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Abstract 

 
          The ground state energy of the hydrogen molecule was 
numerically analysed using quantum Monte Carlo methods. The 
QMC methods used in this work are the Variational Quantum Monte 
Carlo [VQMC] and the Path Integral Monte Carlo [PIMC]. This 
analysis was done under the context of the accuracy of Born-
Oppenhiemer approximation [fixed nuclei restriction]. The ground 
state energies of hydrogen molecule for different interproton 
separations 








 −
0

0.14.0 A  are computed using the two different 

methods mentioned [VQMC and PIMC] and compared with previous 
numerical and empirical results that are essentially exact. The results 
from the Path Integral Monte Carlo methods of calculations are 
found to be precisely approaching the required order of accuracy. 

 
 
                 Keywords: Quantum Monte Carlo Methods and Born-Oppenhiemer approximation 
 
1.0 Introduction 
 
    The determinations of the ground state energies for a molecular system constitute a reliable problem of 
interest in theoretical condensed matter physics. The method is based on solving the corresponding time-
independent Schrödinger equation (TISE) and the time-dependant Schrödinger equation (TDSE), where the 
fixed nuclear restrictions or the non fixed nuclear restrictions can be considered. In this work the fixed 
nuclear restrictions is considered. (Born-Oppenheimer Approximation) 
The non relativistic TISE has the general form 

{ }( ) { }( )rErH ψψ =
∧

                                                                                                      

 (1.1) 
Where ψ represents wavefunction for the nth electron, {r} = {r 1---------rn} represents the coordinates of the 

nth electron, E is the eigen-energy and  is the Hamiltonian. 
The Hamiltonian which is always represented as the total energy summing the kinetic and potential energy 
can be written as 
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While the imaginary time-dependant Schrödinger equation has the form 

,ψψ ∧
=

∂
∂

H
t

iη                                                                                                    (1.3) 

It is not possible to obtain solutions to the Schrödinger equations analytically in many quantum 
systems even when the system contains only a few electrons. Instead numerical solutions to the 
Schrödinger equations are employed. 

The numerical evaluation of the ground state energies for H2 molecule started in 1933 with the work of 
[1]. Their work represented one of the first successes in solving the Schrödinger equation for molecules. 
After three decades more accurate results for the hydrogen molecule were obtained by [2] and also by [3], 
this establishes the basis for further research. They implemented a variational approach in which the wave 
function is expressed in elliptic coordinates and using a method of [6] 

Before the advent of quantum mechanics all numerical solutions so far obtained made use of classical 
approach to arrive at their conclusions which were based mainly on the application of mean field 
approximations. Calculations based on Hatree-Fock (HF) theory are examples. The fundamental ideology 
behind the mean field approximations is to consider each electron in isolation and to assume that the effects 
of its interaction with other electrons can be well approximated by the mean field produced by these other 
electrons. In a nutshell the electrons in the system are assumed to be uncorrelated. Therefore numerical 
analysis that employ mean field approximations necessarily exhibit systemic errors. 

As far as the scientific transition is from classical to quantum approaches therefore a remarkable 
difference is expected in employing the quantum approach. The quantum Monte Carlo techniques are a 
way of combining the quantum applications in physics and chemistry with Monte Carlo procedures to 
provide a means to evaluate the electronic properties of a molecular system without making mean-field 
approximations. A quantum Monte Carlo technique calculates the energies of a molecular system by 
considering the wavefunctions as probabilistic distribution and by random sampling them. A comparative 
analysis between quantum Monte Carlo methods and other mean-field methods can be found in [4]. 

The knowledge of refining the Schrödinger equation using Monte Carlo procedures initiated with the 
work of Fermi. In an attempt to describe that work, [7] noted that the Schrödinger equation could be 
expressed as a diffusion equation and simulated by a system of particles undergoing a random walk in 
which there is a probability of multiplication of particles. With the subsequent advances in computer 
technology, Monte Carlo methods have more practical for calculating properties of atomic and molecular 
systems. The random walk methods have been applied to polyatomic ions [6] and molecules [8] using the 
importance sampling technique of [9]. Importance sampling has also been applied to the Green’s function 
quantum Monte Carlo (GFQMC) method used by [3]. 

