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Nomenclature 
c : non-dimensional concentration 
T : fluid temperature 
u: fluid axial velocity 
Cj : skin-friction coefficient 
Grc : mass Grasho number 
Grτ : thermal Grashof number 
M :Hartmann number 
Nu : Nuselt number 
Sh : Sherwood number 
Pr : Prandtl number 
v : fluid transverse velocity 
K : non-dimensional reaction parameter 
cp: specific heat at constant pressure 
y : transverse or horizontal coordinate 
k0 = K0: permeability parameter 
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Abstract 
 

This paper reports the analytical calculation of the entropy 
generation due to heat and mass transfer and fluid friction in steady state of a 
uniformly stretched vertical permeable surface with heat and mass diffusive 
walls, by solving analytically the mass, momentum, species concentration and 
energy balance equation, using asymptotic method. The velocity, temperature 
and concentration profiles were reported and discussed. The influences of the 
chemical reaction parameter, the thermal and mass Grashof numbers, heat 
generation/absorption and Hartmann number on total entropy generation 
were investigated, reported and discussed.  

 
 
 

Keywords 
  Heat transfer, Mass transfer, Entropy generation, Fluid friction,  MHD flow, suction  

velocity, viscousity 
 
AMS Subject Classification: 76W05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1Corresponding author 

1e–mail address: micindex@yahoo.com,  
1Telephone: +234-0803–568-8 453 
 

t : time 
1−=i : complex identity 

 
Greek Symbols 
θ: non - dimensional fluid temperature 
φ  : heat generation/absorption coefficient 
ω : angular velocity 
 
Dimensionless Group 
Grt :  dimensionless thermal Grashof number 
Grc : dimensionless mass Grashof number 
ɛ: epsilon, 0  ≤ ɛ << 1 
 
Subscripts 
ω : condition on the wall 
∞: ambient condition 
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1.0 Introduction 
 In industries and nature, many transport processes exist in which heat and mass transfer 
takes place simultaneously as a result of combined buoyancy effect of thermal diffusion and 
diffusion of chemical species. The phenomenon of heat and mass transfer is observed on 
buoyancy induced motions in the atmosphere, in bodies of water, quasi – solid bodies, such as 
earth and so on. Unsteady oscillatory free convective flows play an important role in chemical 
engineering, turbo machinery and aerospace technology such flows arise due to either unsteady 
motion of a boundary or boundary temperature. Besides unsteadiness may also be due to 
oscillatory free stream velocity and temperature. In the past decades an intensive research effort 
has been devoted to problems on heat and mass transfer in view of their application to 
astrophysics, geophysics and engineering. In addition, the phenomenon of heat and mass transfer 
is also encountered in chemical process industries such as polymer production and food 
processing. The study of flow and, heat and mass transfer in the boundary layer induced by a 
surface moving with a uniform or non-uniform velocity in a quiescent ambient fluid is important 
in several manufacturing processes in industry which include the boundary layer along material 
handling conveyors, the cooling of an infinite metallic plate in a cooling bath, Glass blowing, 
continuous casting, and spinning of fibers also involve the flow due to a stretching surface. 
 Many researchers [1-10] have studied the problem on free convection and mass transfer 
flow of a viscous fluid through porous medium. In these studies, the permeability of the porous 
medium is assumed to be constant. However, a porous material containing the fluid is a non – 
homogeneous medium and the porosity of the medium may not necessarily be constant. Recently, 
[11] have discussed analytical solutions for unsteady free convection in porous media.  MHD 
flow of a uniformly stretched vertical permeable surface under oscillatory suction velocity was 

reported by [12]. In their paper, the suction velocity is assumed to be ( )iwteB∈+1  and the 

permeability is taken to be 
)1(

1
tiek ω∈+

. 

