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Abstract

The surface energies of 3 surfaces of 13 fcc metals have been calculated
using the new analytical algorithm for equivalent crystal theory (ECT).
Thisis an extension of the work of Zypman and Ferrante which reported
surface energy results for only the (100) surface of seven fcc metals. Our
results show that, for all the fcc metals, the surface energies of (110) are
higher than that of the (100) and the (111) surfaces. The present surface
energy results compares well with the available energy results of Zypman
and Ferrante. And also, in good agreement with an earlier surface energy
results of Aghemenloh and Idiodi using the old ECT. The ordering of the

three low-index surface energies is 7111 <7100 <110 jn agreement with

other theoretical results. Thus, the (111) plane hasthe lowest energy.
Generally, our computed results are in good agreement with the results of
both experiment and first principles calculations.

1.0 Introduction

Surface energy is an important physical quantityanil surface phenomena such as reconstruction,
adsorption, shape transition in nanoscale particddisying, epitomical growth, oxidation, corrosjon
catalysis, crystal growth [1-5], etc are direc#yated to the structure and energy of surfaceg.[6Q it is
necessary to know the surface energies for vasou®ces. However, determination of surface energy
fraught with problems. The first is that experin@nmeasurements are more commonly found for
polycrystalline materials which are subject to eralue to surface-active contaminants. Secondly,
experimental values are not generally availablal enthose cases where they are, the experimental
predictions vary widely. Thirdly, in the last fewears, in spite of increasing effort on first prilei
calculations, first principle results are plagueithwnstabilities and lack of convergence. To avtidse
problems and especially the heavy computation raain ab initio methods, Semi-empirical methods [8
11] were developed.

A semi-empirical approach to the many-body probkansists in determining a functional form for the
cohesive energy based on a physical model. Thistiimis fitted to experimental results to estimtte
parameters required for complete description. €kjdicit function is in turn used to calculate sootber
material properties like defect energies etc. Ma@isemi-empirical models derived in this mannerehav
been successful in describing a wide range of nadtgroperties [8-11]. However, surface energies
predicted by some of these models are significdatler than reported experimental values or restdts

ab initio calculations. A major drawback in some tbese semi-empirical methods is the lack of
experimental values for the basic inputs like thecancy formation energies and the associated
uncertainties in the cases where they are available

The equivalent crystal theory method (ECT) sirtsdritroduction have been extensively used to descr
the energetic of defects in metals [12, 13] andyall[14, 15], and also in the study of charge fiemis
metal nano-clusters [16]. More recently the ECTE watended to hcp metals to calculate surface &serg
[17]. However, the major constraint in the impletagion of the ECT method at present is the time
limiting step involved in finding the root of the@ations



which might be important for complex defects andidasystems.

To overcome this constraint, recently Zypman anddfte [18] introduced an analytical algorithm to
invert the ECT equations that reduces the compurtatispeed by employing the Lambert function. This
new algorithm of the ECT has successfully beeniagpb calculate the (100) surface energy of sdeen
metals. The aim of this study therefore, is to edtthe surface energy results of Zypman and Ferija:&
from the seven fcc metals to other important fc¢atsein the literature, and also to include the wtieer
low-index crystal faces, the (110) and (111) faces.

The remainder of this paper is organized as follawssection 2, we give a brief discussion of tleavn
analytical ECT method. In section 3, we discuss ahelytical ECT method of calculating the surface
energies of fcc metals. The results of surfacegi@gifor 13 fcc metals are reported in sectionghgwith
the results obtained by other workers. Concludamgarks are giving in section 5.

2. The New Analytical ECT Method

In ECT the total energy of a collection of atoms dndefect is the sum of individual energy
contributionsU(ae), Whereag is called equivalent lattice parameter &h@), is explicitly given by the
Universal binding energy relation (UBER) [19] which simply parameterized in terms of physically
known constants in the Rydberg function. In ECTatom near a defect is viewed as sensing a reduced o
increased electron density. This condition is tlmerpreted as a point on the UBER in terms of an
expanded or contracted perfect crystal. Perturbdkieory is used to obtain the equivalent lattiaeameter
of the expanded or contracted crystal,in terms of g the lattice parameter corresponding to the perfect
crystal. Once g is known, the energy of the atom near the defeobtained from that point on the UBER.
The value of g is obtained in terms ofydrom the inversion of the basic ECT transcendeatalation.
Although conceptually simple, the inversion procesgzresents the computational time limiting stephia
implementation of the algorithm.

