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                                                                                Abstract 

 
       Within the t – U model, the so – called Hubbard model, a 
lattice of electrons is not completely ferromagnetic, especially at 
large U. Using the exact diagonalization technique, a numerical 
analysis carried out to determine the transition from an 
antiferromagnetic phase to a ferromagnetic phase on the t–J 
model, when a hole is allowed to move round the lattice, showed 
that as the J term decreases the ferromagnetism in the lattice 
becomes more stable, [5].  Hence the t – J model is a better model 
for studying magnetism than the t – U model. Investigation also 
revealed that the inclusion of the on-site Coulomb interaction term 
U, in the t – J model enhances ferromagnetic tendencies in the 
systems studied. In this work, Nagaoka’s theorem on 
ferromagnetism has been extended beyond the Hubbard model  
where it was first studied to the t – J and t – U – J model.   

 
 
 

1.0 Introduction 
 

An important paradigm for the study of strongly interacting electrons in general, is the Hubbard 
model for interacting particles on a lattice. This is probably the simplest possible model that captures some 
of the behaviour of strongly correlated electrons, hence it is widely used to study various correlated driven 
effects [1]. 

It is believed that strong ferromagnetic interactions in some solids are generated by subtle 
interplay between quantum many-body effects and spin-independent Coulomb interactions between 
electrons. It is a challenging problem, however, to verify this scenario in the Hubbard model. Nagaoka’s 
ferromagnetism is a well-known rigorous example of ferromagnetism in the Hubbard model. It deals with 
the limiting situation in which there is one electron less than the half-filled case, and the on-site Coulomb 
interaction is infinitely large [2]. 

Within the limit of the t – U model the lattice is not completely antiferromagnetic, especially at 
large U. Considering the ground state energy of two interacting electrons in a two sites system, 

)16( 22
2
1 tUUEg +−= , it was observed [3] that at the extreme case where U is very large, we 

obtained an asymptotic graph, where the ground state energy for the singlet state (Es) is approximately 
equal to the ground state for the triplet state (Et) as U → ∞. At this point, the lattice is either ferromagnetic 
or antiferromagnetic. It shows no transition as in Table 1.1 and Figure 1.1 

However, rigorous evidence for itinerant ferromagnetism in this model is very limited. One of the 
most important results is Nagaoka’s theorem [4]. The physical mechanism behind Nagaoka’s theorem is the 
following. If U = ∞, the ground state of the t – U model is macroscopically degenerate. This degeneracy is 
lifted by the motion of the hole since it is energetically favorable for it to move in a background of fully 
aligned spins (provided the lattice allows for motion of the hole around loops). Now the t – J model is an 
approximation to the Hubbard model when the filling is slightly less than one fermion per site, i.e half-
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filling again in the limit U >> t, which gives t >> J. The t – J model forbids doubly occupied sites, but 
includes their virtual effect by having the super-exchange interaction J between adjacent singly-occupied 
sites. It also includes the process of a fermion hopping to a neighboring empty site with matrix element t 
[1]. 
              Now the t – J model is an approximation to the Hubbard model when the filling is slightly less 
than one fermion per site, i.e half-filling again in the limit U >> t, which gives t >> J. The t – J model 
forbids doubly occupied sites, but includes their virtual effect by having the super-exchange interaction J 
between adjacent singly- 
 
Table 1.1 Singlet (Es) and Triplet (Et) energies as U varies, with the hopping    integral t fixed. 

t (hopping 

integral) 

U (on-site coulomb 

repulsion) 

Es (singlet state 

energy) 

Et (triplet state 

energy)  

 2 1000 -0.016 0 

2 3000 -0.00533 0 

2 5000 -0.0032 0 

2 7000 -0.00229 0 

2 9000 -0.00178 0 

2 20000 -0.0008 0 

2 80000 -0.0002 0 

2 100000 -0.00016 0 

 

 

Fig. 1.1 A graph of the energies (Es, Et) versus U in the t – U model, showing no transition between Es and 
Et  

             as U → ∞. 
However, rigorous evidence for itinerant ferromagnetism in this model is very limited. One of the most 
important results is Nagaoka’s theorem [4]. The physical mechanism behind Nagaoka’s theorem is the 
following. If U = ∞, the ground state of the t – U model is macroscopically degenerate. This degeneracy is 
lifted by the motion of the hole since it is energetically favorable for it to move in a background of fully 
aligned spins (provided the lattice allows for motion of the hole around loops). Now the t – J model is an 
approximation to the Hubbard model when the filling is slightly less than one fermion per site, i.e half-
filling again in the limit U >> t, which gives t >> J. The t – J model forbids doubly occupied sites, but 
includes their virtual effect by having the super-exchange interaction J between adjacent singly-occupied 
sites. It also includes the process of a fermion hopping to a neighboring empty site with matrix element t 
[1]. 
 
