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Abstract 

 
         In this paper, the mass dependence of the Landau-Migdal 
parameter  is investigated.  This investigation requires three 
stages:  In the first stage, we derive an effective interaction using the 
method of the lowest - order constrained  variational  (LOCV) 
approach with two-body correlation functions based on the Nijmegen 
potential. In the second stage, we have separated the matrix elements 
of the effective two-body potential into those of the various channels. 
These are the singlet-even (SE), the singlet-odd (SO), the triplet-even 
(TE) and the triplet-odd (TO) channels needed to compute the 
Landau-Migdal  parameter.  In the final stage we computed the 
Landau-Migdal parameter,  as a function of the mass 
number, A. 

 
 
 
 
1.0 Introduction 
 
The determination of the Landau-Migdal Parameter has been the subject of intense investigation in recent 
years [1,2,3 ].  It is important to know accurately the value of this parameter because discussions on spin-
isospin excitation modes in nuclei depend critically on the value of this parameter. Indeed many previous 
calculations made use of the universality ansatz for the NN, N∆ and ∆∆ sectors in form of [2,3]          : 

 =  =                   (1.1) 
 
However, new experimental results [1] do suggest the breaking of this universality with smaller values of 

 in the sector.  Also one of the important missing ingredient in the previous calculations is that the 
mass dependence of this parameter has not been investigated.  Such previous estimates included the G-
matrix [4] and the phenomenological calculations [5]. In this paper we will first study the mass dependence 
of this parameter in the NN sector. Our ultimate goal is to estimate this parameter in both the NN, N∆ and 
∆∆ sectors but we are not yet ready to do so. 
Preliminary results of  for the A = 16 system was presented at the CFIF Fall conference [6] . Here we 
have extended our investigation to include the results for the A = 40 and A = 90 systems to enable us study 
its mass dependence. 
 
2.0 Summary of the Method 
 
We shall in this section give a brief summary of the lowest order constrained variational (LOCV) approach 
discussed in Refs. [7, 8] for the determination of the effective two-body interactions. In the centre of mass 
rest-frame, the non-relativistic Hamiltonian for an A-fermion system is approximated as [7, 8]: 
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 (2.1) 

Here  is the total mass of the nucleus, TCM is the translational kinetic energy of the centre of 

mass of the nucleus, )(
2

1
jiij ppp

ρρρ −=  is the relative momentum of the two interacting pair while Vij  

is taken in this paper to be the Nijmegen potential [9].  Here  is the original Hamiltonian containing the 
centre of mass kinetic energy. The difficulty that one experiences with these type of potentials is that, the 
strength of the repulsive core alone prevents direct application of the Hartree-Fock procedure. In the 
language of correlated basis functions, this means that the Hartree-Fock trial wavefunction, Ф must be 
formulated in the form: 

Ѱ = FФ,         
 (2.2) 

Where Ф is the multi-dimensional product of two-body wavefunctions and F is a symmetric product of 
two-body correlation functions defined as [10]: 

F = S∏
> ji

ijf         

 (2.3) 
The details of the particular choice of correlation functions used in this paper will be discussed below in 
Eqs. (2.5), (2.6) and (2.7).  Owing to its many-body nature, it is not easy to evaluate the matrix elements of 
the Hamiltonian given in Eq. (2.1), hence we must make approximations. Here we approximate our 
Hamiltonian to two-body effective interactions. Using Eqs. (2.1), (2.2) and (2.3), we can define an effective 
two-body interaction in the form [10,11], 

)2(2)2()2( )/( ij
ji

ijijijeff fVMpfH ∑
>

+=       

 (2.4) 

where )2(
ijf  are the two-body correlation functions. The two-body correlation functions are generally 

chosen to have the same form as the inter-nucleon potential. In a more general case, they may be defined as 
[12]: 

∑=
λ

λ
λ θ )},(){()()2( ijrff ijij

      

 (2.5) 

with { λθ (ij)} = 1, Pσ, Pτ, Pστ, Sij, Pls, etc, depending on the form of the chosen potential. In our case the 

chosen potential is the Nijmegen potential [9] which is expanded in terms of the central, spin-orbit and 
tensor components. It seems reasonable to allow the correlation operators the same degrees of freedom, 
where in this case  