The implementation of ECT involves a perttidraequation that determines the energy of a seiitd
a defect in terms of a perfect crystal of the samestance expanded or contracted from the equitibri
lattice parameter to a new “equivalent” lattice graeter. This procedure is equivalent to finding an
embedding electron densipy A typical atom at a given location is embeddea idensityp produced by
the electronic charge density of the remainder atonthe system. The yet unknown, equivalent neares
neighbour distancd, satisfies )

N,RI e %% + Ny(C,R.,) e V5% = o

(1.0)
where N is the number of nearest — neighbours in the mininenergy crystal structure corresponding to
that atom, N is the number of next-nearest neighbours,i<Cthe ratio of the next-nearest-neighbour
distance to the nearest-neighbour distance,caaddA are known material-dependent constants. In many
applications of ECT to evaluate defect formatioerrgies, p, on the right-hand side of Eq. (1.0), is written

in a form similar to the left-hand side. For exaehe density produced by neighbours on an atodntae
a vacancy is

p=NIRPe™ +NI(C,R, e ™,

where N =N, —1and Nj = N, because the atom in question loses one nearegtiueir (where the

vacancy is located) and no second near neighbaourthis example, the lattice is unrelaxed and
consequently Rrepresents the nearest neighbour distance ofetfeqgb crystal. This shows explicitly that
R is the unknown in Eq. (1.0). OnceqRs obtained, ECT used this value in the UBER fiomGtU (ae).
The corresponding energy cost is théfa,) — U(a,). In what follows, we adopt the method of Zypman
and Ferrante [18].

The general problem is therefore to find tinection

Req = G(0) (2.0)



Equation (1.0) can be cast in dimensionless forrddfining

Y= R

yPe™ +&C”y"e_(1+%u)Czy _pa’ (3.0)
N, N,

By introducing(la,%] c,-1=y, % =n,,, p"% =x, Eg. (3.0) becomes
1 1

yPe” [L+n,cPyPe™ )=x (4.0)

The constantiA is about unity or larger an@, > 1, thusy> 0, which is a conservative lower bound for

By using appropriate values from Table 1, one fitids n21czpype‘W < 004 as earlier reported [18].

Thus, in Eqg. (4.0), the second term inside the mhesis is much smaller than unity, and therefoiie i
dropped in many real applications. Thus, the pmhkieduces to finding the roots of

yPe™”’ =x (5.0)
A sketch of Eq. (5.0) is shown in Fig.1. In Figthe root y corresponds to the smaller lattice parameter
while the root y corresponds to the larger lattice parameter. @rgat vacancy effectively lowers the atom
density thereby increasing y [8]. Thus the physjcatcepted root is,y
Equation (5.0) can now be recast in the Lairfbem:

(‘yje(}y] _-xP 6.0)
p p

with the solution
y:—pW_l[—X/]/p] (7.0)
p

where W, is the Lambert function [20, 21]. The sub indeX™fabels the branches. The Lambert function
has an infinite number of complex branches wittyawo purely real, the branches known as “0” arid."-

Define (Y, X,,) as the point corresponding to the maximum attd@density.y,, may be found by
taking the maxima of Eq. (4.0) as

P-yu * "'21(32pe_WM [P - (1+ y)yM] =0 (8.0)

Eq. (8.0) can be solved fgras

y=07%(y,)= 1[p— Y —w{‘(p‘ Y o ﬂ 9.0
Ym MG,



Again, taking the inverse of the maxima of Eq. Y2obtainy,, , we have

- P=Yum
A 100)
nZlCZ
The only non-trivial solution to Eqg. (10.0) ierfthe argument of the Zero branch to be -1/e. &or
complete discussion of the above equations anadhditions that lead to its derivations, the insésd
reader is referred to the work of Zypman and Feergh3], where the details can be found. Accordimg
Zypman and Ferrante, the smallest possible valy&ygf,) is given as

p
Ymin =P _Wo(nzl%) (11.0)

Eq.(11.0) was used to evaluate thg in Table 2.

