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Abstract

In this paper, the mass dependence of the Landau-Migdal
parameter gyy(A) isinvestigated. This investigation requires three
stages. In the first stage, we derive an effective interaction using the
method of the lowest - order constrained variational (LOCV)
approach with two-body correlation functions based on the Nijmegen
potential. In the second stage, we have separated the matrix elements
of the effective two-body potential into those of the various channels.
These are the singlet-even (SE), the singlet-odd (SO), the triplet-even
(TE) and the triplet-odd (TO) channels needed to compute the
Landau-Migdal parameter. In the final stage we computed the
Landau-Migdal parameter, gyy{A} as a function of the mass
number, A.

1.0 Introduction

The determination of the Landau-Migdal Parameter heen the subject of intense investigation innece
years [1,2,3]. Itis important to know accurattig value of this parameter because discussiorspion
isospin excitation modes in nuclei depend criticalh the value of this parameter. Indeed many previ
calculations made use of the universality ansatthi® NN, N\ andAA sectors in form of [2,3]

Gux = 8Gyv: =G (1.1)

However, new experimental results [1] do suggesthiteaking of this universality with smaller valugfs
gux in the A sector. Also one of the important missing ingrati@ the previous calculations is that the
mass dependence of this parameter has not beestigated. Such previous estimates included the G-
matrix [4] and the phenomenological calculationjs [5 this paper we will first study the mass degemce

of this parameter in the NN sector. Our ultimatalge to estimate this parameter in both the NN, ahd

AA sectors but we are not yet ready to do so.

Preliminary results ofyyy for the A = 16 system was presented at the CFIFcBaference [6] . Here we
have extended our investigation to include thelte$or the A = 40 and A = 90 systems to enablstudy

its mass dependence.

2.0 Summary of the Method

We shall in this section give a brief summary &f tbwest order constrained variational (LOCV) afpuio
discussed in Refs. [7, 8] for the determinationhef effective two-body interactions. In the cerdfanass
rest-frame, the non-relativistic Hamiltonian for Asfermion system is approximated as [7, 8J:
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Hy, - H=H,-Tg, :Z(pijle +V;)
i>]

2.1)

HereM = m, A is the total mass of the nucleuguTis the translational kinetic energy of the cemife
1

mass of the nucleusp; = —

N2

is taken in this paper to be the Nijmegen potefi@hl Here H, is the original Hamiltonian containing the
centre of mass kinetic energy. The difficulty tbae experiences with these type of potentialsas, tihe
strength of the repulsive core alone prevents tisgplication of the Hartree-Fock procedure. In the
language of correlated basis functions, this mahas the Hartree-Fock trial wavefunctio@, must be
formulated in the form:

¥ = Fo,

(2.2)
Where @ is the multi-dimensional product of two-body wawedtions and F is a symmetric product of
two-body correlation functions defined as [10]:

F=S[]f.

1"

(2.3)
The details of the particular choice of correlatfanctions used in this paper will be discussedWweh
Egs. (2.5), (2.6) and (2.7). Owing to its many-¥podture, it is not easy to evaluate the matrixnelets of
the Hamiltonian given in Eqg. (2.1), hence we mustken approximations. Here we approximate our
Hamiltonian to two-body effective interactions. bigiEgs. (2.1), (2.2) and (2.3), we can define &acafe
two-body interaction in the form [10,11],

H éfzf) = z fij(Z) ( pij2 IM +V;) fij(2)

i>]

(Bi - B,) is the relative momentum of the two interactingr pehile V;

(2.4)
where fij(z) are the two-body correlation functions. The twaMpaorrelation functions are generally

chosen to have the same form as the inter-nucletanpial. In a more general case, they may be ééfas
[12]:

f3@ =2 £ D {6, (i)

(2.5)
with { HA (i)} = 1, Ps, P, P, S, Ps, etc, depending on the form of the chosen poteritizour case the

chosen potential is the Nijmegen potential [9] whis expanded in terms of the central, spin-orhd a
tensor components. It seems reasonable to allovedhelation operators the same degrees of freedom,
where in this case

{6} =1{1, Sj, Ps}-
Recent and previous studies [13, 14] regardingeanciatter and finite nuclei have revealed threeama
features of the two-body correlation functions. Jédare: (i) the ‘wound’ induced in the two-body wav
function by the repulsive core of the N-N interanti (ii) the tensor correlations especially in ¥8e—°D;
channel and, (iii) the meson exchange corrections.
Of these three features, the most significant fealias been found to be the effect of tensor ctiogis.
This has led to a parametrization of the two-boalyalation functions in the form [13,14]:

h<re . f(x)(rij)ex(ij) = 0.