{Өλ} = {1, Sij, Pls}. 
Recent and previous studies [13, 14] regarding nuclear matter and finite nuclei have revealed three main 
features of the two-body correlation functions. These are: (i) the ‘wound’ induced in the two-body wave 
function by the repulsive core of the N-N interaction, (ii) the tensor correlations especially in the 3S1 – 3D1 
channel and, (iii) the meson exchange corrections.  
Of these three features, the most significant feature has been found to be the effect of tensor correlations. 
This has led to a parametrization of the two-body correlation functions in the form [13,14]: 
 
   rij < rc  : f

(λ)(rij)Өλ(ij) = 0. 
 
   rij > rc  : f(λ)(rij)Өλ(ij) = f(r ij)(1+αλ(A)Sij),    
 (2.6) 
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where, 

                 f(rij) =  

 
with rc = 0.25fm and β=25fm-2.  The parameter αλ(A) represents the strength of the tensor correlations and 
is non-zero only in the lowest coupled 3S1 - 

3D1 channel.  In maintaining the choice of our simple form of 
the two-body correlation functions, we are aware of other more sophisticated forms of two-body correlation 
functions that are highly density-dependent and differ in different tensor channels such as the 3P2 - 

3F2 
channel. However we have argued [7] that tensor correlations in the coupled 3S1 - 

3D1 channel are the most 
dominant and their inclusion should be enough to obtain high quality values of two-body matrix elements.  
In the present paper we are not interested in  
the full Hamiltonian. We are interested only in the effective two-body potential energy term of Eq. (2.4), 
i.e. 
 
    )2()2()2(

ij
ji

ijijeff fVfh ∑
>

=
     

 (2.7)

 

In the more general case of )2(
effh one may include the N∆ contributions. In that case we may write the 

potential schematically as: 
         
 (2.8) 

and the new )2(
ijf will take the form: 

    )2(
ijf ∆∆∆ ++→ fff NNN      

 (2.9) 
This inclusion is very desirable and requires further study but we are not yet ready to do so at this stage. 
We shall in this paper investigate the form of Eq. (2.7) in the NN sector before extending our approach to 
the N∆ sector in the next paper. 
 
3.0 Channel Separation of the Matrix Elements of the Effective Two-Body Potential 
 

In this section we first separate the relative potential two-body matrix elements into those of the 
various channels: These are the SO, SE, TE and the TO which stand for the singlet-odd, the singlet-even,  
the triplet-even and the  triplet-odd channels respectively. 

We next fit the oscillator SO, TO, SE, TE, two-body potential matrix elements to those of the oscillator 
sum of Yukawa functions with different ranges. For the central Yukawa Vc, potential functions discussed 
here these are given by: 

    Vc = )/( Pij
p

p RrMD∑      

 (3.1) 

Here M(x) is defined as M(x) = 
x

e x−

.  The Rp are the ranges while the Dp are the strengths of the 

interaction which are determined by fitting the oscillator matrix elements of Eq. (3.1) to the oscillator 
matrix elements of Eq. (2.7).   

In this way we obtain a potential in each of these channels that will fit approximately the Nijmegen  
potential relative two-body matrix elements of Eq. (2.7). We chose the ranges with p < 4 to be 0.25, 0.4 and 
1.414 fm, which are consistent with the one-boson exchanges. The shorter ranges correspond to heavier 
meson exchanges such as σ, ρ and ω mesons, while the longest range of 1.414 fm corresponds to the one-
pion exchange. We next use the method of Hosaka et al. [4] to determine a value for the Landau-Migdal 
parameter. We cast our potential model in the spin-isospin formalism as: 

  Vστ = )}()()()({
16

1
rVrVrVrV TESETOSO −−+     

 (3.2) 
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It is advantageous to make a convolution of the potential function in momentum space such that the direct 
and the exchange terms of the Landau-Migdal parameter, ɡ'NN may be written as [4]: 

   = ))}()()()((
16
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{)(lim 2
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and 

  

  = - ))}()()()((
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f

m
TESEoSO +++ τ

π

π

  

 (3.4) 

where in Eq. (3.4), q = 2pF as discussed in Ref. [4] with pF being the Fermi momentum of the nucleons. 
 