3.0 Calculation of Surface Energy

Here, we implement the analytical algorithm of E@T by Zypman and Ferrante. The surface energies of
the three low-index planes of thirteen fcc metal®hbtained by this algorithm. However, it is emphas
that only the volume term of the ECT is retainedhjlev neglecting the other terms. The neglect of the
higher order terms of the ECT has been justifienfiprevious studies [17, 22, 23]. In what follows w
first solve Eq.(4.0) numerically, and then by trambert function as given by [18].

For the real density of the (111) plane, we notltat a typical surface atom losses 3 nearest-
neighbours (out of 12 in bulk) and 3 next nearestinbours (out of 6 in the bulk). Then

p=9R} exr(—aRo)+3(czRo)"ex{—(mﬂcz&} (12.0)

whereaq, p andA are material constants whose values depends ¢nmeetal. And G and R are given as

Ry :%’ c, =42 - Solving eq. (12), we obtain the value of electdensityp
2
Next, we solve
X = Pf; ’ (13.0)
and then
- X%’ (14.0)
y=-pProduct Log| -1, 0 :

Now, after obtaining the value of x from Eq. (13.0% then compute the nearest neighbour distagge R
from the relation
Rq= ‘: (15.0)

Once the value of y has been obtained from Eq.JBh6 knowing the value of the material constanive
can then calculate the value af;Rom Eqg. (15.0). Next, we compute the lattice paeter a;from

Aeq= CRy (16.0)
Fortherealdensity of the (110) plane, two surfaces are ined)vthe surface plane (j = 1) and the first
surface below the surface plane (j=2). The equatiorp to be solved are:

p=TRY exp(—aRo)+4(czRo)"exr{—(mj]cz&} (17.02)
and
p=11R? expl-aR, )+ 4(C,R, )’ ex;{—(a+jJC2Ro} (17.0b)

The real density of the (100) plane also invelwo surfaces like in the case of the (110) plare
surface atom losses 4 nearest — neighbours andthearest-neighbour atom for the surface plang)(j=



while the second plane (j=2) losses only 1 nexrewa— neighbour atom. Therefore, the equationseto
solved are:

o =8RPexp-aR,)+5(C,R,)" exp{—[a +/11JC2R°} (18.0a)

and

p =12R? exp(- aR,)+5(C,R,)" exp{— (a’ + j]CZRO} (18.0b)

Eqgs(17.0) and (18.0) are then solveddand Eqgs.(13.0) and (14.0) for x and y. ThereaHes.(15.0) and
(16.0) are solved for Rand a4for each fcc metals.

Once the values of.Rare known from Eq. (15.0), then the values “odirsd F can be calculated directly
[8]. The surface energy for each of the three Indek faces is then calculated from the formulas

Oy = f AEZ F*[ar, (j)] (19.0)
Ty = ;CzAEZ F*[a*, (j)] (20.0)
J
0100 =5 AEY. F*la (1] (21.0)
I

The sum over j includes only one atom per atdayer, and usually only a few layer need be inetid
for metal low index planes.

4. Results and Discussion

The equivalent crystal nearest neighbour distangésR very vital parameter in the ECT method, since
it is the parameter needed in the calculation afase energy. R values are also needed in the
computation of &, the equivalent lattice parameters. These are sliowable 3 and have been employed
to calculate the values of surface energies exdbit Table 4. Table 3 also displays the relatifietnce
between the Lambert evaluation method (AECT) aedhtimerical evaluation (Newton —Raphson method)
of the ECT. Table 3 provides a comparison of thespnt work using Lambert evaluation with a presiou
work by Zypman and Ferrante [18] and other previstudies [24,25] which used the original ECT. It
can be seen from the table that there is a goaskagnt between the two ECT methods. Like in Table 3
the present AECT results of surface energies ineTdbcompares well with the results of Zypman and
Ferrante where results are available. The resuéisaso in good agreement with the earlier work of
Aghemenloh and Idiodi [24].