In this work the ground state energy of hydrogen molecule is numerically analysed using the quantum 
Monte Carlo methods i.e. the variational quantum Monte Carlo (VQMC) and the path integral Monte Carlo 
(PIMC). We have chosen this case because there is an extensive history of accurate theoretical predictions 
and high quality empirical measurements of the ground state energies that could be compared with our 
results. Some of the results include the work of [6], [8] and [13] e.t.c. 

The Variational Monte Carlo simulates the time-independent Schrödinger equation where as the Path 
Integral Monte Carlo simulates the time-dependant Schrödinger equation. It thus eliminates the problem of 
finite time step error, but replaces it by a cut-off of the repulsive potential at small distance necessary for 
the stability of the algorithm [6]. 

The QMC methods have been used in different ways for treating several excitonic systems [12] 
involving coupled nuclear and electronic motion with or without the use of Born-Oppenheimer 
approximation.  

There also have been successful application of QMC technique to the ground state energies in the 
following areas of research [10];-  (a)  the relativistic electron gas 

                         (b)  cohesive energies of solids 
                         (c)  Static response of electron gas 

(d)  Exchange and correlation energies 
(e)  Jellium surfaces 

                                        (f)  Clusters 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 39 - 50 

Ground state energy of H2 molecule …   A . B.  Suleiman  and I. O. B. Ewa  J of NAMP 

(h)  Solid hydrogen 
(i)Formation energies of silicon and self interstitials. 

 
2.0   The methods (Quantum Monte Carlo Methods) 

 
The term “quantum Monte Carlo” encompasses different techniques based on random sampling, which 

involves the combination of quantum approach in physics with Monte Carlo procedures as applied to a 
system. There are many types of QMC but this work focuses mainly on two: Variational quantum Monte 
Carlo (VQMC) which depends on the availability of an appropriate trial wavefunction to determine the 
ground state energy  and the Path integral Monte Carlo (PIMC)  which basically relies on the principles of 
superposition, this is because there are much recent researches that could be compared with the result of 
this work, and specifically considering the case of PIMC which is becoming very authentic nowadays in 
accurate determination of the ground state energy of a molecular system coupling with the fact that this 
method (PIMC) does not require a trial wavefunction in determining the ground state energy of a molecular 
system, instead it is  principally based on the techniques of  superposition. It has also been recommended 
by so many reviewers, i.e. [18], [8], [19], [10] e.t.c. that larger extensions would be to implement a Path 
Integral Monte Carlo method and investigate the difference in the ground state energy of molecular systems 
in order to arrive at a more precise value which will be approaching the empirical values.  

Other QMC methods include the auxiliary-field QMC reviewed by [20], Diffusion Monte Carlo 
(DMC) reviewed by [13] in demonstrating quantum Monte Carlo methods through the study of hydrogen 
molecule, Green’s Function Monte Carlo (GFMC) reviewed by Chen and Anderson in Improved Quantum 
Monte Carlo calculation of the ground state energy of the hydrogen molecule[8], Coupled Electronic Ionic 
Monte Carlo reviewed by M.D. Dewing in describing Monte Carlo methods as applied to hydrogen gas and 
hard spheres [16], Trotter Suzuki Monte Carlo reviewed by J. S. Wang in demonstrating quantum Monte 
Carlo methods [17]  etc. 
 
2.1 Variational Monte Carlo method 

 
The Variational Quantum Monte Carlo (VQMC) is the simpler of the two quantum Monte Carlo 

methods considered in this work. It is based on the combination of the Variational principles and Monte 
Carlo evaluation of integrals. This method relies on the availability of an appropriate trial wavefunction 

Tψ   that is a reasonably good approximation of the true ground state wave function.  

