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Abstract

Within the t — U model, the so — called Hubbard deb, a
lattice of electrons is not completely ferromagretiespecially at
large U. Using the exact diagonalization techniqua,numerical
analysis carried out to determine the transition ofn an
antiferromagnetic phase to a ferromagnetic phase dne t-J
model, when a hole is allowed to move round theita, showed
that as the J term decreases the ferromagnetismttie lattice
becomes more stable, [5]. Hence the t — J model etter model
for studying magnetism than the t — U model. Invigsition also
revealed that the inclusion of the on-site Coulorimtteraction term
U, in the t — J model enhances ferromagnetic tend&s in the
systems studied. In this work, Nagaoka's theorem on
ferromagnetism has been extended beyond the Hubbarddel
where it was first studied to the t — J and t — W-model.

1.0 Introduction

An important paradigm for the study of stronglyeirgcting electrons in general, is the Hubbard
model for interacting particles on a lattice. Tisiprobably the simplest possible model that castwome
of the behaviour of strongly correlated electrdrence it is widely used to study various correlataden
effects [1].

It is believed that strong ferromagnetic interatsion some solids are generated by subtle
interplay between quantum many-body effects and-splependent Coulomb interactions between
electrons. It is a challenging problem, howeveryeadfy this scenario in the Hubbard model. Naga®ka
ferromagnetism is a well-known rigorous exampldesfomagnetism in the Hubbard model. It deals with
the limiting situation in which there is one electrless than the half-filled case, and the onGielomb
interaction is infinitely large [2].

Within the limit of the t — U model the lattice ot completely antiferromagnetic, especially at
large U. Considering the ground state energy of imeracting electrons in a two sites system,

E, = U -vU Z+1@7), it was observed [3] that at the extreme case avheiis very large, we

obtained an asymptotic graph, where the groune staérgy for the singlet state ks approximately
equal to the ground state for the triplet stat¢ 4& U - . At this point, the lattice is either ferromagueti
or antiferromagnetic. It shows no transition a3 able 1.1 and Figure 1.1

However, rigorous evidence for itinerant ferromagme in this model is very limited. One of the
most important results is Nagaoka's theorem [4F Physical mechanism behind Nagaoka's theoreneis th
following. If U = «o, the ground state of the t — U model is macroszailyi degenerate. This degeneracy is
lifted by the motion of the hole since it is endiggly favorable for it to move in a background fafly
aligned spins (provided the lattice allows for roatiof the hole around loops). Now the t — J modedri
approximation to the Hubbard model when the fillisgslightly less than one fermion per site, i.éf-ha
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filling again in the limit U >> t, which gives t >3. The t — J model forbids doubly occupied sitrg,
includes their virtual effect by having the supecteange interaction J between adjacent singly-dedup
sites. It also includes the process of a fermioppihy to a neighboring empty site with matrix elene

[1].

Now the t — J model is an approxiomatio the Hubbard model when the filling is slighiiéss
than one fermion per site, i.e half-filling agam the limit U >> t, which gives t >> J. The t — Dbdel
forbids doubly occupied sites, but includes théitual effect by having the super-exchange intéoacd
between adjacent singly-

Table 1.1Singlet (E) and Triplet (E) energies as U varies, with the hopping integfiaed.

t (hopping U (on-site coulomb Es (singlet state Et (triplet statg
integral) repulsion) energy) energy)
2 1000 -0.016 0
2 3000 -0.00533 0
2 5000 -0.0032 0
2 7000 -0.00229 0
2 9000 -0.00178 0
2 20000 -0.0008 0
2 80000 -0.0002 0
2 100000 -0.00016 0
0 K U
0 50000 100000 150000
-0.005
w
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Fig. 1.1 A graph of the energiess(lE) versus U in the t — U model, showing no transiti@tween Eand
E

as U oo,
However, rigorous evidence for itinerant ferromagm in this model is very limited. One of the most
important results is Nagaoka's theorem [4]. Thegdal mechanism behind Nagaoka's theorem is the
following. If U = «, the ground state of the t — U model is macrosialyi degenerate. This degeneracy is
lifted by the motion of the hole since it is endicgly favorable for it to move in a background fafly
aligned spins (provided the lattice allows for roatiof the hole around loops). Now the t — J modeln
approximation to the Hubbard model when the fillisgslightly less than one fermion per site, i.éf-ha
filling again in the limit U >> t, which gives t >3. The t — J model forbids doubly occupied sitrg,
includes their virtual effect by having the supecteange interaction J between adjacent singly-dedup
sites. It also includes the process of a fermiopplhty to a neighboring empty site with matrix elemne

[1].