H>r () 0u(i) = f(ri) L+ (A)S;),
(2.6)
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where,

f)=1— e ru7el

with r. = 0.25fm andg3=25fm?. The parameter’(A) represents the strength of the tensor coraiatiand
is non-zero only in the lowest coupl&®, - °D; channel. In maintaining the choice of our simiolen of
the two-body correlation functions, we are awaretber more sophisticated forms of two-body cotreta
functions that are highly density-dependent anéediin different tensor channels such as the- °F,
channel. However we have argued [7] that tensaetaiions in the couplets, - °D; channel are the most
dominant and their inclusion should be enough t@iakthigh quality values of two-body matrix elenmgent
In the present paper we are not interested in

the full Hamiltonian. We are interested only in #féective two-body potential energy term of Eq.4{2
ie.

2 — @ (2
heff - Z fij \/ij fij
i>j

(2.7)
In the more general case tbtéfzf) one may include the N contributions. In that case we may write the
potential schematically as:

(2.8)

and the newfij(z)

will take the form:

f,@ - fu+ fan +f

fNN NA AA

(2.9)
This inclusion is very desirable and requires fertstudy but we are not yet ready to do so atdtsige.
We shall in this paper investigate the form of Efj7) in the NN sector before extending our apphno@ac

the NA sector in the next paper.
3.0 Channel Separation of the Matrix Elements of ta Effective Two-Body Potential

In this section we first separate the relative ptét two-body matrix elements into those of the
various channels: These are the SO, SE, TE ant@iGhevhich stand for the singlet-odd, the singletrgve
the triplet-even and the triplet-odd channels eespely.

We next fit the oscillator SO, TO, SE, TE, two-bgabtential matrix elements to those of the osaliat
sum of Yukawa functions with different ranges. Boe central Yukawa ¥ potential functions discussed

here these are given by:
Ve = z DpM (ru IR;)
P

(3.1)

e
Here M(X) is defined as MK) = —— . The R are the ranges while the, Bre the strengths of the
X

interaction which are determined by fitting the ibator matrix elements of Eq. (3.1) to the osdila
matrix elements of Eq. (2.7).

In this way we obtain a potential in each of thebannels that will fit approximately the Nijmegen
potential relative two-body matrix elements of E2}.7). We chose the ranges with @ 4o be 0.25, 0.4 and
1.414 fm, which are consistent with the one-boskchanges. The shorter ranges correspond to heavier
meson exchanges suchae ando mesons, while the longest range of 1.414 fm cpoeds to the one-
pion exchange. We next use the method of Hosala. [4] to determine a value for the Landau-Migdal
parameter. We cast our potential model in the sgiapin formalism as:

V.. = 1—16{vso(r) #V50(r) ~Vee (1) ~Vie (1)}

(3.2)
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It is advantageous to make a convolution of themtidl function in momentum space such that thealir
and the exchange terms of the Landau-Migdal paemmgiy may be written as [4]:

m,., 1 _ _
f”){E(VSO(QHVm(q) Ve () = Ve (Q))}

Suxigirs = lim qHO(

(3.3)

and

[ -(%)2{1—16 (Vso(a) +V, (0) +Vee(Q) + Ve (9))}

(3.4)

where in Eq. (3.4), q = 2@s discussed in Ref. [4] with peing the Fermi momentum of the nucleons.

4.0 The Results

The present paper is intended to evaluate the landdigdal parameter as a function of the mass
number A, with the Nijmegen potential [9]. Heres wxtend the work of Ref. [6] which was designed fo
the A = 16 system to now include the A = 40 ahd A = 90 systems in order to study the mass
dependence afyn(A).

In Table 1, the set of our potential two-body ma#iements are calculated for the A = 40 system for
the SE, SO, TE and TO channels. It should be nib@donly the TE channel is affected by the sttiernd

the tensor correlations and so we €¢40) = 0.04 andio = 11.0 MeV appropriate for this system. In all

the other channels we s£{40) = 0.
We notice the very good agreement between our xnalegiments and the G-matrix calculations of [4]

in all channels.

Finally, in Table 2 we used the séy(, «*(90)) = (8.8 MeV, 0.03) appropriate for the A = §fstem

to repeat the procedure of Table 1 for the relgpiotential two-body matrix elements. Here too wéago

that in all channels our results are in excellgmeament with the G-matrix results of [4].

4.1 Strength of Interactions and the Landau-Migdalparameter

Tables 3 and 4 give the calculated strengths ofii@raction based on a least squares fit of our
calculated two-body potential matrix elements i@ arious channels to those corresponding to theafu
Yukawa potentials based on eq. (3.1).

