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Abstract 
 

The surface energies of 3 surfaces of 13 fcc metals have been calculated 
using the new analytical algorithm for equivalent crystal theory (ECT). 
This is an extension of the work of Zypman and Ferrante which reported 
surface energy results for only the (100) surface of seven fcc metals. Our 
results show that, for all the fcc metals, the surface energies of (110) are 
higher than that of the (100) and the (111) surfaces. The present surface 
energy results compares well with the available energy results of Zypman 
and Ferrante. And also, in good agreement with an earlier surface energy 
results of Aghemenloh and Idiodi using the old ECT. The ordering of the 

three low-index surface energies is 110100111 σσσ << , in agreement with 
other theoretical results. Thus, the (111) plane has the lowest energy. 
Generally, our computed results are in good agreement with the results of 
both experiment and first principles calculations. 

 
1.0 Introduction 
Surface energy is an important physical quantity. Many surface phenomena such as reconstruction, 
adsorption, shape transition in nanoscale particles, alloying, epitomical growth, oxidation, corrosion, 
catalysis, crystal growth [1-5], etc are directly related to the structure and energy of surfaces [6,7]. So it is 
necessary to know the surface energies for various surfaces. However, determination of surface energy is 
fraught with problems. The first is that experimental measurements are more commonly found for 
polycrystalline materials which are subject to errors due to surface-active contaminants. Secondly, 
experimental values are not generally available, and in those cases where they are, the experimental 
predictions vary widely. Thirdly, in the last few years, in spite of increasing effort on first principle 
calculations, first principle results are plagued with instabilities and lack of convergence. To avoid these 
problems and especially the heavy computation involved in ab initio methods, Semi-empirical methods [8-
11] were developed.  
A semi-empirical approach to the many-body problem consists in determining a functional form for the 
cohesive energy based on a physical model. This function is fitted to experimental results to estimate the 
parameters required for complete description. This explicit function is in turn used to calculate some other 
material properties like defect energies etc. Various semi-empirical models derived in this manner have 
been successful in describing a wide range of material properties [8-11]. However, surface energies 
predicted by some of these models are significantly lower than reported experimental values or results from 
ab initio calculations. A major drawback in some of these semi-empirical methods is the lack of 
experimental values for the basic inputs like the vacancy formation energies and the associated 
uncertainties in the cases where they are available.  
 The equivalent crystal theory method (ECT) since its introduction have been extensively used to describe 
the energetic of defects in metals [12, 13] and alloys [14, 15], and also in the study of charge transfer in 
metal nano-clusters [16].  More recently the ECT was extended to hcp metals to calculate surface energies 
[17]. However, the major constraint in the implementation of the ECT method at present is the time 
limiting step involved in finding the root of the equations  
 



 
  

which might be important for complex defects and large systems.  
To overcome this constraint, recently Zypman and Ferrante [18] introduced an analytical algorithm to 
invert the ECT equations that reduces the computational speed by employing the Lambert function. This 
new algorithm of the ECT has successfully been applied to calculate the (100) surface energy of seven fcc 
metals. The aim of this study therefore, is to extend the surface energy results of Zypman and Ferrante [18] 
from the seven fcc metals to other important fcc metals in the literature, and also to include the two other 
low-index crystal faces, the (110) and (111) faces.  
The remainder of this paper is organized as follows. In section 2, we give a brief discussion of the new 
analytical ECT method. In section 3, we discuss the analytical ECT method of calculating the surface 
energies of fcc metals. The results of surface energies for 13 fcc metals are reported in section 4, along with 
the results obtained by other workers. Concluding remarks are giving in section 5. 
 
