
Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 523 - 532 
On hydromagnetic flow of blood,  S. O Adesanya, S. O. Ajala and R. O. Ayeni,      J of 
NAMP 

Journal of the Nigerian Association of Mathematical Physics 
Volume 15 (November, 2009), pp 523 - 532 

© J. of NAMP 
 
 

Effect of couple stresses on hydromagnetic flow of blood through a stenosed 
coronary artery 

 
 

1S. O Adesanya, 2S. O. Ajala and 3R. O. Ayeni 
1Department of Mathematical Sciences Department, 

Redeemer’s University, Redemption City, Nigeria 
2Department of Mathematics, 

University of Lagos, Akoka, Nigeria 
3Department of Pure and Applied Mathematics, 

Ladoke Akintola University of Technology, Ogbomoso, Nigeria. 
 
 

Abstract 
 

The function of the coronary network is to supply blood to the heart; 
however, in cases of Coronary Artery Disease, the geometry has great 
influence on the nature of the blood flow and the overall performance of the 
heart. In this paper, the unsteady non-Newtonian flow of blood under couple 
stresses and a uniform external magnetic field is analysed by using Eyring –
Powell model. We also assumed that blood viscosity is not constant but a 
function of cell aggregation. The momentum equation for the flow is non-
dimensionalized and the non-linear dimensionless equation is then solved 
numerically by using Adomian decomposition method (ADM) for fixed value 
of suction parameter. Variations of different flow parameters are conducted 
and discussed. 
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1.0 Introduction 

Blood is an important body fluid which is assumed to be homogeneous suspension 
consisting of platelets white blood cell, red blood cell plasma. Following [1], Magnets are 
composed of metal alloys such as iron, nickel or cobalt and they will attract different types of 
metallic particles. The blood contains irons and when therapeutic magnets are placed on skin, the 
magnetic field penetrates through the skin and into the surrounding tissues and blood stream and 
the increased activities causes the blood flow to improve. The increase in blood flow is localised 
to the area where the magnets are placed. When magnets placed over a major artery, there is a 
much larger perfusion of blood flow, so the magnetic field is carried further around the body. 
When body’s blood flow is increased, oxygen, nutrients and hormones are distributed to the organ 
and tissues more effectively and quickly. Then the organs will have fresh rich supply of oxygen 
and nutrients to nourish them. Also, the tissues gain oxygen, healing nutrients and hormones 
including endorphins, which are body’s normal pain killing hormones. If there is  
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an injury or ailment which is supplied with regular fresh oxygen, nutrients and endorphins, then 
the injury or ailment will heal much faster and the pain will be reduced by the body’s own pain 
killing hormones (endorphins).  

The effect of couple stresses on the unsteady MHD flow numerically with the assumption 
that blood viscosity is constant has been studied in [2]. The fluid-structure interaction of blood 
flow through a stenosed vessel has been studied extensively by [3] using power law model thus 
neglecting the elasticity property of blood. The effect of viscosity variation on hemodynamics 
stability of large blood vessel was investigated by [4]. 
In this present work, we use the result [4] to generalized the previous work of [2], the main 
objective is to investigate the effect of couple stresses on the unsteady hydro-magnetic flow of 
blood through porous walls with the assumption that the viscosity in not constant. This is a more 
realistic model for studying blood flow in a stenosed large blood vessel,   

The paper is organized in this form; in section 1 we give brief introduction and the 
statement of problem, in section 2 of the work, the problem is formulated and non-
dimensionalized, in section 3, the problem is solved while results are presented and discussed in 
section. Section 4 concludes the paper. 
 
2.0 Mathematical formulation 

Consider a laminar, viscous and oscillatory non-Newtonian unsteady electrically 
conducting incompressible flow of blood between constricted axis-symmetrical and elastic tube 
porous walls under the effect of couple stresses. Due to symmetry, we take the x and y axes along 
and transverse to the parallel walls and assume a uniform magnetic field B acting along the y-
axis. The fluid is injected into the lower wall at y=0 and sucked through the upper wall at y=h 
with the uniform velocity 0v .  The electric field is assumed to be zero and the induced magnetic 

field is assumed to be very small and the electric conductivityσ  of the fluid is sufficiently large.  
The geometry of the flow is similar to [3].  
The geometry of the flow under consideration in this present study is given below. 
 