The way to produce good trial wavefunction is describe further in this review. The trial wavefunction 

must satisfy some fundamental conditions. Both Tψ and Tψ∇  must be continuous wherever the potential 

is finite, and the integrals 
TTTT Hand ψψψψ

∧

∫∫
**   must exist [5]. To keep the variance of the energy finite 

we also require 
TT H ψψ

∧

∫
2*  existing. The expectation value of 

∧
H  computed with  

the trial wavefunction Tψ  provides an upper bound on the exact-ground state energy E0: 

( ) ( )
( ) ( ) 0*

*

E
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ψψ

ψψ                                                                    (2.1) 

In a VQMC simulation this bound is calculated using the metropolis Monte Carlo method.  Equation 
(2.1) is rearranged as follows; 
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And the metropolis is used to sample a set of points {Rm : m  = 1, M} from the configuration-space 
probability density  

( )
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2
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ψ
ρ                                                                                     (2.3) 

At each of these points the “local energy” is evaluated and the average energy accumulated is given by 

( )∑
=

≈
M

m
mLV RE

M
E

1

1 .                                                                                    (2.4) 

  
 2.2    The Path Integral Monte Carlo method 
 
The path integral method was introduced by Feynman in 1948. It provides an alternative formulation of 
time-dependant Schrödinger equation. Since its inception the method has found innumerable applications in 
many areas in physics and chemistry [11], its main attraction can be summarized as follows: the method 
provides an ideal way of obtaining the classical limit of quantum mechanics: it provides a unified 
description of quantum dynamics and equilibrium quantum statistical mechanics : it avoids the use of 
wavefunction and thus is the only viable approach to many-body problems: and it leads to powerful 
influence functional methods for studying the dynamics of low-dimensional system coupled to a harmonic 
bath[15]. 
The path integral formulation is based on the principles of superposition, which leads to celebrated 
quantum interference observed in the microscopic world. Thus the amplitude for making a transition 
between two states is given by the sum of amplitudes along all the possible paths that connects these states 
in a specified time. 

For a particle of mass m in one dimension, the amplitude to get from a point ax  at time at  to  point bx at 

time bt  is expressed in the path formulations as a sum of contributions from all conceivable paths that 

connects these two points. The contribution of each path ( )tx  is proportional to a phase that is given by the 

action functional ( )[ ]txS   along the path in units of Planck’s constantη : 

( ) ( )[ ]∑∞
txpathsall

txiS
aabb etxtxK η/,:,                                (2.5) 

                                                         ( ) ( ) bbaa xtxxtxwith == ,  

For a time-dependant Hamiltonian VTH += , where T and V are kinetic and potential energy operators 

respectively, thus ( ) ( ) a

N

baabbaabb xtHxxttHxtxtxK 

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(2.6) 
Where ( ) NandNttt ab /−≡∆ is an integer. Inserting complete set of position states one can obtains the 

identity 

( ) ( )∫ ∏∫
∞

∞− =
−−

∞

∞−

∆−−=
N

k
kkNaabb xtiHxdxdxtxtxK

1
111 /exp,:, η        (2.7) 

    bNa xxandxxwhere ≡≡0  

PIMC is mathematically similar to diffusion Monte Carlo [DMC] and shares many of the same advantages. 
In fact it goes further since a trial function is not specified and the method generates a quantum distribution 
directly from the Hamiltonian. Therefore we can define PIMC to be a QMC method which is formulated at 
a positive temperature. Instead of attempting to calculate the properties of a single quantum state, we sum 
over all possible states, occupying them according to the Boltzmann distribution. This might sound 
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hopeless but, Feynman’s imaginary time path integral [15] makes it almost as easy as DMC. The 
imaginary-time paths, instead of being open-ended as they  
 
 

are in DMC, close after an imaginary time ( ) ,1−= TkBβ  where T is the temperature. Also, PIMC seems 

to lead more easily to a physical interpretation of the result of a simulation. 
The path integral offers an insightful approach to time-dependant quantum mechanics and quantum 
statistical mechanics. 
 