2. The New Analytical ECT Method 

     In ECT the total energy of a collection of atoms in a defect is the sum of individual energy 
contributions U(aeq), where aeq is called equivalent lattice parameter and U(aeq), is explicitly given by the 
Universal binding energy relation (UBER) [19] which is simply parameterized in terms of physically 
known constants in the Rydberg function. In ECT an atom near a defect is viewed as sensing a reduced or 
increased electron density. This condition is then interpreted as a point on the UBER in terms of an 
expanded or contracted perfect crystal. Perturbation theory is used to obtain the equivalent lattice parameter 
of the expanded or contracted crystal, aeq in terms of a0 the lattice parameter corresponding to the perfect 
crystal. Once aeq is known, the energy of the atom near the defect is obtained from that point on the UBER. 
The value of aeq is obtained in terms of a0 from the inversion of the basic ECT transcendental equation. 
Although conceptually simple, the inversion process represents the computational time limiting step in the 
implementation of the algorithm. 
      The implementation of ECT involves a perturbation equation that determines the energy of a solid with 
a defect in terms of a perfect crystal of the same substance expanded or contracted from the equilibrium 
lattice parameter to a new “equivalent” lattice parameter. This procedure is equivalent to finding an 
embedding electron density ρ. A typical atom at a given location is embedded in a density ρ produced by 
the electronic charge density of the remainder atoms in the system. The yet unknown, equivalent nearest-
neighbour distance, Req satisfies  

             
(1.0) 

where N1 is the number of nearest – neighbours in the minimum energy crystal structure corresponding to 
that atom, N2 is the number of next-nearest neighbours, C2 is the ratio of the next-nearest-neighbour 
distance to the nearest-neighbour distance, and α and λ are known material-dependent constants. In many 
applications of ECT to evaluate defect formation energies,  ρ, on the right-hand side of Eq. (1.0), is written 
in a form similar to the left-hand side. For example, the density produced by neighbours on an atom next to 
a vacancy is 
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vacancy is located) and no second near neighbour. In this example, the lattice is unrelaxed and 
consequently R0 represents the nearest neighbour distance of the perfect crystal. This shows explicitly that 
Req is the unknown in Eq. (1.0). Once Req is obtained, ECT used this value in the UBER function, U(aeq).  
The corresponding energy cost is then U(aeq) – U(ao). In what follows, we adopt the method of Zypman 
and Ferrante [18]. 

     The general problem is therefore to find the function 

Req = G(ρ)                             (2.0) 



Equation (1.0) can be cast in dimensionless form by defining 
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The constant αλ is about unity or larger and C2 > 1, thus γ > 0, which is a conservative lower bound for γ. 
By using appropriate values from Table 1, one finds that 04.0221 <− ypp eycn γ

 as earlier reported [18]. 

Thus, in Eq. (4.0), the second term inside the parenthesis is much smaller than unity, and therefore it is 
dropped in many real applications. Thus, the problem reduces to finding the roots of 

xey yp =−
        (5.0) 

A sketch of Eq. (5.0) is shown in Fig.1. In Fig.1, the root y1 corresponds to the smaller lattice parameter 
while the root y2 corresponds to the larger lattice parameter. Creating a vacancy effectively lowers the atom 
density thereby increasing y [8]. Thus the physically accepted root is y2. 

      Equation (5.0) can now be recast in the Lambert form:  
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with  the solution 
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where W-1 is the Lambert function [20, 21]. The sub index “-1” labels the branches. The Lambert function 
has an infinite number of complex branches with only two purely real, the branches known as “0” and “-1”. 

     Define ( mm xy , ) as the point corresponding to the maximum attainable density. My  may be found by 

taking the maxima of Eq. (4.0) as 
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Eq. (8.0) can be solved for γ as 
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Again, taking the inverse of the maxima of Eq. (9.0) to obtain My , we have 
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   The only non-trivial solution to Eq. (10.0) is for the argument of the Zero branch to be -1/e. For a 
complete discussion of the above equations and the conditions that lead to its derivations, the interested 
reader is referred to the work of Zypman and Ferrante [18], where the details can be found. According to 
Zypman and Ferrante, the smallest possible value of y (ymin) is given as 
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Eq.(11.0) was used to evaluate the ymin in Table 2. 
 