 
Figure 2.1: Flow geometry 

2.1 Governing equation 
The field equations are [2],   
The continuity equation  

     0, =+ jivρρ&
    

 (2.1) 

Cauchy’s first law of motion 
     ijjii fTa ρρ += ,

  
  (2.2) 

Cauchy’s second law of motion
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     0, =++ jkijkijji TelM ρ
 

  (2.3) 

The constitutive equation for a linear perfectly elastic solid as obtained by is in the form 
 

 
 

 
     A

jji
S

jjijji TTT ,,, +=
 

   (2.4) 

where S
jjiT ,  is the symmetric part of the stress tensor 

( ) ( ) ,,,,,, , jjiijjijiji
S

jji PvvPT τµµλ +−=+++−=
 

 (2.5) 

and    ( ) ,,
2

1
2 ,, jleT kijkjllji

A
jji ρηω +−=     (2.6) 

Where ijω is the spin tensor and is considered as a measure of the rates of rotation of elements in 

a certain average sense, ijτ is the stress tensor, kijkij e ωω = ,  iω
 
is the vorticity vector  

Since jkijki ve ,2

1=ω one has ( )jiijij vv ,,2

1 −=ω  and we can write  

( ) ,,
2

1
2 ,,, jlevT kijkjilljjjlli

A
jji ρηηω ++−=

   (2.7) 

and the equation of motion becomes 

( ) ( ) ikijskjjkkiikkjj
S

jjii fjlevvTa ρρηηρ ++−+= ,,
2

1
, ,,,

  (2.8) 

For incompressible fluids and if the body force and body moments are absent, the equations of 

motion reduce to  

jjkki
S

jjii vTa ,, ηρ −=
    (2.9) 

This in vector notation can be written as 
( ) vPa iji

4. ∇−∇+−∇= ητρ
                (2.10) 

The last term in this equation gives the effect of couple stresses. Thus, for the effect of couple 
stresses to be present, rrssiv ,

 
must be non zero represent the stress tensor in the case of the non 

polar theory of fluids. 
The stress tensor in the model for non-Newtonian fluids takes the form 
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                (2.11) 

where the first part represent the viscous part and second term denote the elastic effect 
µ represents the dynamic viscosity and c,α  are characteristics of the Eyring–Powel model u = 
velocity, ρ  = density, µ = viscosity, p = pressure, x = co-ordinate in the direction of flow, y= 
coordinate across the flow, u= velocity in x-direction, v = velocity in y direction 
Now let ( )( )0,,, 0vtyuv =  
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Continuity Equation:     0=
dx

du
                (2.12) 

Momentum Equation: 

( )
4
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000 y
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uBEB

ydx

dp
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xy ∂

∂−−+
∂
∂+−=









∂
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∂
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By assuming a small electric field, (2.13) can be written as 
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with    1
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Neglecting the second approximation for being small.  Now introducing the following 
dimensionless parameters 
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              (2.16) 

Introducing (2.16) we obtain the dimensionless equation with appropriate initial and boundary 
conditions after dropping bars since (there is no confusion) 
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where u : velocity in flow direction, S : suction parameter, a is the characteristic of Eyring-Powell 
model, β is the viscosity variation parameter, Ha is the Hartman number, b is the stress parameter.  
Makinde [4] gave the dynamic viscosity as 

( )21 ye −=′ βµ                   (2.18) 
We have 

( )
4
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∂
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∂
∂+

∂
∂ − ςξβ               (2.19) 

subject to initial and boundary conditions 
( )

( ) ( )
( ) ( )101

101:0

sin:0

uu

uut

yyut

′′==
−′′==−>

∀== π
               (2.20) 

2.2 Existence theorem [6] 
Let D denote the region in (n +1) dimensional space, one dimension for t and n dimensions for 
the vector x) 

,0 att ≤−     bXX ≤− 0                 (2.21)
 

and suppose that f(x,t) satisfies the condition 
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j

i

x

f

∂
∂

 i,j = 1,…,n                 (2.22) 

are continuous in D.  Then there is a constant δ >0 such that there exists a unique continuous 
vector solution X(t) of the system 

( ) ( ) 1001111 ,,,..., XtXtXXfX n ==′  

( ) ( ) 2002122 ,,,..., XtXtXXfX n ==′  

( ) ( ) 001 ,,,..., nnnnn XtXtXXfX ==′
                (2.23) 

 
 
 
 

