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Abstract

In this paper, the non-Newtonian flow of blood imitge blood vessel
is studied by using Eyring—Powell model. We als@@ased a variable blood
viscosity. The momentum equation for the flow ismdimensionalized and
the resulting non-linear dimensionless equation iken solved numerically
under various flow conditions. Variations of diffent flow parameters are
conducted and discussed.
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1.0 Introduction

Blood is a specialized body fluid that delivers necessary sulestamt¢he body cell such
as; nutrients and oxygen it also transports waste produetg famm those same cells. However
under disease condition like stenosis there is a reduced blood soigpby heart, this condition
may be acquired like in atherosclerosis in which there ig &posit in the inner lumen of the
coronary artery.

In a recent paper [1], gave an important model of blood viscostgrms of hematocrit,
here we use the earlier result by [2] to extend his work to accommodate thelastotonature of
blood in a deformed large vessel. Several authors who workdikiditection had used power
law model to study blood flow due to stenosis but a major disadvaatabes model is that it
does not account for the elastic nature of blood.

The objective of the present paper is to investigate $moiglastic effect on the blood
flow through stenosed artery with the assumption that the viséngityt constant and the elastic
parameter is not negligible.

The paper is organized in this form; in section 1 we givef lonteoduction and the
statement of problem, in section 2 of the work, the problem is fatedil and non-
dimensionalized, in section 3, the problem is solved and in section 4, icainesults are
presented and discussed. While section 5 gives some concluding remarks.
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2.0 Problem formulation

We consider the viscous, incompressible and laminar flow addbflowing through
large. The flow is driven by a pulsatile pressure gradiettie flow direction in the case of large
vessels and driven by a constant pressure gradient in thefdaleed flow through capillaries.
The geometry of the flow under consideration in this present study is giken be

" Stenosed Areas

Figure 2.1 Flow geometry
To analyse the model, the following major assumptions are made: -

1. The walls are rigid and stationary, this become imperativeadine formation of bonny
plague in the inner wall of the lumen thus reducing its elastic respmtise pulse wave
2. Under this configuration, we have assume that there is atimdirc the flow velocity

and that the fluid after the stenosed region will be defiecrenéd blood cell but be rich in other
blood constituents,

In region A, there is possibility of platelet activationh& degree of stenosis is very high
due to reduction in flow velocity, causing Rolleaux formation due toslo@ar stress this implies
increase in blood viscosity and the fluid becomes non-Newtonian

In region B, there is reduction in the artery diameter, agpaced to a normal range of
0.05-0.3 cm but the diameter of normal and healthy red blood cell isxapptely 8x107,
therefore the red blood cell capsule undergo high deformation to pasgttithe stenosed region
B, hence under a disease condition the viscosity profile is a functicowof#ometry

In region C, we assumed that there is possibility of coromatyemia (insufficient
oxygenated blood) and the fluid will be rich in plasma which contdissolved proteins and

electrolytes
3. A two dimension flow is considered
4. The flow is fully developed
The flow continuity equation is
o ey
ox oy
The momentum equation is
p@+ua—u+v@ =—%+irXy (2.2)
ot ox oy dx oy
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Following [1], 7,, represents the stress tensor in the case of the non-polar theorysfTthed

model for describing the shear of a non Newtonian flow is derik@d the theory of rate
processes. This model can be used in some cases to describsedus ehaviour of polymer
solutions and viscoelastic suspensions over a wide range ofrabema The stress tensor in the
Eyring-Powell model for non-Newtonian fluids takes the form

T, = /,1ﬂ +lsinh’1(E%J (2.3)

ax,. a

where y represents the dynamic viscosity, C are characteristics of the Eyring—Powel model,
= velocity, p = density,u = viscosity,p = pressurex = co-ordinate in the direction of flowy,=
coordinate across the flow. Assuming a constant flow area we take

v=vy=0 (2.4)
The second term of (2.3) is expanded as

3

1ou 1f1 1ou
cdy) cody 6\coy

= <1 (25)
c oy

Assuming thaty = ,u(y) alone,
2 2 2
p(auwauj:_@Jri(ﬂaqua u, 10’ 19% (26)

o dx oyl ay x> cox’ cay
and 0= —@ 2.7)
dy
And in view of (2.4) the continuity equation (2.1) reduces to
du
— =0 2.8
I (2.8)
Then (2.8) and (2.4) equation (2.6) becomes
2 2 32
p@:—%+i Iu@ +16_l2'l+i3 @ a_l: (29)
ot dx ay\' dy) coy® 2c’\ody) oy
Introducing the following dimensionless parameters
t h
U’zi, X':z, yI:X' t':VL' pr: pz,Re:VL,V:& (10)
A h h h M, vV p
Then (2.9) can be written in dimensionless form
r 1 2,1 2 2
W _,,L1of ), a0 Ofu)ou .11
ot Reody oy Reody'* Reldy) ody
Where a = , = V3° COE =—@ and Re- Reynold’s Number. The relationship
acl, 2apc’heu, dx
between red blood cell, viscosity and distance between vessel [1]
' = efiy’) (2.12)

