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Abstract

The ground state energy of the hydrogen molecule was
numerically analysed using quantum Monte Carlo methods. The
QMC methods used in this work are the Variational Quantum Monte
Carlo [VQMC] and the Path Integral Monte Carlo [PIMC]. This
analysis was done under the context of the accuracy of Born-
Oppenhiemer approximation [fixed nuclel restriction]. The ground
state energies of hydrogen molecule for different interproton

separations (0_4_1.0/%\) are computed using the two different

methods mentioned [VQMC and PIMC] and compared with previous
numerical and empirical results that are essentially exact. The results
from the Path Integral Monte Carlo methods of calculations are
found to be precisely approaching the required order of accuracy.

KeywordsQuantum Monte Carlo Methods and Born-Oppenhiempragmation

1.0 Introduction

The determinations of the ground state enerfgiea molecular system constitute a reliable peobbf
interest in theoretical condensed matter physibg method is based on solving the corresponding-tim
independent Schrodinger equation (TISE) and the-tlependant Schrédinger equation (TDSE), where the
fixed nuclear restrictions or the non fixed nucleestrictions can be considered. In this work tixed
nuclear restrictions is considered. (Born-OppenkeiApproximation)

The non relativistic TISE has the general form

O

Hy((r}) = Eg(r})

(1.1)
Where{/ represents wavefunction for the nth electron, {fr#-------- r.} represents the coordinates of the
nth electron, E is the eigen-energy aids the Hamiltonian.

The Hamiltonian which is always represented addted energy summing the kinetic and potential gper
can be written as

(1.2)
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While the imaginary time-dependant Schrédinger ggnaas the form

Ay o
iINn—=Hy, .
n 3t Y 3L

It is not possible to obtain solutions to the Sdm@er equations analytically in many quantum
systems even when the system contains only a fewstrehs. Instead numerical solutions to the
Schrddinger equations are employed.

The numerical evaluation of the ground state ererfyir H molecule started in 1933 with the work of
[1]. Their work represented one of the first susessin solving the Schrédinger equation for moles.ul
After three decades more accurate results for ydeogen molecule were obtained by [2] and also3jy [
this establishes the basis for further researckyTimplemented a variational approach in whichwlaee
function is expressed in elliptic coordinates asthg a method of [6]

Before the advent of quantum mechanics all numlesiciaitions so far obtained made use of classical
approach to arrive at their conclusions which wbesed mainly on the application of mean field
approximations. Calculations based on Hatree-Fbifg theory are examples. The fundamental ideology
behind the mean field approximations is to cons@arh electron in isolation and to assume thattieets
of its interaction with other electrons can be veglproximated by the mean field produced by thélsero
electrons. In a nutshell the electrons in the syséee assumed to be uncorrelated. Therefore nuaheric
analysis that employ mean field approximations sgasly exhibit systemic errors.

As far as the scientific transition is from classito quantum approaches therefore a remarkable
difference is expected in employing the quantumraagh. The quantum Monte Carlo techniques are a
way of combining the quantum applications in physémd chemistry with Monte Carlo procedures to
provide a means to evaluate the electronic pragsedf a molecular system without making mean-field
approximations. A quantum Monte Carlo techniqueculates the energies of a molecular system by
considering the wavefunctions as probabilisticriistion and by random sampling them. A comparative
analysis between quantum Monte Carlo methods dret atean-field methods can be found in [4].

The knowledge of refining the Schrédinger equatismg Monte Carlo procedures initiated with the
work of Fermi. In an attempt to describe that wdiK, noted that the Schroédinger equation could be
expressed as a diffusion equation and simulated Bystem of particles undergoing a random walk in
which there is a probability of multiplication ofapicles. With the subsequent advances in computer
technology, Monte Carlo methods have more pracfmatalculating properties of atomic and molecular
systems. The random walk methods have been applipdlyatomic ions [6] and molecules [8] using the
importance sampling technique of [9]. Importancengiing has also been applied to the Green’s functio
guantum Monte Carlo (GFQMC) method used by [3].

