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Abstract 
 

We revisit an Eyring-powell reacting fluid whose viscosity depends 
on temperature and the vertical distance, we further assume that the MHD 
flow satisfies the poiseuille boundary conditions. We show that the velocity 
field has two solutions corresponding to each solution of the temperature. In 
particular we show that the upper solution coincides with the lower solution 
of the velocity and vice-versa. Moreover the two solutions never cross each 
other in the interior layer. 
 

 
 
1.0 Introduction 

Recently Attia [3] examined the influence of temperature dependent viscosity on the 
hydro magnetic Couette flow of dusty fluid with heat transfer between parallel plates. The 
pressure gradient was assumed constant and an external uniform magnetic field is applied 
perpendicular to the plates. The paper shows that the steady temperature and velocity have 
maximum values between the plates. 

Earlier, dusty fluids were examined by [1]. and [7].  In 2006, [4] investigated the 
existence of secondary flows for a reacting Poiseuille flow when the viscosity depends 
exponentially on temperature. The paper shows that the two flows never merge between the 
plates. 
 In a more recent paper, [2] revisited the non-Newtonian MHD model of Eldabe et al 
(2003) and the pressure gradient is a function of y and the numerical solution revealed the 
existence of two velocity solutions. And also [9] proved the existence, uniqueness and stability of 
strong solutions for the planar magnetohydrodynamic equations for isentropic compressible 
fluids. 
 In this paper, we shall still assume that the pressure gradient is a function of y but not as 
in [4]. We investigated the properties of solutions and the effect of the magnetic field on the flow. 
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2.0 Mathematical model 
2.1 Dimensional equations 

We assume that the pressure gradient   
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Also we assume that the dynamic viscosity 
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Hence the steady momentum and energy equations are 
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where 
c is a constant 
ρ  is density of fluid 
g is acceleration due to gravity 
y′  is the vertical coordinate 

x is the horizontal coordinate 
u is the horizontal velocity component 

0µ  is viscosity at hy =′  

h is the gap between parallel plates 
π  is the Eyring-Powell constants 
β  is the coefficient of thermal expansion 
Q is the heat released per unit mass 
A is the pre-exponential factor 
E is the activation energy 
R is the universal gas constant 
T0 is the wall temperature 
D is the permeability constant 

αγα ,, are constants 
K is the thermal conductivity 

h
U

ρ
µ0

0 = is the constant horizontal velocity 

2.2 Non-dimensioalization  



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 533 - 536 
Non-Newtonian viscous MHD,   R. O. Ayeni, S. O Adesanya and S. C Osuala      J of 
NAMP 

Let  
( )

2
0

0

0
,,

RT

TTE
U

u
h

yy
−

==′= θφ   We obtain 

 
 
 

[ ] ( ) ( )( ) 11,0,1)( 221 2

<<−=+−−++







++−+ yyGfHayFA

dy

d
Be

dy

d y φθθφβθγ  (2.5) 

( ) 11,0,0
2

2

<<−>=+ yg
dy

d δθδθ
    (2.6) 

where   ( ) ( ) ( ) ( ) 01111 ==−==− θθφφ     (2.7) 

The functions ( )θg ,f ( )y,θ are continuous and have continuous first order derivative, and are 
bounded in -1<y<1. 
Also  ( )( ) ( )( ) ( ) ( ) ( ) ( )yyyyyyfyyf φφθθθθ =−=−=−− ,,,,    (2.8) 
It has been shown by [5] that (2.6) which satisfies (2.8) has two solutions 
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Also , ( ) ( ) 11,21 <<−< yyy θθ  and 

   ( ) 2,1,exp
2

12 == ic mii θδ                  (2.12) 

Theorem 2.1 
There exists a solution of (2.5) and (2.6) which satisfies (2.7) and (2.8) 

Proof 
Clearly (2.6) has solutions as listed in (2.9) and (2.10). Let φφ ′=== 321 ,, xxyx then 

the derivatives with respect to y, 
( ),3,2,111 1 xxxfx ==′                  (2.13) 
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Clearly 3,2,1, =
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i
x

f

j

i  are bounded. Hence by theorem 11.2 of [6] the problem has a solution. 

Theorem 2:2 
Let θ and φ satisfy (2.25) - (2.28) then 

(i)  ( ) ( )yy φφ =−  

(ii)  Maxima φ  occurs at y = 0 
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(iii)  Max φ decreases as Ha increases 
 
 
 
 

 
 
 
Proof 
(i) We replace y by –y and differentiate. We obtain equations (2.5) and (2.7) for φ since 

( ) ( )yy θθ =− . Hence (i) holds. 

(ii) Since ( ) ( ) ( ) 011,0 ==−≥ φφφ y and ( ) ( )yy φφ =− , then maxφ occurs at y = 0 

(iii) It suffices to focus on the region close to y = 0. In this region (2.5) reduces to 
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 and φ increases as Ha increases.  This completes the proof. 
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