2.3 Optimizing the wavefunction 
The positions of the electrons and protons in fig 1 can be used to define the Hamiltonian and the trial  

wavefunctions for the hydrogen molecule. Now considering equation (1.2) and setting 1=== emeη , 

where me and e are the mass and charge of electron respectively. The non-relativistic Hamiltonian based on 
Born-Oppenheimer approximation of the hydrogen molecule can be represented as: 

( ) 







−−−−++∇+∇−=

YXYX rrrrrS
H

221112

2
2

2
1

111111

2

1ˆ              (2.8)                 

 Where 2
1∇ and   2

2∇  are the laplacian with respect to the first and second electron and S is the 

interproton separation. 

              e = electron, p = 
proton 

Fig.1 Coordinates used in describing the Hydrogen Molecule 
 
An appropriate trial wavefunction should respect all the symmetries in equation (2.8), therefore the trial 
wavefunction used in the non fixed nuclei restriction is the product of the four terms: 

43210 ψψψψψ =                                                                                              (2.9)                                                                                       

Each of the first two terms is simply the linear combination of atomic orbital of the  electron 
I = 1, 2 and for two nuclei YX ,=α  

( ) ( )YX arar 111 expexp −+−=ψ                                                             (2.10)                                                                        

            ( ) ( )YX arar 222 expexp −+=ψ      (2.11)                                                                                           

The term 3ψ  is the Jastrow factor which accounts for both electron-electron and electron-proton 

correlation such that the cusp condition are satisfied as 0,21 →αirr  for I =1 or 2 and YorX=α it has 

the form 
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Where i j and k l include the interaction, 12, 1X. 1Y, 2X, and 2Y the wavefunction in (2.12) can be reduced 
to 
 










+
=

12

12
3 1

exp
br

brψ                                                                          (2.13) 

The last term 4ψ  is the harmonic oscillator term intended to include in part the effect of nuclear interaction 

and it is given by  

( )[ ]2
4 exp crd YX −−=ψ                                                                  (2.14)                                                                               

The parameters a, b, c, and d made use of the following atomic unit respectively;- 1.1750, 0.500, 1.401 and 
10.0 [8] 
Equations (2.12, 2.13 and 2.14) are only valid when considering the non fixed nuclei restrictions therefore 
taking the 12-D model. 
In this work the fixed nuclei restriction is considered therefore the coulomb potential in its singular state at 
short distances constitutes an additional constraints on the trial wavefunction, if one of the electron (say e1)  
approaches one of the nuclei say X while the other electron remain fixed, the potential term in e  

(electron) becomes large and negative, since 0→Xir . This must be cancelled by a corresponding 

positive divergence in the kinetic energy term if there is need to keep e (electron) smooth and have a small 

variance in the Monte Carlo quadrature. Thus the trial wavefunction should have a “cusp” at 0→iXr . 

This implies that the molecular orbital should satisfy; 
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2
ψ
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η                    (2.15)                                             

Similar conditions must also be satisfied whenever anyone of the distances r1Y, r2Y,,X or r1 2  vanishes. Using 
the correlated product of the molecular orbit and introducing the factor that expresses the correlation 
between 2 electrons due to their coulomb repulsion as: 

( ) ( )







+
=

r

r
rf

βα 1
exp              (2.16)                                                                        

Hence forth setting the value of α  to satisfy the transcendental equation 

aSe /1

1
−+

=α , and that 
2

2

002
me

awherea
η==α  is the Bohr radius. Thusβ  is the only variational 

parameter at our disposal. 
Conclusively the ideal way of making a plausible choice of the trial function is the correlated product of 
molecular orbitals and considering the case of fixed nuclei restriction: 