3.0 Calculation of Surface Energy  
 
Here, we implement the analytical algorithm of the ECT by Zypman and Ferrante. The surface energies of 
the three low-index planes of thirteen fcc metals is obtained by this algorithm. However, it is emphasize 
that only the volume term of the ECT is retained, while neglecting the other terms. The neglect of the 
higher order terms of the ECT has been justified from previous studies [17, 22, 23]. In what follows we 
first solve Eq.(4.0) numerically, and then by the Lambert function as given by [18]. 
 For the real density of the (111) plane, we notice that a typical surface atom losses 3 nearest-
neighbours (out of 12 in bulk) and 3 next nearest-neighbours (out of 6 in the bulk). Then 
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where α, ρ and λ are material constants whose values depends on each metal. And C2 and R0 are given as 
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Now, after obtaining the value of x from Eq. (13.0), we then compute the nearest neighbour distance Req 
from the relation 
         Req =             (15.0)  

Once the value of y has been obtained from Eq.(14.0) and knowing the value of the material constant α, we 
can then calculate the value of Req from Eq. (15.0). Next, we compute the lattice parameter aeq from 

aeq = C2Req                  (16.0) 
For the real density of the (110) plane, two surfaces are involved, the surface plane (j = 1) and the first 
surface below the surface plane (j=2). The equations for ρ to be solved are: 
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and 

( ) ( ) 














 +−+−= 020200

1
exp4exp11 RCRCRR pp

λ
ααρ    (17.0b) 

   The real density of the (100) plane also involves two surfaces like in the case of the (110) plane. The 
surface atom losses 4 nearest – neighbours and 1 next nearest-neighbour atom for the surface plane (j=1), 



while the second plane (j=2) losses only 1 next nearest – neighbour atom. Therefore, the equations to be 
solved are: 
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Eqs(17.0) and (18.0) are then solved for ρ and Eqs.(13.0) and (14.0) for x and y. Thereafter, Eqs.(15.0) and 
(16.0) are solved for Req and aeq for each  fcc metals. 
    Once the values of Req are known from Eq. (15.0), then the values of a* and F* can be calculated directly 
[8]. The surface energy for each of the three low-index faces is then calculated from the formulas 

( )[ ]jaFE
a j

*,*
3

4
2111 ∑∆=σ       (19.0) 

( )[ ]jaFE
a j

*,*
2
2110 ∑∆=σ       (20.0) 

( )[ ]jaFE
a j

*,*
2
2100 ∑∆=σ        (21.0) 

   The sum over j includes only one atom per atomic layer, and usually only a few layer need be included 
for metal low index planes. 
 
4.   Results and Discussion 
 
     The equivalent crystal nearest neighbour distance Req is a very vital parameter in the ECT method, since 
it is the parameter needed in the calculation of surface energy. Req values are also needed in the 
computation of aeq, the equivalent lattice parameters. These are shown in Table 3 and have been employed 
to calculate the values of surface energies exhibited in Table 4. Table 3 also displays the relative difference 
between the Lambert evaluation method (AECT) and the numerical evaluation (Newton –Raphson method) 
of the ECT. Table 3 provides a comparison of this present work using Lambert evaluation with a previous 
work by Zypman and Ferrante [18]  and other previous studies [24,25]   which used the original ECT. It 
can be seen from the table that there is a good agreement between the two ECT methods. Like in Table 3, 
the present AECT results of surface energies in Table 4 compares well with the results of Zypman and 
Ferrante where results are available. The results are also in good agreement with the earlier work of 
Aghemenloh and Idiodi [24]. 
       The summary of our surface energies obtained for the three low – index faces of the thirteen fcc metals 
using the New ECT method are presented in Table 5. These results are then compared with the results from 
first principles calculations [26-28]  the tight – binding (TB) method [29] , the embedded atom method 
(EAM) [30,31], the modified embedded atom method (MEAM)[32],the modified analytical embedded 
atom method (MAEAM) [33], and experiment [34]. For all the theoretical models whose results are 
presented in table 5, the closed – packed (111) face has the lowest energy. It is important to note that while 
the AECT, TB, EAM, MAEAM and the first principles results consistently support the trend σ111 < σ100 < 
σ110, the results of the MEAM in Table 5 do not always support this trend. In a few cases the low density 
(110) surface energy is higher than the (100) surface energy. The AECT surface energies are uniformly 
larger and closer to experiment than those obtained by the EAM, which is known to under estimate surface 
energies in fcc metals [8, 29, 22]. The surface energies from this study are generally closer to experiment 
than those obtained by the MEAM [32], MAEAM [33] and TB [29] and in good agreement with first 
principles calculations [26-28]. 

