from the variational theory, gives a veige estimate of the
ground state energies we calculated in this work.



In the first example we considered the Haman
d? .
H=——+deozx
ax*
We calculated the ground state energy when onati@ral parameter is retained as:
H =15305f
This value is expected, & was calculated in equatidil.35] to be:
g,=12
And by virtue of our inequalit¥ should take value less than 2.
The value off we obtained in equatiokl.73) is in conformity with the exact value of the graun
state energy Eigen value corresponding to the Hanign (1.74) obtained in [4], which is:
E=134486
The proximity of the value of we calculated to the value obtained fi#) is excellently improved when
second variational parameter is retained; wherebtained:
E = 154487
This value off obtained in equatiofil.42} clearly show the effect of retaining more variatibparameters
in getting the exact ground state energy.
Similarly for the second example, whereconsidered the Hamiltonian given by equalibs 3 :
!d:

H=—-——+ax"
¥

When one variational parameter is retained, weutatied the ground state energs:

E =0.532266
And from equatior{1.42] we founde; to be:
3
€.==-8
Since,= (6a)*? | ata == , §= 1.44224957 hence numerically; is given as:

g, = 0340843588
(2.2)
This implies that the valu& we got in equatioriiG)} compared to the value ef we have in equation
(2.2) is expected according to the inequaEtyz «;.
The value of given by equatioii1.50) differs slightly from the exact value obtained[#} for the
Hamiltonian(1.43) which is:

E =0.

ta

30184

(2.3)
For further improvement of the calculated grouraitestenergy, we retained second variational paramete
andE was calculated as:

E=0253102

(2.4)
Equation(1.34) clearly shows the good proximity of the calculagtb the exact one and hence the
positive effect of our construction.



CONCLUSION

Considering the results we obtained for the grostiade energies of the two examples consideredisn th
paper; (when retaining just one and two variatiopatameters). It is obvious that retaining more
variational parameters produces more accuratetrésalvever Though as more variational parametess ar
retained, more complex equations that are verycdiffto solve are generated. It is encouragiragf th
modern technology provides mathematical softwaaé itiakes things

easier. Certainly higher version of that softwame going to be developed which will surely simpliiture
researches. We hope future researches will retaire itihan two variational parameters consideredhis t
paper to fully bring out the effect of the constiol, and hence improve the efficiency of the \iéoizal
approximation as compared to some other approxematiethods being used presently.
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