2.0 Method
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The effective Hamiltonian which governs the low-&yebehavior of the Hubbard model for a
nearly half-filled band in the oo limit is the t — J model of itinerant fermions the lattice

H' = —t( > ala, + H.C.]+ 3Y (s,;.s,-4nn))

<ij>o <>
(2.1)
The occupation nhumber of each s'n}ezaﬁa}T +5}+ﬁh can be either 0 (a hole) or 1 (a spin), since @oub

occupancy is forbidden by strong on-site Hubbaplisson. The spin operator 8 given in terms of the
Pauli matricesg

—_ +
S =32 8,085,
ap

(2.2)

Since the spin exchange coupling constant?\34s positive, the on-site Hubbard interactiomsiates to
an antiferromagnetic (AFM) super-exchange, whiclofa an AFM correlated ground state.

Nevertheless, in one extreme case this hiwate a ferromagnetic (FM) ground state, knownhes t
Nagaoka state [4]. A fully polarized state minintizbe total energy of a single hole in an otherviak-
filled band, at least in the limitJ0. This is due to the hole kinetic energy whichoi@/FM ordering. The
nature of the ground state for finite J is therefdetermined by the competition of this FM tendewith
the AFM exchange.

Consider a % 2 square lattice in the presence of a hole ie.nwdole is allowed to move in the
lattice. The following basis states arising frone thteractions from this new lattice structure were
generated within the limit of the following conditis:

1. No double counting
2. No next nearest-neighbour interaction.
3. Interactions with only net spin-up are considered.

Since we are interested in the net spin-up states)ce the only contributing states are:
|1)to|6) and | 7). i o

H=[111121)[2)=[11 11 31),

=11 21 21),

4=|212131),

B)=|113131),

6)=[213131),

7)=[112131)
The Hamiltonian for the t-J model is given by;
. 1
H=-t/>C,C,|*32|s 'S ~;nn,
(o o) 4

(2.3)
Expanding the Hamiltonian (2.3) we have equatiod)(2

#=lcc+cccccclficcce-cace-cccececcls

c.c.cc.+cc.cclilcc.ccecccec.ccccc,)

N

3.0 Results
The results of acting with the Hamiltonian on tlagious states are summarized in equation (3.1)
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H|D =H[111121) =12 +1|3 —ij) H|2 =H[111:31) =11 +t|5 —‘;2)
M3 =HLr2r20) =+d -t4 23 H4=H|212:31) =13 +46 /4

(3.1)
M =H113131) =42 -U§ -39 Hlg =H|213131) =+t4 -5 ~Jls

Setting up the Hamiltonian matrix, we obtain equat(3.2):

S O o0 o0 o0

2

“t =X o0 o t 0 0

2
t 0 —% -t 0 0 0
H =10 o -t -1 o t 0 (3.2)

2

0 t o o -Y -t o

2
t -t -2
2

o o0 0

The minimum eigenvalue of this matrix is given @g}(_J _ Z@t)
2
Hence the ground state energy of the lattice besqme 1
9 ay Oérg‘za(—a - 243t)

A numerical analysis carried out to determine thandition of an anti-ferromagnetic phase to a
ferromagnetic phase is given in Table 3.1 and Eigut.

Table 3.0:Singlet (E) and Triplet (B energies in the t —J model for various valuesasfd J.

t (hopping J (NN exchange | Eg(singlet state | E; (triplet state
integral) interaction) energy) energy)

-50.00 100.00 36.60 0
-40.00 90.00 24.28 0
-30.00 80.00 11.96 0
-20.00 70.00 -0.36 0
-10.00 60.00 -12.68 0

0.00 50.00 -25.00 0
10.00 40.00 -37.32 0
20.00 30.00 -49.64 0
30.00 20.00 -61.96 0
40.00 10.00 -74.28 0
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Fig.3.0: A graph of the energiess(EE,) versus J in the t — J model, showing the trassitietween Fand E
as J increases
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Let us consider the original t —u —J model repnéed by (3.3) and let us examine its
influence on ferromagnetic transition.