4.0 The Results 

The present paper is intended to evaluate the Landau - Migdal parameter as a function of the mass 

number A, with the Nijmegen potential [9].  Here, we extend the work of Ref. [6] which was designed for 

the A = 16 system to now include  the A =  40 and the A = 90 systems in order to study the mass 

dependence of ɡ'NN(A).   

In Table 1, the set of our potential two-body matrix elements are calculated for the A = 40 system for 

the SE, SO, TE and TO channels.  It should be noted that only the TE channel is affected by the strength of 

the tensor correlations and so we set αλ(40) = 0.04 and ℏω  = 11.0 MeV appropriate for this system. In all 

the other channels we set αλ(40) = 0. 

We notice the very good agreement between our matrix elements and the G-matrix calculations of [4] 

in all channels. 

Finally, in Table 2 we used the set (ℏω , αλ(90)) = (8.8 MeV, 0.03) appropriate for the A = 90 system  

to repeat the procedure of Table 1 for the relative potential two-body matrix elements. Here too we notice 

that in all channels our results are in excellent agreement with the G-matrix results of [4]. 
 

4.1 Strength of Interactions and the Landau-Migdal parameter 

Tables 3 and 4 give the calculated strengths of our interaction based on a least squares fit of our 

calculated two-body potential matrix elements in the various channels to those corresponding to the sum of 

Yukawa potentials based on eq. (3.1). 

In Table 5, we have used our fitted potential to obtain estimates for the value of the Landau-Migdal 

parameter, ɡ'NN(A),  corresponding to the A = 40 and A = 90 systems, which we have  found to be 0.58 and 

0.55 respectively.  For completeness we have reproduced our results for the A = 16 [6] for comparison.  
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These results indicate that the value of the parameter is approximately constant over the given mass range 

A = 16 - 90 and  that ɡ'NN is therefore  mass independent contrary to what we had expected.  The results 

also show that our calculated estimates are in very good agreement with other workers as shown in Table 5 

and that our model is thus a reasonable model. 

5.0   Conclusion 

In this study we have examined the mass dependence of the Laudau-Midgal parameter ɡ'NN(A) based 

on the LOCV calculation with the Nijmegen potential [9] folded with two-body correlation functions.  For 

the A = 40 and A = 90 systems, our estimates gave ɡ'NN(A) to be 0.58 and 0.55 respectively. On the other 

hand, our previous estimates for the A = 16 system gave a value of ɡ'NN(A) = 0.65 [6 ]  These estimates 

indicate that the value of this parameter is approximately constant over the mass range A = 16 to A = 90, 

contrary to our expectation. 

These results also show that our calculated estimates are in good agreement with those of other 

workers and that our model is a reasonable one.  In our subsequent work, we hope to include the effects of 

N∆ and the ∆∆ contributions into our calculations. 
 
 
 
 

Table 1. Calculated relative matrix elements for A = 40 with ℏω  = 11.0MeV and αλ = 0.03.  The first entry 

for a column is the present (LOCV) calculation with the Nijmegen potential [9].  The second entry in 

parentheses is the G-matrix calculations of Hosaka et al. [4] with the Paris potential [15].  Here  only the 

TE  channels are affected by the tensor correlations. 