The summary of our surface energies obtaioethe three low — index faces of the thirteen ifeetals
using the New ECT method are presented in Tabld&se results are then compared with the reswalts fr
first principles calculations [26-28] the tightbinding (TB) method [29] , the embedded atom method
(EAM) [30,31], the modified embedded atom methodE@M)[32],the modified analytical embedded
atom method (MAEAM) [33], and experiment [34]. Fall the theoretical models whose results are
presented in table 5, the closed — packed (11#)tas the lowest energy. It is important to not while
the AECT, TB, EAM, MAEAM and the first principlegsults consistently support the tremd; < G190 <
0110 the results of the MEAM in Table 5 do not alwayspport this trend. In a few cases the low density
(110) surface energy is higher than the (100) serfenergy. The AECT surface energies are uniformly
larger and closer to experiment than those obtdiyetthe EAM, which is known to under estimate scefa
energies in fcc metals [8, 29, 22]. The surfacagas from this study are generally closer to expent
than those obtained by the MEAM [32], MAEAM [33]&A B [29] and in good agreement with first
principles calculations [26-28].
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Fig. 1. shows Eq. (5) graphically illustrating thppearance of two roots: The raatis to the left of the
maximum that correspond to a lattice parameter lemédanz.,while the rooty- to the right corresponds

to the lattice parameter larger than

Table 1. Pure metal properties and the calculated ET constants for fcc metals. All input parameters
were taken from the work of Aghemenloh and Idiodi P4].

Element Cohesive Lattice E,  Bulk p LA MA) oA rwse

energy constant (eV)  Modulus(

AE@V)  a(A) 10"9n®)
Ni 4.44 3.51 1.60 1.876 0.271 0.761 3.013 1.372
Pd 3.94 3.89 140 1.955 8 0.237 0.667 3.611 1.520
Pt 5.85 3.92 130 2.884 10 0.237 0.667 4534 1.532
Cu 3.50 3.61 1.30 1.420 0.272 0.766 2934 1411
Ag 2.96 4.08 119  1.087 8 0.269 0.757 3.334 1.594
Au 3.78 4.07 0.96 1.803 10 0.237 0.665 4336 1.590
Al 3.34 4.04 0.66 0.794 4 0.336 0.946 2.104 1.579
Pb 2.04 4.95 ( 0.488 10 0.303 0.852 3.539 1.937
Rh 5.75 3.80 1./1 2704 8 0.247 0.693 3.726  1.485
Ca 1.84 5.58 0.6 0.152 0.486 1.365 1.864 2.181
Sr 1.72 6.08 0.6 0.116 0.515 1.447 2.160 2.376
Ir 6.94 3.84 235 3.704 10 0.2530 0.647 4417 1.501
Th 6.20 5.08 2.0 0.543 12 0.494 1.389 3.617 1.985




Table 2. Smallest value oV (= yu, ) and correspondingy values for thirteen fcc metals.

Element Y min y = (-1 + i} c,—1 Z = ny eV
Ni 5.282 1.032 0.017
Pd 6.960 1.002 0.007
Pt 8.579 0.882 0.008
Cu 5.282 1.044 0.016
Ag 6.960 0.975 0.009
Au 8.579 0.906 0.007
Al 3.537 1.126 0.037
Pb 8.579 0.883 0.008
Rh 6.960 0.962 0.010
Ca 5.282 0.970 0.024
Sr 6.960 0.867 0.019
Ir 8.579 0.909 0.066
Th 10.150 0.696 0.027

Table 3. ECT equivalent lattice parameters, and theelative difference between Lambert
evaluation (AECT) and numerical evaluation (EQ).

Element Crystal face  aq(A) Beq(B)?  aeq (A)P Aag,(A)
(hkl) (Present)