Where £ represents the viscosity variation parameter
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Substituting (2.11) into equation (2.12) and dropping bars since there is no aonRest1

3
@ =) +i eﬂ(l‘yz)@ + aa_u+ 0 @ (2.13)
ot ay ady oy oy

With the appropriate initial and boundary conditions
t<0: u=8n [
(W) y (2.14)
t>0: u(-1)=0=u(1)
2.1 Existence Theorem J4]

Let D denote the region inn(+ 1) dimensional space, one dimension foand n
dimensions for the vectoj

t-to| <, [X - X,| <b

(2.15)
And suppose thdfxt) satisfies the condition
of.
—,ij=1,...n (2.16)
ox

j
are continuous ib.

Then there is a constadt > 0 such that there exists a unique continuous vector sokitipof
the system

Xi = fl(xl""'xn’t)’ xl(tO) = Xio
X; = fz(xl’----xn’t)’xz(to): X2
X! = f

n(Xl, ..... Xn,t),Xn(to)= X0 (2.17)

In the intervallt —t,| < &.

Theorem2.1
3
Let 0 = )+ 9| pt) O QU [ QU | i,
ot ay ady oy oy
t<0: u=9n(y)0y

t>0: u(-1)=0=u(1)
Then there exists a unique solution of the problem
Proof

By using the above theorem. Neglecting small parameteasdyming that the second
approximation

louf_, (2.18)
c ay
Then (2.13) becomes
% =) +i eﬁ(l—yz)@+aa_u (2.19)
ot oy ay oy

Let us introduce a similarity variable
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n= o (2.20)
Let 8 - 0, 4 -1 Then
) foer)
dn? (1+a) dn (2.21)
Now let
X =1,
X, =U (2.22)
=
dry
to obtain
Xi f1 (Xl’XZ, X3)
X, X, fo(X, X5 X%3)
= = (2.23)
2(A + X,X,)
Xy ) l+a fa(X X, X3)
Subject to the initial conditions
x(0)=0
x,(0)=-1 (2.14)
x,(0)=D

of. . . : i
Now we need to proof that— are continuous in the domdn Differentiating each term of,

X

with respect tox, we obtain

o g 9 _g 0 g

0%, 0X, 0%,

%:O’%:O’%: (215)
0%, 0X, 0%,

of, _ 2%, 0f, 2%, of, _

CAES AR LAY
ox, (1+a) ax, (1+a) ax

. . . . of .
From above, since there is no singularities tlgehemst and continuous, hence the proof.
X .
J
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3.0  Method of solution
Special case 1Pulsatile pressure gradient i.e.

~P _p pee (3.1)
ox
and u=U,+U.e“ (3.2)
Substituting (3.1) and (3.2) in (2.13), we obtain two ordinary differential ensati
0=P, + i((eﬂ(l—vz))d_u 043 dUOj 3.3)
dy dy dy
and in terms ofJ,, we obtain
0=PR +i((e/’(l‘yz))%+a%j—iau1 (3.4)
dy oy dy

To obtain the solutions of (3.3) and (3.4) we asslive[s <<1
We then seek an asymptotic expansion alfdun the form

U, =Uu, + Bu, + B°u, (Neglecting other terms) (3.5)
and taking the Taylor’'s expansion e‘f(l‘yz)aboutﬁ
/i) =1+ pla-y?)+ 0542 (L- y?f (3.6)
Substituting (3.5), (3.6) into (3.3) and (3.4) equating coefficients in favgly vfe have
d®u
0=A+(1+a)—2 3.7
B (Lra) g (37)
with uy(-1)=0=u,(1) (3.8)
1. d(f_ 2\duy d’u,
L 0= dy((l y ) dy J+(1+ a) a2 (3.9)
with u(-1)=0=uy,(1) (3.10)
2. - d (1 Y) du, d(f_ 2\du d’u,
L7 0= dy[{—z J d J+ dy((l y ) d +(1+ a) a2 (3.11)
with u,(-1)=0=u,(1) (3.12)
ForU,, we have
d’u, .
B°:0=A+(1+a) dy20 —ia, (3.13)
with uy(-1)=0=u,(1) (3.14)
d du d’u, .
L 0=—|[l-y?*) =2 [+ (1+a) =2 -iau 3.15
B dy(( y?) & j 1+ a2 -iaa (3.15)
with u,(-1)=0=u,(1) (3.16)
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B Oziq(l_Tyz)Z}%J+ d ((1— yz)%J+(1+ a)dolzyuz2 —iau, (3.17)

dy dy | dy

with u,(-1)=0=u,(1) (3.18)
Using mathematica version 6, equations (3.7) — (3.18) are solvedically, due to the large
size of the solution we present only the graphical solution of equationr(3igies 3.1-3.3.
Special Case 2 Constant pressure gradient