 

 

SE 

(S/S) 

 

N=0 

 

1 

 

2 

TE 

(S/S) 

 

N=0 

 

1 

 

2 

n' = 0 -5.8763 

(-5.2187) 

-5.4918 

(-4.5601) 

-4.7471 

(-3.6117) 

n' = 0 

 

-7.0766 

(-8.040) 

-6.1312 

(-7.4460) 

-4.9283 

(-6.3224) 

1  -5.5753 

(-4.2845) 

-5.0009 

(-3.4698) 

1  6.0623 

(-7.3175) 

-5.1743 

(-6.3477) 

2   -4.6566 

(-2.8761) 

2   4.7256 

(-5.6668) 

        

SO 

(P/P) 

 

n' = 0 

 

1 

 

2 

TO 

(P/P) 

 

n' =  0 

 

1 

 

2 
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1.7052 

(1.7260) 

1.8021 

(1.7184) 

1.7809 

(1.5952) 

 

 

 0.2057 

(-0.0970) 

0.3017 

(-0.0939) 

1  2.4056 

(2.2136) 

2.5654 

(2.2640) 

1  0.2057 

(-0.0970) 

0.3017 

(-0.0939) 

2   2.9772 

(2.5781) 

2   0.4395 

(-0.0701) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2. Calculated relative matrix elements for A = 90 with ℏω  = 8.8MeV and αλ = 0.03. The first entry 

for a column is the present (LOCV) calculation with the Nijmegen  potential [9].  The second entry in 

parentheses of a column is the G-matrix calculations of Hosaka et al. [4] with the Paris potential [15]. Here 

again only the TE channels are affected by the tensor correlations. 

 

SE 

(S/S) 

 

n=0 

 

1 

 

2 

TE 

(S/S) 

 

N=0 

 

1 

 

2 

n' = 0 -4.5258 

(-4.1471) 

-4.4143 

(-3.8535) 

-3.9905 

(-3.2648) 

n' = 0 

 

-4.6907 

(-6.4335) 

 

-4.2442 

(-6.2354) 

 

-3.5646 

(-5.5745) 

 

1  -4.6028 

(-3.7805) 

-4.2987 

(-3.2868) 

1  -4.2679 

(-6.3463) 

 

(-5.7768) 

(-1.2154) 

 

2   -4.1380 

(-2.9243) 

2   -3.5051 

(-5.3810) 
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SO 

(P/P) 

 

n' = 0 

 

1 

 

2 

TO 

(P/P) 

 

n' =  0 

 

1 

 

2 

n' = 0 

 

1.1714 

(1.2020) 

1.2558 

(1.2299) 

1.2449 

(1.1562) 

n' = 0 

 

0.0456 

(-0.0256) 

0.0543 

(-0.0591) 

0.0758 

(-0.0745) 

1  1.6660 

(1.5768) 

1.7921 

(1.6314) 

1  0.1039 

(0.0751) 

0.1512 

(-0.0843) 

2   2.0875 

(1.8566) 

2   0.2256 

(0.0813) 

 

Table 3. Best-fit interaction strength (MeV) for A = 40, ℏω  = 11.0MeV and αλ = 0.040. 

 

S/No. Channel R1 = 0.25fm R2 = 0.040fm R3 = 0.70fm R4 = 1.1414fm 

1 SE 10016.0 -3316.0  -10.463 

2 TE 15266.9 -4873.3  -10.463 

3 SO 8004.0 28.3  31.389 

4 TO 9165.3 -1094.6  3.488 

      

      

Table 4 Calculated value of ɡ'NN (A) compared with those of other workers. 

 

S/No. Channel R1 = 0.25fm R2 = 0.040fm R3 = 0.70fm R4 = 1.1414fm 

1 SE 10022.8 -3304.6  -10.463 

2 TE 13442.8 -4156.4  -10.463 

3 SO 6708.7 326.7  31.389 

4 TO 12452.9 -1542.8  3.488 

      

      

Table 5. Calculated value of ɡ'NN (A) compared with those of other workers. 

 

Source   ɡ'dir ɡ'erch ɡ'total 

Present A = 16 

A = 40 

A = 90 

0.81 

0.97 

0.98 

-0.17 

-0.39 

-0.43 

0.65* 

0.58 

0.55 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 69 – 76 
Mass Dependence Of The Landau-Migdal Parameter…     J.O. Fiase and J. O. A. Idiodi    
J of NAMP 

G-matrix[4]  0.94 -0.43 0.56 

π +σ       [4]  0.97 -.11 0.86 

Gamow-Teller systematics [16]  - - 0.7-0.8 

     

 *taken from Ref. [6] 
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