In the interval .0 δ≤− tt  

Theorem 2.1 
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              (2.24)
 

with  

( ) ( ) ( ) ( ) ( )101,101:0,sin:0 uuuutyyut ′′==−′′==−>∀== π , S== 0β , 
tt

1
,

1 == ξς  

Then there exists a unique solution of the problem  
Proof 
 Let us assume that the wall porosity is negligible then introducing the similarity 
variable  

     
t

y

2
=η                  (2.25) 

Then (2.24) can be written as 

 
4

42

1622

1

2

1

2 ηηηηη
η

d

ud

t

b
u

t

Ha

d

du

t

a

d

du

td

d

t
G

d

du

t
−−







 ++=−  

 
 

( )
4

4
2

2

2

16
1

ηηη
η

d

udb
uHa

d

ud
aG

d

du −−++=−
                (2.26)

 

Now let  
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subject to the initial conditions ( ) ( ) ( ) Dxxx =−== 0,10,00 321  

Now we need to proof that 
j

i

x

f

∂
∂

 are continuous in the domain  

Differentiating each term of if  with respect to ix  

We obtain 
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From above, it is now obvious that 
j

i

x

f

∂
∂

exist and continuous. Hence the proof 

Clearly, k
x

f

j

i =
∂
∂

 therefore the function satisfies the Lipschitz condition. 

2.3 Analysis of the adomian decomposition method [5] 
The principal algorithm of the Adomian decomposition method when applied to a general non-
linear equation is in the form  
    ( )xfNuRuLu =++                  (2.30) 
the linear terms are decomposed into L + R while the non-linear terms are represented by Nu. L is 
taken as the highest order derivative to avoid derivative to avoid difficult integration involving 
complicated Green’s function and R is the remainder of the linear operator. L-1 is regarded as the 
inverse operator of L and is defined by a definite integration from 0 to t, for example, for a first-
order operator  

   ( ) ( ) ( ) ( )0,,.. 1

0

1 xutxuLuLdtL
t

−=⇒= −−
∫                (2.31) 

and for a second-order, we have 

  ( ) ( ) ( ) ( ) ( )
t

xu
txutxuLuLdtdtL

t t

∂
∂−−=⇒= −−

∫ ∫
0,

0,,.. 1

0 0

1               (2.32) 

Taking the inverse operator of (2.30), we have 

   ( ) NuLRuLxfLLuL 1111 −−−− −−=                 (2.33) 

( ) ( ) ( ) NuLRuLxfLxutxu 1110,, −−− −−+=                 (2.34) 
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and   ( ) ( ) NuLRuLxgtxu 11, −− −−=                 (2.35) 
with g(x) arising from the initial and or boundary condition s.  The decomposition method 
represents the solution of (2.35) as a series 

    ( ) ( )∑
∞

=

=
0

,,
n

n txutxu                  (2.36) 

Now, we have to decompose the non-linear term Nu. To do this Adomian developed a very 

elegant technique as follows; define the composition parameter λ as ∑
∞

=

=
0i

i
iuu λ  then Nu will be 

a function of ,...,, 10 uuλ  next expanding Nu in Maclurent series with respect toλ , we obtain 

    ∑
∞

=

=
0i

i
i ANu λ                                    (2.37) 

where Ai represent the Adomian polynomial for the non-linear term 
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Substituting for (2.37)-(2.39) in (2.36), we can write the solution in series form as 
++++= ..210 uuuu  .  Adomian gave the final solution as  
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The accuracy of this numerical scheme is enhanced by computing components as far as possible. 
However, there have been several modifications on the Adomian decomposition method that 
makes the method much better than many other numerical methods.  
 
3.0 Adomian decomposition method for the hemodynamics model 
 Given that  
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Subject to initial and boundary conditions 
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  (3.2) 

Special Case 1: Pulsatile pressure gradient 
 It is a known fact that blood flow through the heart is pulsatile in nature,  

Suppose a gradient ti
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Here 0,PPs  are constants; with P0 as the pulsation pressure parameter.  To obtain the solution we 

use the perturbation technique as follows  

    tiVeUu ω+=    (3.4) 

Substituting, (3.4) in (2.19),  

 We obtain two ordinary differential equations 

 

( ) }{
1 21

4

4
2

UH
dy

dU

dy

dU
a

dy

dU
e

dy

d
P

bdy

Ud y
s −−








++= −β

  (3.5) 

 

 

 

and 

 

