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Abstract

The function of the coronary network is to suppljoled to the heart;
however, in cases of Coronary Artery Disease, theometry has great
influence on the nature of the blood flow and theverall performance of the
heart. In this paper, the unsteady non-Newtoniam of blood under couple
stresses and a uniform external magnetic field isadysed by using Eyring —
Powell model. We also assumed that blood viscosityiot constant but a
function of cell aggregation. The momentum equatidor the flow is non-
dimensionalized and the non-linear dimensionlessuation is then solved
numerically by using Adomian decomposition methodi{M) for fixed value
of suction parameter. Variations of different floparameters are conducted
and discussed.
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1.0 Introduction

Blood is an important body fluid which is assumed to be homogeneous sospensi
consisting of platelets white blood cell, red blood cell plasnwlowing [1], Magnets are
composed of metal alloys such as iron, nickel or cobalt andwiiiegttract different types of
metallic particles. The blood contains irons and when thatapmagnets are placed on skin, the
magnetic field penetrates through the skin and into the surroundsugsi and blood stream and
the increased activities causes the blood flow to improve. Adnedse in blood flow is localised
to the area where the magnets are placed. When magnets @lacea major artery, there is a
much larger perfusion of blood flow, so the magnetic field isiediurther around the body.
When body’s blood flow is increased, oxygen, nutrients and hormones are distributedrtiathe
and tissues more effectively and quickly. Then the organshemé fresh rich supply of oxygen
and nutrients to nourish them. Also, the tissues gain oxygen, healingntaiand hormones
including endorphins, which are body’s normal pain killing hormones. If there is
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an injury or ailment which is supplied with regular fresh oxygenrients and endorphins, then
the injury or ailment will heal much faster and the pain dlreduced by the body’s own pain
killing hormones (endorphins).

The effect of couple stresses on the unsteady MHD flow noafigrwith the assumption
that blood viscosity is constant has been studied in [2].fllistructure interaction of blood
flow through a stenosed vessel has been studied extensivedy} bsifig power law model thus
neglecting the elasticity property of blood. The effect of visgosriation on hemodynamics
stability of large blood vessel was investigated by [4].

In this present work, we use the result [4] to generalizedptievious work of [2], the main
objective is to investigate the effect of couple stressethe unsteady hydro-magnetic flow of
blood through porous walls with the assumption that the viscositpti constant. This is a more
realistic model for studying blood flow in a stenosed large blood vessel,

The paper is organized in this form; in section 1 we givef linteoduction and the
statement of problem, in section 2 of the work, the problem is fatediland non-
dimensionalized, in section 3, the problem is solved while resrdtpresented and discussed in
section. Section 4 concludes the paper.

2.0  Mathematical formulation

Consider a laminar, viscous and oscillatory non-Newtonian unsteaabtriedlly
conducting incompressible flow of blood between constricted axis-symual and elastic tube
porous walls under the effect of couple stresses. Due to symmettake the x and y axes along
and transverse to the parallel walls and assume a uniformeth@dield B acting along the y-
axis. The fluid is injected into the lower wall at y=0 andksacthrough the upper wall at y=h
with the uniform velocity,. The electric field is assumed to be zero and the induegghetic

field is assumed to be very small and the electric condtyativiof the fluid is sufficiently large.
The geometry of the flow is similar to [3].
The geometry of the flow under consideration in this present study is giken be
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Figure 2.1 Flow geometry

2.1 Governing equation
The field equations are [2],
The continuity equation
S+ v =0 (2.1)
Cauchy'’s first law of motion
pa =T, + (2.2)
Cauchy’s second law of motion
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M;,;+d +e,T, =0 (2.3)
The constitutive equation for a linear perfectly elastic solid adrgdd by is in the form

T, =T, +T (2.4)
whereT“S] is the symmetric part of the stress tensor
T“S] =-P +(/]+,U)Vj,ji tw g =P +(Tji )'j, (2.5)
1 .
and jI j = _2,70)“ j|| 2 Ijk (ﬂk)’ J’ (26)

Where w; is the spin tensor and is considered as a measure oféebeofabtation of elements in

a certain average sengg,is the stress tensoe);, =€, &), & is the vorticity vector

, 1 1 ,
Sincew =—¢;,V, ; one hasu, =—(v'. -V, ) and we can write
2 ) | i 2 IR ]