( ) ( )., 212121 rfrr ψψ=Φ                                             (2.17)                                                                                    

The first two factors are an independent-particle wavefunction placing each electron in a molecular orbital 
in which it is shared equally between the two protons. A simple choice for the molecular orbital is the 
symmetric linear combination of atomic orbitals centered about each proton, 

( ) ααψ // YiXi
rr

i eer
−− += ,                               (2.18)                                                                               

Putting (2.18) and (2.16) in (2.17) a collection of a justifiable trial wavefunction is attained: 
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 (2.19) is the collection of the trial wavefunction in which the electron-electron cusp condition is satisfied 

automatically by the factor ( )









+ 21

21

12
exp

r

r

β
,while the electron- proton cusp condition is satisfied by the 

factor α/ire−  and also by setting α to satisfy the transcendental equation: 
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aSe /1

1
−+

=α .                                                          (2.20)   

 
3.0  Computing the ground state energy of the hydrogen molecule 
In hydrogen molecule there are two electrons shared by two nuclei as shown in fig 1, this can be simulated 
using quantum Monte Carlo methods discussed in this review. In this work the protons are held in a fixed 
position (B-O approximation) so that the bond made by the electrons can be simulated. The potential 
regulating the protons’ motion at a separation S, is then the sum of the interproton electrostatic repulsion 
and the eigenvalue, E0, of the two-electron Schrödinger equation: 

        )()( 0

2

SE
S

e
SU +=                                                (3.1) 

Where e is the columbic repulsion and E0 is the ground-state energy eigenvalue of the two electron system. 
Thus the ground state energy E0 can be found by solving the corresponding 6-D Schrödinger equation: 

( ) ( )[ ] ( )( )SrrSESVKSrrSH ;,;,)( 21000210 ψψψ =+≡                    (3.2) 
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Where m is the mass of an electron and r i is the position of the ith electron and ( )ψSrrV ;, 21 is the only 

Coulomb force in the potential V(R) therefore, 

             V(R) = ( )ψSrrV ;, 21 = 







−−−−

RLRL rrrrr
e

221112

2 11111                    (3.4) 

Where rij are distances between particles as labelled in fig 1 and R is the 6-D configuration vector, and 
encompassing the two 3-D particle position r1 and r2, an appropriate class of trial function evaluated as 

equation (2.3.12) was used, where ( )irφ  is an independent particle wavefunction, and ( )12rf  is the term 

that deals with the correlations between the two electrons due to their Coulomb repulsion, βα anda ,,  

are variational parameters. Because the wavefunction is required to meet the Coulomb ‘cusp’ conditions, it 

is found that 02a=α  (where a0 is the Bohr radius), and α satisfies the transcendental equation (2.3.13): 

this can easily be solved numerically, to the required degree of accuracy, using the Newton Raphson 
method, leaving only a single variational parameter β . After a series of algebra the local energy is found 

to be: 
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3.1 The algorithm of the code 
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The code is design to operate dual purpose i.e. it can be used to calculate the ground state energy of the 
hydrogen molecule by either using the variational quantum Monte Carlo techniques or the Path Integral 
Monte Carlo techniques whenever it is prompted to do so. The flowchart of this algorithm is illustrated 
overleaf: (figure 2) 
 
Results and Discussion 
 
4.1 Results 
The lowest eigenvalue of the hydrogen H2 molecule (E0) for different interproton separations were 
computed using the variational quantum Monte Carlo [VQMC] and the Path Integral Monte Carlo [PIMC] 
methods with respect to Born-Oppenhiemer approximations. The results were presented graphically in Fig 
3 and Fig 4 respectively. These two results were further accumulated in Fig 5 and compared with the exact 
values obtained  
by [3] which were considered as the values obtained from the first analytical principle calculations. The 
results from fig 3 and 4 were obtained with the correlated sample of the trial wavefunction in equation 
(2.19). The numerical calculations from the PIMC method show a significant improvement towards the 
exact values over the VQMC, this could be attributed to the stochastic gradient approximation method used 
in PIMC.  
Furthermore the results obtained in this work were already programmed to have the following units; the 

interproton separation is measured in Angstroms 






 0

A  and the ground state energy is measured in electron 

volt (eV). Therefore during the course of comparison between other theoretical and empirical methods the 
following standard conversion rates were applied; 

1 Bohr radius = 0.529177249
0

A  
1 Hatree = 27.2eV   

For every interproton separation input depending on the group of ensembles provided the group average 
ground state energy was calculated. 
 