In this work the ground state energy of hydrogereawe is numerically analysed using the quantum
Monte Carlo methods i.e. the variational quanturmtddCarlo (VQMC) and the path integral Monte Carlo
(PIMC). We have chosen this case because thereéstansive history of accurate theoretical préutst
and high quality empirical measurements of the gdostate energies that could be compared with our
results. Some of the results include the work &f[f and [13] e.t.c.

The Variational Monte Carlo simulates the time-ipeledent Schrddinger equation where as the Path
Integral Monte Carlo simulates the time-dependahir&linger equation. It thus eliminates the probt#m
finite time step error, but replaces it by a cutaifthe repulsive potential at small distance sseey for
the stability of the algorithm [6].

The QMC methods have been used in different waystriating several excitonic systems [12]
involving coupled nuclear and electronic motion hwibr without the use of Born-Oppenheimer
approximation.

There also have been successful application of Q&tBnique to the ground state energies in the
following areas of research [10];- (a) the refistic electron gas

(b) cohesive energiesalfds
(c) Static response efttlon gas
(d) Exchange and correlation energies
(e) Jellium surfaces
(H Clusde
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(h) Solid hydrogen
(hFormation energies of silicon and self interats.

2.0 The methods (Quantum Monte Carlo Methods)

The term “quantum Monte Carlo” encompasses diffetechniques based on random sampling, which
involves the combination of quantum approach ings/ with Monte Carlo procedures as applied to a
system. There are many types of QMC but this wodu$es mainly on two: Variational quantum Monte
Carlo (VQMC) which depends on the availability of an approprizi@ wavefunction to determine the
ground state energgpnd the Path integral Monte CafBIMC) which basically relies on the principles of
superpositionthis is because there are much recent researchesdahld be compared with the result of
this work, and specifically considering the caséPt¥1C which is becoming very authentic nowadays in
accurate determination of the ground state enefgy molecular system coupling with the fact thas th
method (PIMC) does not require a trial wavefunciiodetermining the ground state energy of a mdécu
system, instead it is principally based on thétégues of superposition. It has also been recamdet
by so many reviewers, i.e. [18], [8], [19], [101.e. that larger extensions would be to implemefash
Integral Monte Carlo method and investigate théed#hce in the ground state energy of moleculaesys
in order to arrive at a more precise value whichlvd approaching the empirical values.

Other QMC methods include the auxiliary-field QM@viewed by [20], Diffusion Monte Carlo
(DMC) reviewed by [13] in demonstrating quantum N®iECarlo methods through the study of hydrogen
molecule, Green’s Function Monte Carlo (GFMC) rexéd by Chen and Anderson in Improved Quantum
Monte Carlo calculation of the ground state enarfithe hydrogen molecule[8], Coupled Electroniciton
Monte Carlo reviewed by M.D. Dewing in describinggMe Carlo methods as applied to hydrogen gas and
hard spheres [16], Trotter Suzuki Monte Carlo rexge by J. S. Wang in demonstrating quantum Monte
Carlo methods [17] etc.

2.1 Variational Monte Carlo method

The Variational Quantum Monte Carlo (VQMC) is thiengler of the two quantum Monte Carlo
methods considered in this work. It is based onct@bination of the Variational principles and Ment
Carlo evaluation of integrals. This method reliestbe availability of an appropriate trial waveftioo

{; thatis a reasonably good approximation of the ground state wave function.
The way to produce good trial wavefunction is déscfurther in this review. The trial wavefunction
must satisfy some fundamental conditions. Bith andl1{/; must be continuous wherever the potential

is finite, and the integralf,//;% and J'l//T |-D|,//T must exist [5]. To keep the variance of the epdimgjte

O
O
we also requirq,/,; H 2y, existing. The expectation value &1 computed with

the trial wavefunctiort//; provides an upper bound on the exact-ground steegy f:

N {GLIZGN @)
4+ (R (Rlar

In a VQMC simulation this bound is calculated usthg metropolis Monte Carlo method. Equation
(2.1) is rearranged as follows;
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[lee (Rf[% (R Hy, (R)]dR

[l (R) R
And the metropolis is used to sample a set of pofRt,, : m = 1, M} from the configuration-space
probability density

2.2)

E\/:

2
P(R)= M (2.3)
[le- (R dR
At each of these points the “local energy” is eatdd and the average energy accumulated is given by
1 M
E, =2 E(R,) @4)
m=1

2.2 The Path Integral Monte Carlo method

The path integral method was introduced by Feynmat®48. It provides an alternative formulation of
time-dependant Schrodinger equation. Since itsitime the method has found innumerable applications
many areas in physics and chemistry [11], its nadiraction can be summarized as follows: the method
provides an ideal way of obtaining the classicatitliof quantum mechanics: it provides a unified
description of quantum dynamics and equilibrium rguen statistical mechanics : it avoids the use of
wavefunction and thus is the only viable approazhmany-body problems: and it leads to powerful
influence functional methods for studying the dyiesmof low-dimensional system coupled to a harmonic
bath[15].

The path integral formulation is based on the pplles of superposition, which leads to celebrated
guantum interference observed in the microscopicldvarhus the amplitude for making a transition
between two states is given by the sum of amplgwdeng all the possible paths that connects thiedes

in a specified time.

For a particle of mas8n in one dimension, the amplitude to get from a podp at timet, to point X, at
time t, is expressed in the path formulations as a sumoafributions from all conceivable paths that
connects these two points. The contribution of geath X(t) is proportional to a phase that is given by the
action functionalS[X(t)] along the path in units of Planck’s constant

K(%,,t, :X,,t,) o > esttl (2.5)

a’ta
all pathsx,

with x(t,)=x,,x(t,) = %,
For a time-dependant Hamiltonieh=T +V , where T and V are kinetic and potential energgrafors

N
respectively, thus< (x, ,t, :x,,t,) E<xbexp{—3']H t, -t.) )xa>:<xb[ex{—:']HAtD Xa>

(2.6)
Where At E(tb —ta)/ N and N is an integer. Inserting complete set of positiattes one can obtains the

identity
N

K (x,.t, Xt )= del - deN_l D<xk\exp(—iHAt/r])\xk_l> (2.7)

wherex, =x, and X = X,
PIMC is mathematically similar to diffusion Monteaflo [DMC] and shares many of the same advantages.
In fact it goes further since a trial function istspecified and the method generates a quantunibdison
directly from the Hamiltonian. Therefore we canidefPIMC to be a QMC method which is formulated at
a positive temperature. Instead of attempting toutate the properties of a single quantum statesum
over all possible states, occupying them accordmghe Boltzmann distribution. This might sound
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hopeless but, Feynman’s imaginary time path inteft&] makes it almost as easy as DMC. The
imaginary-time paths, instead of being open-endeithey

are in DMC, close after an imaginary tinﬁ:(kBT)_l, where T is the temperature. Also, PIMC seems

to lead more easily to a physical interpretatiothefresult of a simulation.
The path integral offers an insightful approachtitoe-dependant quantum mechanics and quantum
statistical mechanics.