H=f+d+J=

_tzci; Cja '|'Uz:[']”niJ + JZ[SIZ SJZ _ i4j +E
( i i

ij)o

it it

where SZZ%(niA _nij)v S+=C+C‘ SizCitCr

nn;

0§'s =2, -n)d+(n.-n J3lcic.cic +cia )
' 4

1
:E(nn n;; *n; Nt NG TN, njl)

s's +ss;=lcic.c.c.+cic.c.c;)

H=-tlcic,+cicrcic rciclrulciccie rcic.cic ol cecicceccc cecic,
+cla.cicllcic.cicisciccic)-tcecic, s cic.cic sciccic rcic.cic)
+2lcic.cic.+ciccic,)

(3.3)
The results of applying the Hamiltonian (3.3) oa Hasis states are given by (3.4)

H\1>=H\111121>=—t\2>+t\3>+u\1>—%\1> H\2>=H‘1T1131>=—t\1>+t\5>+u\2>—%\2>
) )
H\3>=H\11212¢>=+t\1>—t\4>+u\3>—%\3> H\4>=H\212¢31>=—t\3>+t\6>+u\4>—%\4>
) )
H\5>=H‘113r31>=+t\2>—t\6>+u\5>—%\5> H\6>=H\213131>=+t\4>—t\5>+u\6>—%\6>
H[7)=H[L12131)=0 ’ ,

(3.4)
The Hamiltonian matrix formed from the interactisrpresented in (3.5)

UL% Cit t 0 0 0 0
t ouog 0 0 t 0 0
t UD% Lt 0 o0
HOol oo tound t 0
0 t UL% t 0
0 0 t t ung 0
0 0 0 0 0 0 O

(3.5)

Table 3.2: Singlet (E) and Triplet (E;) energies as J and t vary, with
the on-site Coulomb repulsion Uxed.

U (on-site J(NN Es (singlet Et (triplet
t (hopping coulomb exchange state state
integral) repulsion) interaction) energy energy)
-50.0 50.0 100.0 86.6 0.0
-40.0 50.0 90.0 74.3 0.0
-30.0 50.0 80.0 62.0 0.0
-20.0 50.0 70.0 49.6 0.0
-10.0 50.0 60.0 37.3 0.0
0.0 50.0 50.0 25.0 0.0
10.0 50.0 40.0 12.7 0.0
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20.0 50.0 30.0 0.4 0.0
30.0 50.0 20.0 -12.0 0.0
40.0 50.0 10.0 -24.3 0.0
As the value of U (the Coulomb interaction strepgtisreases from 50 to 70, the transition pointrdases
as shown in Fig. 3.3.
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Fig. 3.2 A graph of the energiess([E) versus J in the t — u — J model, showing thesttem between
Es; and Eas J is varied and U fixed at a value of 50. Thedition occurs at about J = 30.
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Fig. 3.3 A graph of the energiess(lE) versus J in the t — U — J model. The value ofslbéen increased
from 50 to 70 here and the transition point has nowaurred at the reduced value of 10.

4.0 Conclusion.

From this work, strickly within the t — U model,g=1.0 reveals that the singlet state energy
approached the triplet state energy, without cnggsas U- «. The physical meaning of this graph as U
- oo, is that the lattice is not completely antiferrgmatic or ferromagnetic, which indicates that it is
unstable. But when the t — J model is used forcthee of a nearly half-filled band (i.e when a hisle
allowed to move in the lattice), a completely diffet graph that is ferromagnetically stable is wigd (see
Fig. 3.1). Also, from Figures 3.2 and 3.3, it issetved that as the value of U increases from 500tthe
transition point decreases. Hence we can say lieattt— J and t — U — J models are better models fo
demonstrating Nagaoka'’s theorem.
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