( ) ( ) }{
1 21

04

4
2

VHi
dy

dV

dy

dV
a

dy

dV
e

dy

d
P

bdy

Vd y +−−







++= − ωβ

 (3.6) 
By using Adomian Decomposition method described above, we obtain the following results 
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Substituting (3.7) and (3.8) in (3.4), Then the iteration is done by using mathematical version 6 to 
obtain the following numerical results, due to the large size of the solution we only show the 
graphical solutions in figure 3.1-3.4 
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Special Case 2:- Constant pressure gradient 
 However, for flow in the capillaries the flow is no more pulsatile it 
is assumed to have reached a mean steady state from (2.19) 
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So by Adomian a direct integration of (2.19) yields, 
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Taking Taylor’s expansion of ( )]1[ 2yExp −β about β .  We obtain  
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Substituting (3.9) in (3,8) we have the recurrence formula 

( ) ( )
( ) ( )( ){ }nyyyynnyyny

y
ynytn

t

ubLuHauaLuLeLuLLtyuu

Lyutyu

−−++−=

+=
−−

+

−

211
1

1

2

,

0,,
β

λ
                    (3.11) 

Velocity 
 

0.25 
 
 
0.20 
 
 
 
0.15 
 
 
0.10 
 
 
0.05 

y 
-1.0 -0.5  0.5 1.0 
Figure 3.1: Velocity against y 

       Ha = 1 
       Ha = 2 
        Ha = 3 

Velocity 
 

0.25 
 
 
0.20 
 
 
 
0.15 
 
 
0.10 
 
 
0.05 

y 
-1.0 -0.5  0.5 1.0 
Figure 3.2: Velocity against y 

       β = 0.01 
       β = 0.4 
        β = 0.7 

Velocity 
 

0.30 
 
 
0.25 
 
 
0.20 
 
 
0.15 
 
 
0.10 
 
 
0.05 

y 
-1.0 -0.5  0.5 1.0 
Figure 3.4: Velocity against y 

Velocity 
 

0.30 
 
 
0.25 
 
 
 
0.20 
 
 
0.15 
 
 
0.10 
 
0,05 

y 
-1.0 -0.5  0.5 1.0 
Figure 3.3: Velocity against y 

      b = 3 
       b = 2 
        b = 1 

      a = 3 
       a = 2 
        a = 1 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 523 - 532 
On hydromagnetic flow of blood,  S. O Adesanya, S. O. Ajala and R. O. Ayeni,      J of 
NAMP 

Then (3.10) is iterated using mathematical version 6. Again we shall only show the graphical 
results due to the large size of the solution in figures 3.5 – 3.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.0 Discussion of results 
 In figures 3.1 and 3.2 we observe that as both magnetic 
parameter and viscosity parameter increases the blood flow 
velocity reduces this is physically true for magnetic effect in 
major artery and as viscosity increases the non Newtonian 
property become significant. 
 In figure 3,3 we observed that as the couple stress 
parameter increases its inverse reduces and the flow velocity 
increases and for figure 3.4 an increase in the elastic parameter 
improves the flow 
   
 One of the major risk factor of high blood pressure is 
that it destroys the tiny and very fine capillary walls causing 
pepperish sensation this effect is seen in figure 3.5. while the 
effect of therapic magnetic place on the skin is shown in figure 
3.6 evidently the magnetic effect causes improvement I the flow 
velocity 
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Figure: 3.5: Velocity against 
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Figure: 3.6: Velocity against 
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Figure: 3.7: Velocity against 
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Figure: 3.8: Velocity against 
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 The effects of couple stresses parameter shown in figure 
3.7 and elastic parameter effect in figure 3.8  
 
4.0 Concluding remarks 
 We have studied the effect of couple stresses on the unsteady blood flow through 
stenosed artery using the Adomian decomposition approach our results generally sows that  
i increasing the Hartmann number improves the flow at the capillary level while it has 

reduction effect at the artery level 
ii increasing the couple stress parameter causes reduction in the flow velocity 
iii.  increasing the elastic parameter causes reduction in the flow velocity 
iv. increasing the viscosity parameter reduces the flow velocity however at the capillary 

level the fine walls may be disturbed if the situation is not checked 
 It is therefore recommended that people should go for periodic medical examination of 
there blood pressure as people that are hypertensive do no know until they come down with the 
complications like pep perish skin (in which case the walls of the capillary must have been 
destroyed), loss of sight, kidney diseases or stroke. 
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