 
 
 
 



 
 

 
 
Fig. 1. shows Eq. (5) graphically illustrating the appearance of two roots: The root  is to the left of the 
maximum that correspond to a lattice parameter smaller than ,while the root  to the right corresponds 
to the  lattice parameter larger than .  
 
Table 1. Pure metal properties and the calculated ECT constants for fcc metals. All input parameters 
were taken from the work of Aghemenloh and Idiodi [24]. 
Element Cohesive  

energy  
∆E(eV) 

Lattice 
constant        
a(Å) 

Ef
1v 

(eV) 
Bulk 
Modulus(
1011Jm-3) 

p Ɩ(Å) λ(Å) α(Å-1) rWSE(Å) 

Ni 4.44 3.51 1.60 1.876 6 0.271 0.761 3.013 1.372 

Pd 3.94 3.89 1.40 1.955 8 0.237 0.667 3.611 1.520 

Pt 5.85 3.92 1.30 2.884 10 0.237 0.667 4.534 1.532 

Cu 3.50 3.61 1.30 1.420 6 0.272 0.766 2.934 1.411 

Ag 2.96 4.08 1.19 1.087 8 0.269 0.757 3.334 1.594 

Au 3.78 4.07 0.96 1.803 10 0.237 0.665 4.336 1.590 

Al 3.34 4.04 0.66 0.794 4 0.336 0.946 2.104 1.579 

Pb 2.04 4.95 0.5 0.488 10 0.303 0.852 3.539 1.937 

Rh 5.75 3.80 1.71 2.704 8 0.247 0.693 3.726 1.485 

Ca 1.84 5.58 0.6 0.152 6 0.486 1.365 1.864 2.181 

Sr 1.72 6.08 0.6 0.116 8 0.515 1.447 2.160 2.376 

Ir 6.94 3.84 2.35 3.704 10 0.2530 0.647 4.417 1.501 

Th 6.20 5.08 2.0 0.543 12 0.494 1.389 3.617 1.985 

 

 
 

 

 
 

 

 
 



Table 2. Smallest value of У  and corresponding γγγγ values for thirteen fcc metals.  
 

Element Уmin    Z ≡≡≡≡ n21c
pe-γγγγy 

Ni 

Pd 

Pt 

Cu 

Ag 

Au 

Al  

Pb 

Rh 

Ca 

Sr 

Ir  

Th 

5.282 

6.960 

8.579 

5.282 

6.960 

8.579 

3.537 

8.579 

6.960 

5.282 

6.960 

8.579 

10.150 

1.032 

1.002 

0.882 

1.044 

0.975 

0.906 

1.126 

0.883 

0.962 

0.970 

0.867 

0.909 

0.696 

0.017 

0.007 

0.008 

0.016 

0.009 

0.007 

0.037 

0.008 

0.010 

0.024 

0.019 

0.066 

0.027 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. ECT equivalent lattice parameters, and the relative difference between Lambert            
     evaluation (AECT) and numerical evaluation (ECT). 
 