2.3 Optimizing the wavefunction
The positions of the electrons and protons in f@at be used to define the Hamiltonian and thé tria

wavefunctions for the hydrogen molecule. Now coesity equation (1.2) and settifg=m, = |e|:1,

where m and e are the mass and charge of electron regplgctlhe non-relativistic Hamiltonian based on
Born-Oppenheimer approximation of the hydrogen ke can be represented as:

AsSoeog)(Lel-2- 1L 1] @9

r.12 rlX r.lY rIZX rIZY
Where Dlz and Dg are the laplacian with respect to the first andosd electron and is the
interproton separation.

el
.\e 2
R m
R.x X2 R, Y
PX @ >0 S/o—— PY ___ X
e = electron, p =
proton

Fig.1 Coordinates used in describing the Hydrogetekule

An appropriate trial wavefunction should respetttlad symmetries in equation (2.8), therefore the t
wavefunction used in the non fixed nuclei restoiatis the product of the four terms:

Yo =44y, (2.9
Each of the first two terms is simply the lineamtonation of atomic orbital of the electron
I =1, 2 and for two nucleer = X,Y

W, = exd-ar,, )+exd-ar,) (2.10)

W, = exlar,, ) +exd-ar,,) (2.12)
The term ¢/, is the Jastrow factor which accounts for both tetecelectron and electron-proton

correlation such that the cusp condition are sadsésr,,,r,, — O for 1 =1 or 2 anda =X orY it has
the form

(2.12)

(0) @
& & i N
W, =ex +
’ ;1+h(?) ;1"' Q(})m fii T
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Where i j and k | include the interaction, 12, 1I¥., 2X, and 2Y the wavefunction in (2.12) can beéueed
to

br,
= 12 2.13
W, ex;{l bflzJ (2.13)

The last termy/,, is the harmonic oscillator term intended to in€linl part the effect of nuclear interaction
and it is given by

W, = exr{— d(rXY - c)2J (2.14)
The parameters, b, c,andd made use of the following atomic unit respectiyely1750, 0.500, 1.401 and
10.0 [8]
Equations (2.12, 2.13 and 2.14) are only valid wbensidering the non fixed nuclei restrictions #fere
taking the 12-D model.
In this work the fixed nuclei restriction is considd therefore the coulomb potential in its singatate at
short distances constitutes an additional conggrain the trial wavefunction, if one of the elect(sayel)
approaches one of the nuclei say X while the attestron remain fixed, the potential termein

(electron) becomes large and negative, sifice — 0. This must be cancelled by a corresponding
positive divergence in the kinetic energy termhire is need to keep(electron) smooth and have a small
variance in the Monte Carlo quadrature. Thus tfe wavefunction should have a “cusp’rgt — O.
This implies that the molecular orbital should Sfgti

lim |-n* 1 e’ -

{ d D2y(r,, )-— | = finite terms (2.15)

rlX -0 2m [/I(rlx) I’lX

Similar conditions must also be satisfied whenersone of the distances/srov, x Or 2 vanishes. Using

the correlated product of the molecular orbit anttoducing the factor that expresses the correlatio
between 2 electrons due to their coulomb repula®n

f (r):exp{a(liﬁr)j (2.16)

Hence forth setting the value of to satisfy the transcendental equation
2

1 n
a=——5—, and thata = 2a, wherea, =
1+e>"?
parameter at our disposal.
Conclusively the ideal way of making a plausibl@ick of the trial function is the correlated protdo€
molecular orbitals and considering the case ofdfinaclei restriction:

cb(rl’rz):‘/ﬁ‘//zf (r12)- (2.17)
The first two factors are an independent-partickv@function placing each electron in a moleculditar

in which it is shared equally between the two pnetoA simple choice for the molecular orbital i€ th
symmetric linear combination of atomic orbitals ieead about each proton,

— At %! —riyla
wr)=e""+e ™' (2.18)
Putting (2.18) and (2.16) in (2.17) a collectioragfistifiable trial wavefunction is attained:

- _ - r
w(rl' r2) :(e—ril xla +e rlYlaXe o xla +e rZY/a)eX{‘(L)J (2_19)

> Is the Bohr radius. Thy8 is the only variational
€
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(2.19) is the collection of the trial wavefunctionwhich theelectron-electron cusp condition is satisfied

. r
automatically by the factoex{ 12
12

} ,while theelectron- proton cusp condition is satisfied by the

a

factor e"'? and also by settingr to satisfy the transcendental equation:
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a_1+e7'5”’" (2.20)

