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Abstract 
 

In this paper, the non-Newtonian flow of blood in large blood vessel 
is studied by using Eyring–Powell model. We also assumed a variable blood 
viscosity. The momentum equation for the flow is non-dimensionalized and 
the resulting non-linear dimensionless equation is then solved numerically 
under various flow conditions. Variations of different flow parameters are 
conducted and discussed. 
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1.0 Introduction 

Blood is a specialized body fluid that delivers necessary substances to the body cell such 
as; nutrients and oxygen it also transports waste products away from those same cells. However 
under disease condition like stenosis there is a reduced blood supply to the heart, this condition 
may be acquired like in atherosclerosis in which there is fatty deposit in the inner lumen of the 
coronary artery. 
 In a recent paper [1], gave an important model of blood viscosity in terms of hematocrit, 
here we use the earlier result by [2] to extend his work to accommodate the visco-elastic nature of 
blood in a deformed large vessel. Several authors who worked in this direction had used power 
law model to study blood flow due to stenosis but a major disadvantage of this model is that it 
does not account for the elastic nature of blood. 

The objective of the present paper is to investigate the visco-elastic effect on the blood 
flow through stenosed artery with the assumption that the viscosity in not constant and the elastic 
parameter is not negligible.   

The paper is organized in this form; in section 1 we give brief introduction and the 
statement of problem, in section 2 of the work, the problem is formulated and non-
dimensionalized, in section 3, the problem is solved and in section 4, numerical results are 
presented and discussed. While section 5 gives some concluding remarks. 
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2.0 Problem formulation 
 We consider the viscous, incompressible and laminar flow of blood flowing through 
large. The flow is driven by a pulsatile pressure gradient in the flow direction in the case of large 
vessels and driven by a constant pressure gradient in the case of blood flow through capillaries. 
The geometry of the flow under consideration in this present study is given below. 
 

 
 

Figure 2.1: Flow geometry 
To analyse the model, the following major assumptions are made: - 
1. The walls are rigid and stationary, this become imperative due to the formation of bonny 
plaque in the inner wall of the lumen thus reducing its elastic response to the pulse wave 
2. Under this configuration, we have assume that there is a reduction in the flow velocity 
and that the fluid after the stenosed region will be deficient in red blood cell but be rich in other 
blood constituents, 
 In region A, there is possibility of platelet activation if the degree of stenosis is very high 
due to reduction in flow velocity, causing Rolleaux formation due to low shear stress this implies 
increase in blood viscosity and the fluid becomes non-Newtonian 
 In region B, there is reduction in the artery diameter, as compared to a normal range of 
0.05-0.3 cm but the diameter of normal and healthy red blood cell is approximately 8×10-4, 
therefore the red blood cell capsule undergo high deformation to pass through the stenosed region 
B, hence under a disease condition the viscosity profile is a function of flow geometry 
 In region C, we assumed that there is possibility of coronary ischemia (insufficient 
oxygenated blood) and the fluid will be rich in plasma which contains dissolved proteins and 
electrolytes 
3. A two dimension flow is considered  
4. The flow is fully developed 
 The flow continuity equation is 
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Following [1], xyτ  represents the stress tensor in the case of the non-polar theory of fluids. The  

 
 
 
 
 
model for describing the shear of a non Newtonian flow is derived from the theory of rate 
processes. This model can be used in some cases to describe the viscous behaviour of polymer 
solutions and viscoelastic suspensions over a wide range of shear rates. The stress tensor in the 
Eyring-Powell model for non-Newtonian fluids takes the form 
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where µ represents the dynamic viscosity, c,α are characteristics of the Eyring–Powel model, u 
= velocity, ρ  = density, µ = viscosity, p = pressure, x = co-ordinate in the direction of flow, y = 
coordinate across the flow.  Assuming a constant flow area we take 
   v = v0 = 0     (2.4) 
The second term of (2.3) is expanded as 
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Assuming that ( )yµµ =  alone,  
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and    
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dp−=0      (2.7) 

And in view of (2.4) the continuity equation (2.1) reduces to 
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Then (2.8) and (2.4) equation (2.6) becomes 
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Introducing the following dimensionless parameters 
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Then (2.9) can be written in dimensionless form 
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 and Re- Reynold’s Number.  The relationship 

between red blood cell, viscosity and distance between vessel [1] 