At the capillary level the flow is no more pulsatile Iais attained a mean steady state.
Now we then use the method of Adomian decomposition [3] to obtainesuit.r By using
Adomian algorithm the solution of (2.19) is given as

uo(y.t) = u(y.0) = Sin(7w) + L'G

Uy (Y1) = Lt—lLy{(u BlL-y?)+ (- y?) ,872 JLyUn (y.0)+al s, (y't)} (3.19)

Using mathematica version 6 we iterate (3.19) and the numerical resuigisre 3.4 — 3.5
Special Case 3 Steady flow
The initial condition independent model is given as,

d du , _du
0=A+—| expplL-y? —+a—j (3.20)
W( ( LW dy
u(-1)=0=u(1)
Definition 1: [5] for a system of equation
x => a(t)x, (i=1..n) (3.21)
i=1

wherea; are continuous functions on some closed bound#eérval fa, b]. If f is the vector with
component$ defined by

ﬁ@@:Zaﬁij:me (3.22)

thenf satisfies the Lipschitz condition on the+ 1)-dimensional regio®:a<t<b |>4 <00,
Infact

(6 %) = (6%, ) < Kjx =X, (3.23)
where
K =Z‘aﬂ (t)‘ (tela,b]; j =1,...,n) (3.24)

Theorem3.1 (Existence and Uniqueness Theorem)
For the non-linear system (3.19), where the functiaps C on [a, b], there exists one

and only one solutionp of (3.19) on §b] passing through any poin@r,f)s D that is
#(r)=¢

We shall use the above theorem to prove our result

Proof
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We have to show that the vectbrsatisfies the Lipschiitz condition ob. then the
existence and unigueness is guaranteed at the initial)@(ﬂ)l= —1. It suffices to show that the
solution can be continued to a unique solution in the entire interval [a,b]

Now, let X =Y, X, =uandx; =u’. (3.25)
Then, (3.20) becomes
Xi 1 fl(xl’XZ’XS)
XIZ X3 fZ(Xl’XZ’XS)
= = (3.28)

A =28% X, exp,B(l—\ xf)
X5 a+exp,8(1— xf) f3(xl,x2,x3)
(

subject to the initial conditions

x(0)=0
x,(0)=-1
x,(0)=D

of.
Again we have to show thaa{—'= k for the problem to satisfy the Lipschitz condition in
X

I
definition one. Differentiating each term &f with respect tox, we obtain

oo 0 g O

0%, ox,  0X,

My g0y

0%, 0X, 0%,

ag_—zﬁ&@+eﬂﬂﬂhﬁ2&ﬁkmﬂﬂ of, _ o 0t _-2pxexppli-x)
0x, (a + eﬁ(l—yz))2 'ox, 0x, a+expBll-x})

of. of.

From above, it is now obvious th%tL exist and continuous. Hence the proof, cleasly',— =k
X, X .
] J

therefore the function satisfies the Lipschitz condition. lofe$ from (3.7) — (3.11) that (3.30)
gives

u= /](1_ y2) + 18/1(_1"' 2y2 - y4) + 52/1(_1"- a)(_1+ y2)3 (3.28)
2(1+a) 41+a)’ 12(1+a)’ '
As the asymptotic solution, while the graphical solutions arengin figures 3.1, 3.2, 3.3, 3.4,
3.5, 3.6, 3.7 and 3.8.
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Velocityl—— B =0.01 Velocity

L

-1.0 -0.5 0.5 1.0 -1.0 -0.5 0.5 1.0
Figure: 3.1 Velocity againstdistance Figure 3:2: Velocity against distance
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Figure: 3.3: Velocity against distan
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Figure: 3.4: Velocity against distance
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Figure: 3.5: Velocity againsti st ance
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Figure: 3.6 Velocity against distance

Velocity

— =001
— =025
—--f=04

-1.0 -0.5

y
0.5 1.0

Figure 3.7: Velocity against distance
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Figure 3.&: Velocity against distan
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4.0 Discussion of results

In figures 3.1, 3.6 and 3.7 we observed that as the viscosity gt@raimcreases the flow
velocity reduces this is due largely to the fact thatvigsosity of blood increases the non-
Newtonian characteristic become more pronounced.

In figures 3.2, 3.5 and 3.8 variations of the elastic parameter ghatvas the stenosis
height increases the artery diameter obviously reduce and theigiasg blood increases this has
an end effect on the flow velocity causing reduction in flow velocity.

In figures 3.3 and 3.4 we observe that as time increasegltiaty of flow in the artery
increases while the flow velocity reduces with time in the capiflaxy.

4.0 Conclusion

We have studied the hemodynamics of a stenosed artery; thel@agglication of this
work is in the diagnosis and treatment of cardiovasculaaskse Our result shows that increase
in the whole blood viscosity is a very dangerous situation which poses a nadjbrrisk.
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