Ni (100) 4.213 4.21 4.214 0.001

(110) 4.394 4.395 0.001

(111) 4.041 4.042 0.001

Pd (100) 4516 4.52 4517 0.001

(110) 4.680 4.681 0.001

(111) 4.359 4.360 0.001

Pt (100) 4.422 4.42 4.422 0

(110) 4.549 4.559 0.01

(111) 4.293 4.294 0.001

Cu (100) 4.331 4.33 4.332 0.001
Ni (100Y110) 3.12%17 1.203 4517 1.22 3.123) 1.202°
(110)111) 3.28454 1.759  4.155 3.28401 1.761°
Ag  (111Y100)  2.39808 48799 4811 2.39803 0.799
Pd (100)110) 2.30392 1.089 4995 1.10° 2.30%03 1.089°
(110)111) 2.38532 1.592 4634 2.38802 1.592°
Au  (111}100)  1.76204 48317  4.605 1.76%801 0.717°
Pt (100)110) 2.45847 1.180 4.749 1.31% 2.450802 1.1798
(110)111) 2.60067 1.771  4.469 2.608502 1.771°
Al (111y100)  1.78@40 49344 4742 1.7802 0.7448
Cu (100)110) 2.38%942 0.971 4.944 0.98° 2.38%02 0.971°
(110)111) 2.46354 1.418 4557 2.46%03 1.4197°
Pb  (111)100) 1.883%17 0.646 5617 1.838  0.647
Ag (100Y110) 1.68895 0.847 5.795 0.84% 1.633§  0.849
(110)111) 1.63348 1.231 5448 1.6785 1.234°
Rh  (111y100) 126396 0.568  4.397 1.266301 0.570°
Au (100)110) 1.62854 0.838 4554 0.89% 1.62Q§  0.838
(110)111) 1.78%46 1.249  4.247 1.708)01 1.249°

Ca (100) 6.754 6.756 0.002

(110) 7.052 7.053 0.001

(111) 6.471 6.474 0.003

Sr (100) 7.304 7.306 0.002

(110) 7.599 7.600 0.001

(111) 7.021 7.023 0.002

Ir (100) 4.420 4.421 0.001

(110) 4.569 4.569 0

(111) 4.278 4.278 0

Th (100) 6.079 6.080 0.001

(110) 6.296 6.296 0

(111) 5.868 5.870 0.002

#New ECT method, using analytical Lambert evaluatjt8]
® Old ECT method, using numerical evaluation .[25], 2

! L = B — ot B
JGE; '-'-L-':I - { ntq\'urﬁrrlmf aﬂilnrﬂbn‘t )/ﬂfﬁ-HUMf”fM

Table 4. Rigid surface energies for low-index fcc atals



(111) 1.193 0.535 1.19  0.535
Al (100) 1.286 0.656 0.73° 1.289"  0.657
(110) 1.384 0.998 1.387° 1.000°
(111) 0.918 0.406 0.922°  0.407°
Pb (100) 0.568 0.435 0.568"  0.435°
Element  Cti30) AECT.39a7) ABGF9 AECT 36992 c6119i
1 0.419 278 429
o GEGRN PERR gD evaom  dudy ARV
(110) 3.243 (Pr2€5id) 3.251° 2075
@11 2325 0-909 2333 0912
Ca (100) 0.461 0.448 0.462°  0.449
(110) 0.480 0.660 0.483°  0.665
(111) 0.353 0.298 0.356°  0.300°
Sr (100) 0.355 0.410 0.355°  0.410°
(110) 0.368 0.601 0.36%"  0.603
(111) 0.277 0.277 0.277° 0277
Ir (100) 3.907 1.801 3.898° 1.796°
(110) 4.046 2.637 4.040°  2.633
(111) 2.978 1.188 2.971° 1.186°
Th (100) 1.445 1.166 1.443° 1.164°
(110) 1.507 1.718 1.510° 1.722°
(111) 1.154 0.806 1.155°  0.807°
New ECT method, using analytical Lambert evaluat|@8]
®Old ECT method, using numerical evaluation .[23], 2
Table 5. Experimental and theoretical surface eneiigs (in Jmi?) for FCC Metals
Element Crystal AECT First Principles TB® MEAM ¢ EAM MAEA Expt'
face (Present Calculations M"
(hkl) )
Ni (100) 3.125 2.426° 2.435 1.580,1.654  1.304
(110) 3.231 2.368 2.384 1.730,1.786  1.417
(111) 2.396 2.630:2.01F 2.036 1.450,1.5460  1.170  2.450
Pd (100) 2.303  1.900,1.860,2.326 1.750 1.659 1.370,1.15%7  1.018
(110) 2.381 1.970, 2.22% 1.860  1.470 1.490,1.2460  1.119
(111) 1.752  1.88C,1.640,1.926¢ 1570 1.381  1.220,1.074  0.926  2.050
Pt (100) 2.458 2.48¢, 2.73%4 2.830 2167 1.650,1.228  1.079
(110) 2.607 2.81¢ 2970 2131 1.750,1.309  1.188
(111) 1.790 2.35¢, 2.29% 2510 1.656  1.440,1.126  0.902  2.480
Cu (100) 2.385 2.09¢, 2.166 1930 1.651 1.280,1.260  1.006
(110) 2.463 2.31¢, 2.23F 2.040 1.642 1.400,1.36F  1.106
(111) 1.833 1.960, 1.95% 1.730  1.409 1.170,1.186¢ 0939  1.830
Ag (100) 1.628  1.200,1.210,1.206 1.290 1.271  0.705,1.82f  0.752
(110) 168731290, 1266, 123814201222 0.770, 1883 0833
(111) 1.262 1120, 1.216,1.17¢ 1.140 1.089 0.625,0.76%  0.713  1.250
Au (100) 1.620 1.710, 1.627 1.690 1.084 0.918 0.683  0.713
(110) 1.706 1.79G, 1.700 1.850  1.115 0.980,0.728  0.794
(111) 1.193 1.610, 1.28% 1480 0.886 0.790,0.618  0.640  1.500
Al (100) 1.286 1.34F 0.877 0.579 0.476
(110) 1.384 1.27F 0.969 0.627 0.515
(111) 0.918 1.27C, 1.199 0.618 0.524 0.396  1.160
Pb (100) 0.568 0.37F 0.424
(110) 0.599 0.44% 0.431