1 .
jI] ==210 iy 1N +§eijk(ﬂk)’ )
(2.7)

and the equation of motion becomes
1
s = TJISj +’7(Vj,j)’ikk_’7\/i,jjkk 5 usk(pl ) J.+ ok
(2.8)
For incompressible fluids and if the body force and body momentabsent, the equations of
motion reduce to

,Oa jl j ,7V| jikk
(2.9)
This in vector notation can be written as
pa, =-0P+0r, )-nD*v
(2.10)

The last term in this equation gives the effect of couplesstse Thus, for the effect of couple
stresses to be presem, . must be non zero represent the stress tensor in the casenointhe

polar theory of fluids.
The stress tensor in the model for non-Newtonian fluids takes the form

Ju du 1 4(10u 10u
I. =l —+— |+=sinh?*| =—+==—= 2.11
Y ,u( 0 j a (c Ox cayj 1)

where the first part represent the viscous part and setaynd denote the elastic effect
U represents the dynamic viscosity aadc are characteristics of the Eyring—Powel model u =

velocity, p = density,u = viscosity,p = pressurex = co-ordinate in the direction of flow, y=
coordinate across the flows velocity inx-direction,v = velocity in y direction
Now let v = (u(y,t),v,.0)

rrss
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Continuity Equation: i =0 (2.12)
X
Momentum Equation:
ou ou dpo d‘u
—+V,— |=——+—1,,+t0B,\E-uB,)—-n——- 2.13
'O(at anj dx oy o(E - uB) 7oy’ 229

By assuming a small electric field, (2.13) can be written as
4
Pl — ou +V, u :—@+i ,u@+lsinh‘1 1ou —aB(fu—qa—ZJ (2.14)
ot oy dx ody| oy a c oy ay
*11 u <1

with sinh™ }aiu Dlaiu = 1ou -7
cdy) coy 6c6y c dy

Neglecting the second approximation for being small. Now introdudhe following
dimensionless parameters

(2.15)

2

u':i,t':l, X':E'y':zl G=- to ap , Ha 2 — OB h
a= 02 ,S:VOO, 0 E l,b:i,/,[’:ﬁ
aph“c h ph ph h Ho Ho

Introducing (2.16) we obtain the dimensionless equation with approjmitisé and boundary
conditions after dropping bars since (there is no confusion)

ou  _odu a( ,du 0°u ‘u

+S—=G+_—| /'— [+ta—— —Ha’fu-b¢c— (2.17)

ot oy ay\" oy ay? oy
whereu : velocity in flow directionS: suction parametes, is the characteristic of Eyring-Powell
model,p is the viscosity variation parameter, Ha is the Hartman nurbliethe stress parameter.
Makinde [4] gave the dynamic viscosity as

' = efby) (2.18)
We have
4
a_u+a_u:G+i ef pla-y )6u+a@ -Ha*éu - bCa—l: (2.19)
ot ody oy dy oy oy

subject to initial and boundary conditions
t=0:u=sin(g)0y
0= 0su

u
2.2 Existence theorenj6]
Let D denote the region im(+1) dimensional space, one dimension for t and n dimensions fo
the vectox)

1) (2.20)

t-t)|<a,  [X-Xo|<b

and suppose théix,t) satisfies the condition

(2.21)
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=10 (2.22)

are continuous iD. Then there is a constadt>0 such that there exists a unique continuous
vector solutionX(t) of the system

XZI'. = fl(xl""’xn’t)’ Xl(tO) = XlO
X; = fZ(Xl""'Xn’t)’ XZ(tO) = XZO
X = (X X)X, (6) = Xog

(2.23)
In the intervallt —t,| < 0.
Theorem?2.1
4
et M M_g +i(e”(1‘yz)a—u + aauj Ha’éu - bCﬂ
ot oy ay ay oy ay* (2.24)
with

t=0:u=sin(7)0y,t>0:u(-1)=0=u"(-2),ut)=0=u"(1),5=0=S, c:%, g:%

Then there exists a unique solution of the problem
Proof

Let us assume that the wall porosity is negligible th@roducing the similarity
variable

y
= 2.25
n ot (2.25)