4.2 Discussions  
 
The results obtained in this work are in agreement with the results obtained from the work of [13] where a 
comparison of the ground state energy of hydrogen molecule between Variational Quantum Monte Carlo 
and Diffusion Monte Carlo under the context of Born-Oppenhiemer approximation was analysed. The 
DMC calculation almost gives the exact ground state energy of about -1.16 Hatree at about 1.4 Bohr radius 
of interproton separation. The result also agrees with [6] where they compare results obtained from Green’s 
Function Monte Carlo and Diffusion Monte Carlo in calculating the ground state energy of the Hydrogen 
molecule without considering the fixed nuclei restriction. Another observation from the graphs is that the 

ground state energy was obtained at an interproton separation of about 
0

75.0 A which also falls in the range 
of the theoretically obtained values; this indicates a greater intensity of the lowest energies levels at very 
small interproton separations. 
Table of comparative analysis of ground state energies of Hydrogen molecule calculated by other 
researchers at an interproton separation of 1.4 Bohr is shown in Table 1. 
 
Table 1 

S/N AUTHOR/REFERENCE DATE TYPE GSE (a.u) 
1 Koloz & Wolniewicz [3] 1968 Exact (theory) BO Variational; -1.1744 

2 Traynor, Anderson & Boghosian 
         [6] 

1991 DQMC/GFQMC 
(Non Restricted) 

-1.163 

3 Chen & Anderson  [8] 1995 GFQMC (Non restricted) -1.1728 
4 Ko, Wing Ho [13] 2004 VMC/DMC (BO) -1.1750 
5 This work 2010 VQMC/PIMC (BO) -1.1736 
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FLOWCHART OF THE ALGORITHM 

 
Figure 2 
 
 
Intuitively the collection of the ground state wavefunction used in this work is expected to have a higher 
electron density in between the protons when the proton-proton separation is small as compared to the case 

      Thermalization (Initial Setup) 

       Metropolis algorithm 
        (Ensemble building) 

Calculates the Local energy 

           Input Parameters 

Updates electron 
position 

Accept 

Rejects 

  Output Results 

VQMC 

PIMC time step 
(Thermalization) 

PIMC  

PIMC time step 
(data acquisition) 
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when the proton-proton separation is large. This is due to the fact that when the proton-proton separation is 
small, it is energetically favourable for this class of wavefunction to locate both electrons in between the 
two protons as exhibited by the wavefunction.   
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Fig. 3: Graph of Ground state Energy Vs Interproton Separation (VQMC) for H2 Molecule 
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Fig. 4: Graph of Ground state Energy Vs Interproton Separation (PIMC) for H2 Molecule 
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Fig. 5: Graph of Ground state Energy Vs Interproton Separation for VQMC and PIMC (H2) Molecule 
 
 
Conclusions 
 

The ground state energy of hydrogen molecule at different interproton separation was numerically 
calculated under the principles of Born-Oppenheimer approximation using two different quantum Monte 
Carlo techniques i.e. the Variational Quantum Monte Carlo [VQMC] and Path Integral Monte Carlo 
[PIMC]. The results in this work demonstrated that PIMC is capable of accurately calculating the precise 
ground state energy of the system as it falls inside the error bars of previous empirical and numerical 
calculations.    
The trial wavefunction have been optimised to suite the cusp condition of the electron-electron and 
electron-proton conditions. 
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