(111) 0.419 0.32F 0.366

Rh (100) 3.105  2.90C,2.810,2.79¢ 2570  2.902 2.137
(110) 3.243 2.880, 2.89¢ 2710 2921 2.272
(111) 2.325  2.780,2530,2.47F 2.460  2.598 1.834

Ca (100) 0.461 0.54%

(110) 0.480 0.58%
(111) 0.353 0.35Z, 0.56F%

Sr (100) 0.355 0.408
(110) 0.368 0.43%

(111) 0.277 0.287 0.42%

Ir (100) 3.907 3.72% 2.950  2.907 2.569
(110)  4.046 3.606° 3.190  3.058 2.664
(111) 2.978 2.97F 2590 2.835 2.038

Th (100) 1.445 1.468
(110) 1.507 1.45¢
(111) 1.154 1.476

0.600

2.700

0.490

0.410

3.000

1.500

& LMTO-ASA calculation, [26]
FP LMTO calculations, using seven-layer slabs,] [27
°FCD calculations, [28]

Tight-bindingtotal-energy calculations, .[29]

¢ Modified embedded atom calculations, [30]

"Embedded atom calculations for FCC metals, [31]

9 Embedded atom calculations for FCC metals, [32]

" Modified analytical embedded atom method calcotej .[33]
Experimental surface energies tabulated by deBoar [84]

5.0 Conclusion

We have in this study employed the new anal/ggjuivalent crystal theory method to provide acse
surface energy for fcc metals. In this work thredfaces were considered for the thirteen fcc mefdisse
are the (100), (110) and the (111) surfaces. We Baecessfully extended the surface energy resite

AECT method first proposed by Zypman and Ferraotefdc from seven to thirteen fcc metals. We have

also extended the surface energy results fromlid@) (face to include the (110) and (111) faces.

The surface energies of the thirteen fcc metaleevieund to be in good agreement with the
available first principles and experimental dataefgies of the fcc metals are uniformly larger tlia@
corresponding results from the EAM, MEAM, MAEAM amidht binding (TB) model, in agreement with
experiment. Further, it has been found that théasarenergy results from this study consistentlypsut
the trend,0111 < 0199 < 0110 fOr fcc metals, which then shows that the denpasked fcc (111) surface
posses the lowest energy..

In this study the effect of relaxation on the ctdted surface energies is ignored. According tofitse
principles work by Feibelman [22] and by Mansfieldal. [23] , the effect of relaxation on the cédted
surface energy of a particular crystal facet may film 2% to 5% depending on the roughness. Thezef
the neglect of relaxation in this study has ligféect on the accuracy of the calculated surfaczges.
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