Then (2.24) can be written as

_pdu_ ( du, a du] Ha®> b d‘u
2tdp 2ft dn\ 24t dn zf dp) t 16t dn”
—qﬂ—G+(1+a) - Ha’u bdl:
dn dn? 16dnp (2.26)
Now let
X =1,% =U,X =Uu,X, =u", X =u" (2.27)
To obtain
X (1 fL (X0 X5)
Xl | % Fa(Xe s %)
X || x, ACPY
Xo | =] % = f4(x1,..,x5) (2.28)
16
, G+ (L+a)x, - Ha®x, + x.x
X b ( (i+a) % ) fo(Xppeen Xs)
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subject to the initial conditionxl(O) =0, XZ(O) =-] x3(0) =D

of, : . .
Now we need to proof that— are continuous in the domain

0X;
J
Differentiating each term of; with respect tox,
We obtain
i:o,izo’izo’izo’ i:o
0X% 0X, 0%, 0X, 0Xs
%: Olizolﬂzlﬂzolﬂzo
0x 0X, 0%, 0X, 0X
%—O, of, -0 of, -0 of, :Laf3 -0
0x, 0X, 0X%, 0X, 0X;
o 0, of, 0, of, 0, of, _ 0, ot =1 (2.29)
0 0X, 0X, 0X, 0X;
Oy Oy O Oy g, O
0x, 0X, 0%, 0x, 0X;

of.
From above, it is now obvious th%t'— exist and continuous. Hence the proof
X .

J
Clearly, ﬂ =k therefore the function satisfies the Lipschitz condition.
J
2.3 Analysis of the adomian decomposition methofb]
The principal algorithm of the Adomian decomposition method when appliadgeneral non-
linear equation is in the form
Lu+Ru+Nu = f(x) (2.30)
the linear terms are decomposed inte R while the non-linear terms are represented by Nu. L is
taken as the highest order derivative to avoid derivativevtad difficult integration involving
complicated Green’s function aftlis the remainder of the linear operatot.is regarded as the
inverse operator df and is defined by a definite integration from O to t, for exaniplea first-

order operator
t

L*()=[(Jat = L"Lu =u(x,t)-u(x0) (2.31)
0
and for a second-order, we have
Sy o ou(x,0)
L*()= [ [ ()dtdt = L Lu = u(xt) - u(x,0) -t P (2.32)
00
Taking the inverse operator of (2.30), we have
L*Lu=L"f(x)- L™*Ru—L™Nu (2.33)
u(x,t) = u(x,0)+ L™ f (x)- L*Ru- L"*Nu (2.34)
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and u(x,t) = g(x)- L*Ru-L*Nu (2.35)
with g(x) arising from the initial and or boundary condition s. The dewosition method
represents the solution of (2.35) as a series

u(x,t)=>"u,(x.t) (2.36)
n=0
Now, we have to decompose the non-linear term Nu. To do this Adatelsioped a very
elegant technique as follows; define the composition parametet = Z/]iui then Nu will be

i=0
a function of A, U, »U;,... next expanding Nu in Maclurent series with respedt,tave obtain

Nu = i/}i A (2.37)

whereA represent the Adomian polynomial for the non-linear term

A“_Hd,v[ (Z/}' u,(y, t )JLO (2.38)

A =Fu)

A= U1F'(u0)

A = uzF'(uo)+%ufF"(uo) (2.39)
M M

I n 1 m
A= 0 () + 0 F () + S ()
Substituting for (2.37)-(2.39) in (2.36), we can write the solution saries form as
u=u, +u, +u, +..+ . Adomian gave the final solution as

U, = g(X)
u, =-L"Ru, - LA, 1)
M M

u,,=-L Ru —LA1 n=0
The accuracy of this numerical scheme is enhanced by computimgpnents as far as possible.
However, there have been several modifications on the Adomian desition method that
makes the method much better than many other numerical methods.