Element Crystal face 
(hkl) 

aeq (Å) 
(Present) 

aeq (Å)a 
 

aeq (Å)b 
 

 



    
 a New ECT method, using analytical Lambert evaluation .[18]  
   b Old ECT method, using numerical evaluation .[24, 25]  
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Table 4. Rigid surface energies for low-index fcc metals 
 

Ni 
 
 

Pd 
 
 

Pt 
 
 

Cu 
 
 

Ag 
 
 

Au 
 
 

Al  
 
 

Pb 
 
 

Rh 
 
 

Ca 
 
 

Sr 
 
 

Ir 
 
 

Th 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

4. 213 
4.394 
4.041 
4.516 
4.680 
4.359 
4.422 
4.549 
4.293 
4.331 
4.517 
4.154 
4.808 
4.992 
4.632 
4.604 
4.747 
4.467 
4.740 
4.942 
4.554 
5.617 
5.795 
5.448 
4.396 
4.554 
4.246 
6.754 
7.052 
6.471 
7.304 
7.599 
7.021 
4.420 
4.569 
4.278 
6.079 
6.296 
5.868 

4.21 
 
 

4.52 
 
 

4.42 
 
 

4.33 
 
 

4.81 
 
 

4.60 
 
 

4.74 

4.214 
4.395 
4.042 
4.517 
4.681 
4.360 
4.422 
4.559 
4.294 
4.332 
4.517 
4.155 
4.811 
4.995 
4.634 
4.605 
4.749 
4.469 
4.742 
4.944 
4.557 
5.617 
5.795 
5.448 
4.397 
4.554 
4.247 
6.756 
7.053 
6.474 
7.306 
7.600 
7.023 
4.421 
4.569 
4.278 
6.080 
6.296 
5.870 

0.001 
0.001 
0.001 
0.001 
0.001 
0.001 

0 
0.01 
0.001 
0.001 

0 
0.001 
0.003 
0.003 
0.002 
0.001 
0.002 
0.002 
0.002 
0.002 
0.003 

0 
0 
0 

0.001 
0 

0.001 
0.002 
0.001 
0.003 
0.002 
0.001 
0.002 
0.001 

0 
0 

0.001 
0 

0.002 

Ni 
 
 

Pd 
 
 

Pt 
 
 

Cu 
 
 

Ag 
 
 

Au 
 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 

3.125 
3.231 
2.396 
2.303 
2.381 
1.752 
2.458 
2.607 
1.790 
2.385 
2.463 
1.833 
1.628 
1.673 
1.262 
1.620 
1.706 

1.203 
1.759 
0.799 
1.089 
1.592 
0.717 
1.180 
1.771 
0.744 
0.971 
1.418 
0.646 
0.847 
1.231 
0.568 
0.838 
1.249 

1.22a 

 
 

1.10 a 
 
 

1.31 a 
 
 

0.98 a 
 
 

0.84 a 
 
 

0.89 a 
 

3.123b 

3.234b 

2.398b 

2.302 b 
2.381 b 
1.752 b 
2.457 b 
2.608 b 
1.791 b 
2.385 b 
2.465 b 
1.835 b 
1.632 b 
1.678 b 
1.266 b 
1.620 b 
1.706 b 

1.202 b 
1.761 b 
0.799 b 
1.089 b 
1.592 b 
0.717 b 
1.1798 b 
1.771 b 
0.7448 b 
0.971 b 
1.4197 b 
0.647 b 
0.849 b 
1.234 b 
0.570 b 
0.838 b 
1.249 b 



 
 

a New ECT method, using analytical Lambert evaluation .[18]  
   b Old ECT method, using numerical evaluation .[24, 25]  
 

 
Table 5. Experimental and theoretical surface energies (in Jm-2) for FCC Metals 

Element Crystal 
face 
(hkl) 

AECT 
(Present

) 