2.0 Method 
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The effective Hamiltonian which governs the low-energy behavior of the Hubbard model for a 
nearly half-filled band in the U→∞ limit is the t – J model of itinerant fermions on the lattice 

( )∑∑
><><

+− −+








+−=

IJ
jiji

ij
ji

jt nnSSJCHaatH 4
1...

σ
σσ

      

 (2.1) 

The occupation number of each site ↓
+
↓↑

+
↑ += iiiii aaaan  can be either 0 (a hole) or 1 (a spin), since double 

occupancy is forbidden by strong on-site Hubbard repulsion. The spin operator Si is given in terms of the 
Pauli matrices αβσ     

     ∑ +=
αβ

βαβα σ ii2
1

i aaS
                                 

(2.2) 
 

Since the spin exchange coupling constant J=4t2/U is positive, the on-site Hubbard interaction translates to 
an antiferromagnetic (AFM) super-exchange, which favors an AFM correlated ground state. 
        Nevertheless, in one extreme case this model has a ferromagnetic (FM) ground state, known as the 
Nagaoka state [4]. A fully polarized state minimizes the total energy of a single hole in an otherwise half-
filled band, at least in the limit J→0. This is due to the hole kinetic energy which favors FM ordering. The 
nature of the ground state for finite J is therefore determined by the competition of this FM tendency with 
the AFM exchange. 
       Consider a 2 × 2 square lattice in the presence of a hole ie. when a hole is allowed to move in the 
lattice. The following basis states arising from the interactions from this new lattice structure were 
generated within the limit of the following conditions: 

1. No double counting 
2. No next nearest-neighbour interaction. 
3. Interactions with only net spin-up are considered. 
Since we are interested in the net spin-up states, hence the only contributing states are:

 
.761 andto  i.e

 

↑↑↑=↓↑↑=↓↑↑=↑↓↑=↑↓↑=↑↓↑=↑↓↑= 3217,3326,3315,3224,2213,3112,2111

 
The Hamiltonian for the t-J model is given by;  

∑∑ 






 −+













−= +

ij
jiji

ij
ji nnssCC JtH

4

1
.

σ
σσ

                                                                                             

(2.3) 
Expanding the Hamiltonian (2.3) we have equation (2.4): 

( ) ( ) ++−


 −++++−=

↓

+

↓↓

+

↓↑

+

↑↓

+

↓↓

+

↓↑

+

↑↑

+

↑↑

+

↑↓

+

↓↓

+

↓↑

+

↑↑

+

↑ CCCCCCCCCCCCCCCCCCCCCCCC jjiijjiijjiijjiiijjiijji
JtH

4

1

 

( )} ( )CCCCCCCCCCCCCCCCCCCCCCCC jjiijjiijjiijjiijjiijjii ↓

+

↓↓

+

↓↓

+

↓↑

+

↑↓

+

↓↑

+

↑↑

+

↑↑

+

↑↓

+

↑↑

+

↓↑

+

↓↓

+

↑ +++−+
4

1

2

1

        

(

2

.

4

) 
3.0 Results 
The results of acting with the Hamiltonian on the various states are summarized in equation (3.1) 



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 1 – 6 
Instability of Nagaoka’s Theorem.       Ben. E. Iyorzor and John O. A. Idiodi J of NAMP 

1
2

322111
J

ttHH −+−=↑↓↑=
 , 

2
2

513112
J

ttHH −+−=↑↓↑=  

3
2

412213
J

ttHH −−+=↓↑↑=
, 

4
2

633224
J

ttHH −+−=↑↓↑=
  

 (3.1)
 

5
2

623315
J

ttHH −−+=↓↑↑=
,

6
2

543326
J

ttHH −−+=↓↑↑=
 

Setting up the Hamiltonian matrix, we obtain equation (3.2): 
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The minimum eigenvalue of this matrix is given by ( ).32
2

1
tJE −−=

 
Hence the ground state energy of the lattice becomes ( )tJE g

32
2

1 −−=  

A numerical analysis carried out to determine the transition of an anti-ferromagnetic phase to a 
ferromagnetic phase is given in Table 3.1 and Figure 3.1.  
 