In Table 5, we have used our fitted potential ttaobestimates for the value of the Landau-Migdal
parameterg'yn(A), corresponding to the A = 40 and A = 90 systewhich we have found to be 0.58 and

0.55 respectively. For completeness we have rejoexdt our results for the A = 16 [6] for comparison.
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These results indicate that the value of the pat@mi® approximately constant over the given masge
A =16 - 90 and thaf'yy is therefore mass independent contrary to whahateexpected. The results
also show that our calculated estimates are in geog agreement with other workers as shown inér &bl
and that our model is thus a reasonable model.
5.0 Conclusion

In this study we have examined the mass dependente Laudau-Midgal parametgin(A) based
on the LOCV calculation with the Nijmegen potenf@] folded with two-body correlation functions.of
the A =40 and A = 90 systems, our estimates gqygA) to be 0.58 and 0.55 respectively. On the other
hand, our previous estimates for the A = 16 sygjene a value of'yn(A) = 0.65 [6 ] These estimates
indicate that the value of this parameter is apipnately constant over the mass range A = 16 to 907
contrary to our expectation.

These results also show that our calculated estsnate in good agreement with those of other
workers and that our model is a reasonable onauilrsubsequent work, we hope to include the effett

NA and theAA contributions into our calculations.

Table 1. Calculated relative matrix elements for A0 withim = 11.0MeV andd*= 0.03. The first entry

for a column is the present (LOCV) calculation witte Nijmegen potential [9]. The second entry in
parentheses is the G-matrix calculations of Hoslkal. [4] with the Paris potential [15]. Here only the

TE channels are affected by the tensor correlation

SE TE
(SIS) N=0 1 2 (SIS) N=0 1 2
nN=0 -58763 -5.4918 -4.7471 n=0 -7.0766  -6.1312  -4.9283
(-5.2187) (-4.5601)  (-3.6117) (-8.040)  (-7.4460) (-6.3224)
1 -5.5753 -5.0009 1 6.0623  -5.1743
(-4.2845)  (-3.4698) (-7.3175)  (-6.3477)
2 -4.6566 2 4.7256
(-2.8761) (-5.6668)
SO TO
(P/P) n=0 1 2 (PIP) n=0 1 2
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1.7052 1.8021 1.7809 0.2057  0.3017
(1.7260)  (1.7184)  (1.5952) (-0.0970)  (-0.0939)

1 2.4056 2.5654 1 0.2057  0.3017
(2.2136)  (2.2640) (-0.0970)  (-0.0939)

2 29772 |2 0.4395
(2.5781) (-0.0701)

Table 2. Calculated relative matrix elements for 80 withio = 8.8MeV andx* = 0.03. The first entry

for a column is the present (LOCV) calculation witle Nijmegen potential [9]. The second entry in
parentheses of a column is the G-matrix calculatmfrfHosakaet al.[4] with the Paris potential [15]. Here

again only the TE channels are affected by theotecwrrelations.

SE TE
(SIS) n=0 1 2 (SIS) N=0 1 2

nN=0 -45258  -4.4143 -3.9905 nN=0  -46907  -4.2442  -3.5646

(-4.1471) (-3.8535)  (-3.2648) (-6.4335) (-6.2354)  (-5.5745)

1 -4.6028 -4.2987 1 -4.2679  (-5.7768)

(-3.7805)  (-3.2868) (-6.3463)  (-1.2154)

2 -4.1380 2 -3.5051

(-2.9243) (-5.3810)
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SO TO
(P/P) nN=0 1 2 (P/P) nNn=0 1 2
n=0 1.1714 1.2558 1.2449 n=0 0.0456 0.0543 0.0758
(1.2020) (1.2299) (1.1562) (-0.0256) (-0.0591) (-0.0745)
1 1.6660 1.7921 1 0.1039 0.1512
(1.5768) (1.6314) (0.0751) (-0.0843)
2 2.0875 2 0.2256
(1.8566) (0.0813)
Table 3. Best-fit interaction strength (MeV) forsM0,he = 11.0MeV and* = 0.040.
S/No. Channel R= 025fm R, = 0.040m R;=0.7Gm R,=1.1414m
1 SE 10016.0 -3316.0 -10.463
2 TE 15266.9 -4873.3 -10.463
3 SO 8004.0 28.3 31.389
4 TO 9165.3 -1094.6 3.488
Table 4 Calculated value gfn (») compared with those of other workers.
S/No. Channel R= 025fm R, = 0.040m R;=0.7Gm R,=1.1414m
1 SE 10022.8 -3304.6 -10.463
2 TE 13442.8 -4156.4 -10.463
3 SO 6708.7 326.7 31.389
4 TO 12452.9 -1542.8 3.488
Table 5. Calculated value gf (») compared with those of other workers.
Source ' dir Jerch J'total
Present A=16 0.81 -0.17 0.65*
A=40 0.97 -0.39 0.58
A=90 0.98 -0.43 0.55
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G-matrix[4] 0.94 -0.43 0.56
T +o [4] 0.97 -11 0.86
Gamow-Teller systematics [16] - - 0.7-0.8

*taken from Ref. [6]
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