First Principles 
Calculations  

TBd 
 

MEAM e 
 

EAM 
 

MAEA
M h 

 

Expt i 
 

Ni 
 
 

Pd 
 
 

Pt 
 
 

Cu 
 
 

Ag 
 
 

Au 
 
 

Al  
 
 

Pb 
 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 

3.125 
3.231 
2.396 
2.303 
2.381 
1.752 
2.458 
2.607 
1.790 
2.385 
2.463 
1.833 
1.628 
1.673 
1.262 
1.620 
1.706 
1.193 
1.286 
1.384 
0.918 
0.568 
0.599 

2.426C 

2.368C 

2.630a 2.011C 

1.900a, 1.860b, 2.326C 

1.970b, 2.225C 

1.880a, 1.640b, 1.920C 
2.480a, 2.734C 

2.819C 

2.350a, 2.299C 

2.090a, 2.166C 

2.310a, 2.237C 

1.960a, 1.952C 

1.200a, 1.210b, 1.200C 

1.290a, 1.266b, 1.238C 

1.120a, 1.210b, 1.172C 

1.710a, 1.627c 

1.790a, 1.700c 

1.610a, 1.283C 

1.347C 

1.271C 

1.270a, 1.199C 

0.377C 

0.445C 

 
 
 

1.750 
1.860 
1.570 
2.830 
2.970 
2.510 
1.930 
2.040 
1.730 
1.290 
1.420 
1.140 
1.690 
1.850 
1.480 

 
 
 
 
 

2.435 
2.384 
2.036 
1.659 
1.470 
1.381 
2.167 
2.131 
1.656 
1.651 
1.642 
1.409 
1.271 
1.222 
1.089 
1.084 
1.115 
0.886 
0.877 
0.969 
0.618 
0.424 
0.431 

1.580f, 1.654g 
1.730f, 1.786g 

1.450f, 1.540g 

1.370f, 1.157g 

1.490f, 1.240g 
1.220f, 1.074g 

1.650f, 1.228g 

1.750f, 1.309g 

1.440f, 1.120g 

1.280f, 1.260g 

1.400f, 1.361g 

1.170f, 1.180g 

0.705f, 1.821g 

0.770f, 1.883g 

0.625f, 0.765g 

0.918f, 0.683g 

0.980f, 0.728g 

0.790f, 0.618g 

0.579g 

0.627g 

0.524g 

1.304 
1.417 
1.170 
1.018 
1.119 
0.926 
1.079 
1.188 
0.902 
1.006 
1.106 
0.939 
0.752 
0.833 
0.713 
0.713 
0.794 
0.640 
0.476 
0.515 
0.396 

 
 

 
 

2.450 
 
 

2.050 
 
 

2.480 
 
 

1.830 
 
 

1.250 
 
 

1.500 
 
 

1.160 
 
 

 
Al  
 
 

Pb 
 
 

Rh 
 
 

Ca 
 
 

Sr 
 
 

Ir 
 
 

Th 

(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

1.193 
1.286 
1.384 
0.918 
0.568 
0.599 
0.419 
3.105 
3.243 
2.325 
0.461 
0.480 
0.353 
0.355 
0.368 
0.277 
3.907 
4.046 
2.978 
1.445 
1.507 
1.154 

0.535 
0.656 
0.998 
0.406 
0.435 
0.649 
0.278 
1.401 
2.070 
0.909 
0.448 
0.660 
0.298 
0.410 
0.601 
0.277 
1.801 
2.637 
1.188 
1.166 
1.718 
0.806 

 
0.73 a 

 

1.193 b 
1.289 b 
1.387 b 
0.922 b 
0.568 b 
0.599 b 
0.419 b 
3.112 b 
3.251 b 
2.333 b 
0.462 b 
0.483 b 
0.356 b 
0.355 b 
0.369 b 
0.277 b 
3.898 b 
4.040 b 
2.971 b 
1.443 b 
1.510 b 
1.155 b 