   ( )21 ye −=′ βµ           (2.12) 

Where β  represents the viscosity variation parameter 
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Substituting (2.11) into equation (2.12) and dropping bars since there is no confusion, Re=1 
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With the appropriate initial and boundary conditions    
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2.1 Existence Theorem 1 [4] 
 Let D denote the region in (n + 1) dimensional space, one dimension for t and n 
dimensions for the vector x) 
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And suppose that f(x,t) satisfies the condition 
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are continuous in D.     
Then there is a constant δ  > 0 such that there exists a unique continuous vector solution X(t) of 
the system 
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Then there exists a unique solution of the problem  
Proof 
 By using the above theorem.  Neglecting small parameters by assuming that the second 
approximation  
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Then (2.13) becomes 
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Let us introduce a similarity variable  
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Let 1,0 →→ µβ .  Then 
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Subject to the initial conditions 
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From above, since there is no singularities then 
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exist and continuous, hence the proof.  
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3.0 Method of solution 
 Special case 1: Pulsatile pressure gradient i.e. 
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Substituting (3.1) and (3.2) in (2.13),  we obtain two ordinary differential equations 
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and in terms of 1U , we obtain 
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To obtain the solutions of (3.3) and (3.4) we assume 10 <<< β  

We then seek an asymptotic expansion about β  in the form  
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Substituting (3.5), (3.6) into (3.3) and (3.4) equating coefficients in favour ofβ , we have 
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Using mathematica version 6, equations (3.7) – (3.18) are solved analytically, due to the large 
size of the solution we present only the graphical solution of equation (3.2) in figures 3.1-3.3. 
Special Case 2 : Constant pressure gradient 
 At the capillary level the flow is no more pulsatile but has attained a mean steady state. 
Now we then use the method of Adomian decomposition [3] to obtain our result. By using 
Adomian algorithm the solution of (2.19) is given as  
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Using mathematica version 6 we iterate (3.19) and the numerical result is in figure 3.4 – 3.5 
Special Case 3:- Steady flow 
 The initial condition independent model is given as,  
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Theorem 3.1: (Existence and Uniqueness Theorem)  
 For the non-linear system (3.19), where the functions Caij ε on [a, b], there exists one 

and only one solution ϕ  of (3.19) on [a,b] passing through any point ( ) Dεξτ ,  that is 
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We shall use the above theorem to prove our result 
Proof 
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 We have to show that the vector f satisfies the Lipschiitz condition on D. then the 
existence and uniqueness is guaranteed at the initial point( ) 101 −=x . It suffices to show that the 
solution can be continued to a unique solution in the entire interval [a,b] 
Now, let   ,1 yx = ux =2 and ux ′=3 .         (3.25) 
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From above, it is now obvious that 
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therefore the function satisfies the Lipschitz condition. It follows from (3.7) – (3.11) that (3.30) 
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As the asymptotic solution, while the graphical solutions are given in figures 3.1, 3.2, 3.3, 3.4, 
3.5, 3.6, 3.7 and 3.8. 
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Figure: 3.1: Velocity against distance 
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Figure: 3.3: Velocity against distance 
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Figure: 3.4: Velocity against distance 
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Figure: 3.5: Velocity against distance 
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Figure: 3.6: Velocity against distance 
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Figure 3.7: Velocity against distance 
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Figure 3.8: Velocity against distance 
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4.0 Discussion of results 
 In figures 3.1, 3.6 and 3.7 we observed that as the viscosity parameter increases the flow 
velocity reduces this is due largely to the fact that as viscosity of blood increases the non-
Newtonian characteristic become more pronounced. 
 In figures 3.2, 3.5 and 3.8 variations of the elastic parameter shows that as the stenosis 
height increases the artery diameter obviously reduce and the elasticity of blood increases this has 
an end effect on the flow velocity causing reduction in flow velocity.  
 In figures 3.3 and 3.4 we observe that as time increases the velocity of flow in the artery 
increases while the flow velocity reduces with time in the capillary flow. 
 
4.0 Conclusion 

We have studied the hemodynamics of a stenosed artery; the possible application of this 
work is in the diagnosis and treatment of cardiovascular diseases. Our result shows that increase 
in the whole blood viscosity is a very dangerous situation which poses a major health risk.  
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