3.0 Computing the ground state energy of the hydgen molecule

In hydrogen molecule there are two electrons shayetivo nuclei as shown in fig 1, this can be siated
using quantum Monte Carlo methods discussed inréhview. In this work the protons are held in aefix
position (B-O approximation) so that the bond mégethe electrons can be simulated. The potential
regulating the protons’ motion at a separat®is then the sum of the interproton electrostegjgulsion
and the eigenvalu&, of the two-electron Schrodinger equation:

e2

— +tE(9 (8.1
Where e is the columbic repulsion argli€the ground-state energy eigenvalue of the tect®n system.
Thus the ground state energydan be found by solving the corresponding 6-D &dimger equation:

U(s) =

H (S)l/’o(fl, Y S) E[K +V(S)]¢’o =E, (S‘//o)(rlv Py S) 3-2)
=_;]Tn;Di2w(r1-r2;S)"'V(rlvrz;s)‘ﬂ(rlvrz;s) (3.3)

=E0(S¢/O)(r1,r2;8)
Wherem is the mass of an electron ands the position of théh electron andV(rl, r,, S)w is the only
Coulomb force in the potential R therefore,
VR) = V(r,,1,; Sy = ez[l_l_l_l_l} (3.4)
r12 rlL r1R r2L rZR
Where | are distances between particles as labelled il fa;dR is the 6-D configuration vector, and
encompassing the two 3-D particle positigrand 5 an appropriate class of trial function evaluated as

equation (2.3.12) was used, whe}é’i) is an independent particle wavefunction, aﬁ(i’lz) is the term

that deals with the correlations between the tvectedns due to their Coulomb repulsica,a,and S

are variational parameters. Because the wavefuniticequired to meet the Coulomb ‘cusp’ conditiahs

is found thatar =2a,, (where g is the Bohr radius), and satisfies the transcendental equation (2.3.13):
this can easily be solved numerically, to the rezfiidegree of accuracy, using the Newton Raphson
method, leaving only a single variational paramefer After a series of algebra the local energy isitbu

to be:

2 1 1 2(e_r“' laln 4 oy ‘. ) -
———+—+ - ) /
rlza(l + [,)rlz)s a? g2 (1 + [”flz)4 a(e—r”_,a +e )
2| (0 e riLriz+ e riRri)
aa(1+ B, )2 (e_riL la g Rla )

+V(R)

(3.5)
3.1The algorithm of the code
Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 39 - 50

Ground state energy of H molecule ... A.B. Suleimarand I. O. B. Ewa J of NAMP



The code is design to operate dual purpose igantbe used to calculate the ground state energjyeof
hydrogen molecule by either using the variationsrfum Monte Carlo techniques or the Path Integral
Monte Carlo techniques whenever it is prompted dosd. The flowchart of this algorithm is illustrete
overleaf: (figure 2)

Results and Discussion

4.1 Results

The lowest eigenvalue of the hydrogen hholecule Eg) for different interproton separations were
computed using the variational quantum Monte CRIQMC] and the Path Integral Monte Carlo [PIMC]
methods with respect to Born-Oppenhiemer approxamat The results were presented graphically in Fig
3 and Fig 4 respectively. These two results werthén accumulated in Fig 5 and compared with thecex
values obtained

by [3] which were considered as the values obtafnech the first analytical principle calculatioriEhe
results from fig 3 and 4 were obtained with therelated sample of the trial wavefunction in equatio
(2.19). The numerical calculations from the PIMCtimogl show a significant improvement towards the
exact values over the VQMC, this could be attridutethe stochastic gradient approximation methsetiu

in PIMC.