0.535 b 
0.657 b 
1.000 b 
0.407 b 
0.435 b 
0.649 b 
0.278 b 
1.404 b 
2.075 b 
0.912 b 
0.449 b 
0.665 b 
0.300 b 
0.410 b 
0.603 b 
0.277 b 
1.796 b 
2.633 b 
1.186 b 
1.164 b 
1.722 b 
0.807 b 

Element Crystal 

face (hkl) 

AECT (Jm-2) 

(Present) 

AECT 

(eV/atom) 

(Present) 

    AECT 

(eV/atom) 

      ECT 

     (Jm-2)   

  ECT 
(eV/atom) 

Element Crystal 

face (hkl) 

AECT (Jm-2) 

(Present) 

AECT 

(eV/atom) 

(Present) 

    AECT 

(eV/atom) 

      ECT 

     (Jm-2)   

  ECT 
(eV/atom) 



 
Rh 

 
 

Ca 
 
 

Sr 
 
 

Ir 
 
 

Th 

(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

0.419 
3.105 
3.243 
2.325 
0.461 
0.480 
0.353 
0.355 
0.368 
0.277 
3.907 
4.046 
2.978 
1.445 
1.507 
1.154 

0.321C 

2.900a, 2.810b, 2.799C 

2.880b, 2.899C 

2.780a, 2.530b, 2.472C 

0.542C 

0.582C 
0.352a, 0.567C 

0.408C  
 0.432C 

0.287a, 0.428C 

3.722C 

3.606C 

2.971C 

1.468C 

1.450C 

1.476C 

 
2.570 
2.710 
2.460 

 
 
 
 
 
 

2.950 
3.190 
2.590 

0.366 
2.902 
2.921 
2.598 

 
 
 
 
 
 

2.907 
3.058 
2.835 

 
2.137 
2.272 
1.834 

 
 
 
 
 
 

2.569 
2.664 
2.038 

0.600 
 
 

2.700 
 
 

0.490 
 
 

0.410 
 
 

3.000 
 
 

1.500 
 

 

a 
 LMTO-ASA calculation, [26] 

bFP LMTO calculations, using seven-layer slabs,  [27] 
c FCD calculations, [28]  
Tight-binding total-energy calculations, .[29] 
e Modified embedded atom calculations, [30] 
f Embedded atom calculations for FCC metals, [31] 
g Embedded atom calculations for FCC metals, [32] 
h Modified analytical embedded atom method calculations, .[33]  
Experimental surface energies tabulated by deBoer et al. [34] 

 

5.0 Conclusion 
    We have in this study employed the new analytical equivalent crystal theory method to provide a set of 
surface energy for fcc metals. In this work three surfaces were considered for the thirteen fcc metals. These 
are the (100), (110) and the (111) surfaces. We have successfully extended the surface energy results of the 
AECT method first proposed by Zypman and Ferrante for fcc from seven to thirteen fcc metals. We have 
also extended the surface energy results from the (100) face to include the (110) and (111) faces. 
 The surface energies of the thirteen fcc metals were found to be in good agreement with the 
available first principles and experimental data. Energies of the fcc metals are uniformly larger than the 
corresponding results from the EAM, MEAM, MAEAM and tight binding (TB) model, in agreement with 
experiment. Further, it has been found that the surface energy results from this study consistently support 
the trend, σ111 < σ100 < σ110 for fcc metals, which then shows that the densest packed fcc (111) surface 
posses the lowest energy.. 
In this study the effect of relaxation on the calculated surface energies is ignored. According to the first 
principles work by Feibelman [22] and by Mansfield et al. [23] , the effect of relaxation on the calculated 
surface energy of a particular crystal facet may vary from 2% to 5% depending on the roughness. Therefore 
the neglect of relaxation in this study has little effect on the accuracy of the calculated surface energies. 
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