Table 3.0: Singlet (Es) and Triplet (Et) energies in the t –J model for various values of t and J. 

                   
t (hopping 
integral) 

J (NN exchange 
interaction) 

Es (singlet state 
 energy) 

Et (triplet state  
energy) 

-50.00 
-40.00 
-30.00 
-20.00 
-10.00 
0.00 
10.00 
20.00 
30.00 
40.00 

100.00 
90.00 
80.00 
70.00 
60.00 
50.00 
40.00 
30.00 
20.00 
10.00 

36.60 
24.28 
11.96 
-0.36 
-12.68 
-25.00 
-37.32 
-49.64 
-61.96 
-74.28 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Fig.3.0: A graph of the energies (Es, Et) versus J in the t – J model, showing the transition between Es and Et 

as J  increases. 
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  Let us consider the original t – u – J  model represented by  (3.3) and  let us examine its 

influence on ferromagnetic transition. 
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(3.3) 
The results of applying the Hamiltonian (3.3) on the basis states are given by (3.4) 

1
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J
1u3t2t211H1H −++−=↑↓↑=

, 
2

2

J
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3
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, 
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,  
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(3.4) 
The Hamiltonian matrix formed from the interaction is presented in (3.5) 

                     

H �

u � J
2

�t t 0 0 0 0

�t u � J
2

0 0 t 0 0

t 0 u � J
2

�t 0 0 0

0 0 �t u � J
2

0 t 0

0 t 0 0 u � J
2

�t 0

0 0 0 t �t u � J
2

0

0 0 0 0 0 0 0            

(3.5) 

Table 3.2: Singlet (Es) and Triplet (E t) energies as J and t vary, with  
                 the on-site  Coulomb repulsion U fixed. 
 

t (hopping 

integral) 

U (on-site 

coulomb 

repulsion) 

J (NN 

exchange 

interaction) 

Es (singlet 

state 

energy 

Et (triplet 

state 

energy) 

-50.0 50.0 100.0 86.6 0.0 

-40.0 50.0 90.0 74.3 0.0 

-30.0 50.0 80.0 62.0 0.0 

-20.0 50.0 70.0 49.6 0.0 

-10.0 50.0 60.0 37.3 0.0 

0.0 50.0 50.0 25.0 0.0 

10.0 50.0 40.0 12.7 0.0 
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20.0 50.0 30.0 0.4 0.0 

30.0 50.0 20.0 -12.0 0.0 

40.0 50.0 10.0 -24.3 0.0 

As the value of U (the Coulomb interaction strength) increases from 50 to 70, the transition point decreases 
as shown in Fig. 3.3. 
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Fig. 3.2 A graph of the energies (Es, Et) versus J in the t – u – J model, showing the transition between 
Es and Et as J is varied and U fixed at a value of 50. The transition occurs at about J = 30. 

 

                       

Fig. 3.3 A graph of the energies (Es, Et) versus J in the t – U – J model. The value of U hs been increased 
from 50 to 70 here and the transition point has now occurred at the reduced value of J ≈ 10. 

 
4.0  Conclusion. 

From this work, strickly within the t – U model, Fig.1.0 reveals that the singlet state energy 
approached the triplet state energy, without crossing, as U → ∞. The physical meaning of this graph as U 
→ ∞, is that the lattice is not completely antiferromagnetic or ferromagnetic, which indicates that it is 
unstable. But when the t – J model is used for the case of a nearly half-filled band (i.e when a hole is 
allowed to move in the lattice), a completely different graph that is ferromagnetically stable is obtained (see 
Fig. 3.1). Also, from Figures 3.2 and 3.3, it is observed that as the value of U increases from 50 to 70 the 
transition point decreases. Hence we can say that the, t – J and t – U – J models are better models for 
demonstrating Nagaoka’s theorem. 
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