3.0 Adomian decomposition method for the hemodynamics model
Given that
4
a_u+@:A+ii e ( )au +ig Hazu—ia_l: (31)
ot oy Reoy' dy ) Reoy® Redy

Subiject to initial and boundary conditions
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t=0:u=sin()dy
t>0:u(-1)=0=u"(-1) (3.2)
u@)=0=u"(@)
Special Case 1Pulsatile pressure gradient
It is a known fact that blood flow through the heart is pulsatile in @atur

Suppose a gradient = _oP (O_Pj + (G_Pj e€“ =P, +Pe“ (3.3)
ox \ox/); \(ox),

Here P,, P, are constants; withoRs the pulsation pressure parameter. To obtain the soWtio
use the perturbation technique as follows
u=U +Vve'“ (3.4)
Substituting, (3.4) in (2.19),
We aobtain two ordinary differential equations
du _1 ( sli-y?) AU de du
= _{ +a -
dy* " dy

-H U}
dy (3.5)

and

d“V__ soy?) AV dvj dav H
o o g e

By using Adomian Decomposition method described above, we obtain the followitig res

Uy(yit)=U(y0)= ai+y62+y2 y3a4+Lyyny

5 (3.7)
unﬂ(y,t):L;;WLY{(lw(l—yzw(l—yz) —juuwauun}—u;w{guwm}
and Vo(y)=b,+yb, + L b3+y b, + L35, P

V,a(yit)= L;lyyyl_y{(h -y )+-y?f 7JLyVn ¥ aLyVn} - L;lwy(i wrH ALV,  (38)

Substituting (3.7) and (3.8) in (3.4), Then the iteration is done by usingmetibal version 6 to
obtain the following numerical results, due to the large sizdefsblution we only show the
graphical solutions in figure 3.1-3.4
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Figure 3.2: Velocity against y Figure 3.4: Velocity against y

Special Case 2 Constant pressure gradient
However, for flow in the capillaries the flowis no more pulsatile it
is assumed to have reached a mean steady state from (2.19)

du , du 10 ( sp-y)Ou), a d0’u , b d*u

—+—=A+ e’ -Ha'u-——

ot ay Re ay oy Re 6y Ready
So by Adomian a direct integration of (2.19) yields,
u(y.t)=u(y,0)+ LA - Lu+ Ly(e/’(l‘yz)Lyuj/+ al,u-Ha?u—bL,, u}

(3.9)
Taking Taylor's expansion dExp[,B(l— yz)] about,B_ We obtain
Exp[,B(l— yz)] =1+ ,8(1— y2)+%(1— y2)2,82 + other terms (3.10)
Substituting (3.9) in (3,8) we have the recurrence formula
u(y,t) = u(y.0)+L*A 1D
u,,u(y,t)= Lt‘l{— L,u, +L, (e"”(l‘yz)Lyun)+ aL,u, - Ha’u, —bLWWun} '
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Then (3.10) is iterated using mathematical version 6. Againha# snly show the graphical
results due to the large size of the solution in figures 3.5 — 3.8
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Figure: 3.7: Velocity against .
y Figure: 3.8: Velocity against
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4.0 Discussion of results

In figures 3.1 and 3.2 we observe that as both magnetic
paraneter and viscosity paraneter increases the blood flow
velocity reduces this is physically true for magnetic effect in
major artery and as viscosity increases the non Newonian
property becone significant.

In figure 3,3 we observed that as the couple stress
paraneter increases its inverse reduces and the flow velocity
increases and for figure 3.4 an increase in the elastic paraneter
i mproves the flow

One of the major risk factor of high blood pressure is
that it destroys the tiny and very fine capillary walls causing
pepperish sensation this effect is seen in figure 3.5. while the
effect of therapic nagnetic place on the skin is shown in figure
3.6 evidently the magnetic effect causes inprovenent | the flow
vel ocity
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The effects of couple stresses paraneter shown in figure
3.7 and elastic paraneter effect in figure 3.8

4.0 Concluding remarks
We have studied the effect of couple stresses on the undvda@aty flow through
stenosed artery using the Adomian decomposition approach our results gesosvalthat
[ increasing the Hartmann number improves the flow at thdlagplevel while it has
reduction effect at the artery level
ii increasing the couple stress parameter causes reduction in the libaityve
iii. increasing the elastic parameter causes reduction in the flogityel
iv. increasing the viscosity parameter reduces the flolcitg however at the capillary
level the fine walls may be disturbed if the situation is not checked
It is therefore recommended that people should go for periodic rhed@aination of
there blood pressure as people that are hypertensive do no knbtheynttome down with the
complications like pep perish skin (in which case the wallshef dapillary must have been
destroyed), loss of sight, kidney diseases or stroke.
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