Furthermore the results obtained in this work waready programmed to have the following units; the

interproton separation is measured in Angstr{nﬁ} and the ground state energy is measured in electro

volt (eV). Therefore during the course of comparidetween other theoretical and empirical methbds t
following standard conversion rates were applied;

1 Bohr radius = 0.529177240

1 Hatree = 27.2eV
For every interproton separation input dependinghengroup of ensembles provided the group average
ground state energy was calculated.

4.2 Discussions

The results obtained in this work are in agreemsétit the results obtained from the work of [13] wéa
comparison of the ground state energy of hydrogelecnle between Variational Quantum Monte Carlo
and Diffusion Monte Carlo under the context of B@ppenhiemer approximation was analysed. The
DMC calculation almost gives the exact ground staiergy of about -1.16 Hatree at about 1.4 Bohiugsad
of interproton separation. The result also agreiés [@] where they compare results obtained froradar's
Function Monte Carlo and Diffusion Monte Carlo ial@aulating the ground state energy of the Hydrogen
molecule without considering the fixed nuclei rigsion. Another observation from the graphs is tinet

ground state energy was obtained at an interpredparation of aboup7sA which also falls in the range
of the theoretically obtained values; this indisategreater intensity of the lowest energies leaelgery
small interproton separations.

Table of comparative analysis of ground state easr@f Hydrogen molecule calculated by other
researchers at an interproton separation of 1.4 Bathown in Table 1.

Table 1
SIN AUTHOR/REFERENCE DATE TYPE GSE (a.u)
1 Koloz & Wolniewicz [3] 1968 Exact (theory) BO Vational; | -1.1744
2 Traynor, Anderson & Boghosian 1991 DQMC/GFQMC -1.163
[6] (Non Restricted)
3 Chen & Anderson [8] 1995 GFQMC (Non restricted) -1.1728
4 Ko, Wing Ho [13] 2004 VMC/DMC (BO) -1.1750
5 This work 2010 VQMC/PIMC (BO) -1.1736
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FLOWCHART OF THE ALGORITHM

Thermalization (Initial Setup)

'y

4

Input Parameters

PIMC

v VOQMC

Metropolis algorithm

(Thermalization)

4

position

(Ensemble building)
Accept
Rejects
A 4 A 4 A 4
PIMC time step Calculates the Local energy |, Updates electron

A 4

PIMC time step
(data acquisition)

Figure 2

v
Output Results

Intuitively the collection of the ground state wéwection used in this work is expected to have ghéi
electron density in between the protons when tl#oprproton separation is small as compared tcise
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when the proton-proton separation is large. Thiuis to the fact that when the proton-proton sedijuerés
small, it is energetically favourable for this dasf wavefunction to locate both electrons in betwéhe
two protons as exhibited by the wavefunction.

Graph of Ground State Energy Vs Interproton Separation (VQMC) for H, Molecule
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Fig. 3: Graph of Ground state Energy Vs Interprd@e@paration (VQMC) for FiMolecule

Graph of Ground State Energy Vs Interproton Separation (PIMC) for H, Molecule
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Fig. 4: Graph of Ground state Energy Vs Interprd@eparation (PIMC) for fHiMolecule

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 39 - 50

Ground state energy of H molecule ... A.B. Suleimarand I. O. B. Ewa J of NAMP



Graph of ground State Energy Vs Interproton Separation for VQMC and PIMC (H,) Molecule
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Fig. 5: Graph of Ground state Energy Vs Interprd@eparation for VQMC and PIMC gHMolecule

Conclusions

The ground state energy of hydrogen molecule derdifit interproton separation was numerically
calculated under the principles of Born-Oppenheiagguroximation using two different quantum Monte
Carlo techniques i.e. the Variational Quantum Mo@&rlo [VQMC] and Path Integral Monte Carlo
[PIMC]. The results in this work demonstrated tR&#1C is capable of accurately calculating the meci
ground state energy of the system as it falls sndlte error bars of previous empirical and numeérica
calculations.

The trial wavefunction have been optimised to stite cusp condition of the electron-electron and
electron-proton conditions.
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