 In the traditional approach in numerical computation of double diffusive convection 
problems, the quantities to be computed are usually temperature, pressure, concentration, mass 
and heat flow rates, but infrequently involving entropy properties. The contemporary trend in the 
field of heat transfer and thermal designs is the second Law (of Thermodynamics) analysis and its 
design-related concept of entropy generation minimization [13]. Entropy generation is associated 
with thermodynamic irreversibility, which is common in all types of heat transfer processes. 
Different sources of irreversibility are responsible for heat transfer’s generation of entropy like 
heat transfer across finite temperature gradient, viscous effects, characteristics of convective heat 
transfer, etc. Thus entropy generation depends functionally on the local values of velocity and 
temperature in the domain of interest. Energy conversion processes are accompanied by an 
irreversible increase in entropy, which leads to a decrease in available energy. 
 For a given system, a set of thermodynamic parameters, which optimize the operating 
conditions, may be obtained. Nag and Kumar [14] studied second Law optimization for 
convective heat transfer through a duct with constant heat flux. In their study, they plotted the 
variation of entropy generation versus the temperature difference of the bulk and the surface flow, 
using a dusty parameter. Shuja and Yilbas [15] analyzed the entropy generation in an impinging 
jet and Shuja and co–workers [16, 17, 18] consider swirling jet impingement on an adiabatic wall 
for various flow conditions. The dissipation of energy takes the form of a sum of products of 
conjugate forces and fluxes associated to the problem under consideration; this was  
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presented by the text of [19]. The fluxes are expressed as linear functions of all forces, as 
constitutive equations, subjected to the reciprocal relations of Onsager. These lead to coupled 
field equations for the temperature and species concentrations in a given fluid mixture. 
Interferences between heat and mass transport, at the level of constitutive equations, and the 
linear theory of non-equilibrium thermodynamics had been formulated as a constitutive theory 
capable of fully expressing the dependence of all fluxes as a function of all thermodynamic 
forces. Entropy generation in MagnetoHydroDynamic (MHD) flow of uniformly stretched 
vertical permeable surface in the presence of heat generation/absorption and chemical reaction 
was studied and reported by [21] 
 Although the various topics investigated about entropy generation and its minimization, 
the determination of total irreversibility in MHD flow under oscillatory suction velocity has not 
been encountered. In this context, the present paper reports an analytical determination of the 
entropy generation in Magneto – Hydro - Dynamic (MHD) flow of a uniformly stretched vertical 
permeable surface under oscillatory suction velocity 
 
2.0 Mathematical formulation 

An unsteady magnetohydrodynamic flow of viscous, incompressible, electrically 
conducting fluid past an infinite plate in a porous medium of time dependent permeability and 
suction velocity is considered. In Cartesian co – ordinate system, x-axis is assumed to be along 
the plate in the direction of the flow and y–axis normal to it. A uniform magnetic field is 
introduced normal to the direction of the flow. In the analysis, it is assumed that the magnetic 
Reynold number is much less than unity so that the induced magnetic field is neglected in 
comparison to the applied magnetic field. Further, all the fluid properties are assumed to be 
constant except that of the influence of density variation with temperature. Therefore, the basic 
flow in the medium is entirely due to buoyancy force caused by temperature difference between 
the wall and the medium. Initially at 0=t , the plate as well as fluid is assumed to be at the same 
temperature and concentration of species is very low so that the Soret and Dofour effect are 
neglected [12]. When 0=t , the temperature of the plate is instantaneously raised (or lowered) to 

wT  and the concentration of the species raised (or lowered) to wc . Under the stated assumptions 

and taking the usual Buossinesqs approximation in to account, the non dimensional governing 
equations for momentum, energy and concentration are: 
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where the parametersn ɛ, ω, Grτ, Grc, k, Pr, Sc, M, φ  and K were as defined in nomenclature. 
 The corresponding boundary conditions are 
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3.0 Method of solution  
 We seek an asymptotic expansion about ∈  for our dependent variables of the form: 
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Substituting (3.1) into equations (2.1) – (2.4) and collecting the terms in power of ɛ, we have the 
following sets of equations; corresponding to the energy equation we have, 
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Corresponding to the specie equation we have, 
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And corresponding to the momentum equation we have, 
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This is simplified as 
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Using method of undetermined coefficients [12] the solutions to the asymptotic equations (2.1) to 
(3.7) are: 
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4.0 Entropy generation rate  
 For an incompressible Newtonian fluid, the local entropy generation rate is given by [20]: 
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 On the right hand side of the above equation, the first term is due to fluid friction, the 
second is due to mass diffusion and the third term is due to heat conduction. The fourth term is 
due to heat transfer induced by mass diffusion and the fifth is due to chemical reactions. In the 
case of non – reactive mixture, the heat due to diffusion is negligible, and thus the entropy 
generation rate is rewritten as 
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 In convective heat and mass transfer and MHD flow, irreversibility arises due to the heat 
transfer, the viscous effects and the mass transfer. The entropy generation rate is expressed as the 
sum of contributions due to viscous, thermal and diffusive effects, and thus it depends 
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functionally on the local values of temperature, velocity and concentration in the domain of 
interest. 

According to [13], the characteristic entropy transfer rate is given by: 
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Where k, L, To and ∆T are respectively, the thermal conductivity, the characteristic length of the 
enclosure, a reference temperature and a reference temperature difference. 
 Okedoye et al [21] defined the two –dimensionless entropy Generation rate as 
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We can now define the followings: 
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where hn,Γ  and fn,Γ  are thermal and viscous irreversibility respectively, while Tc
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c
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,, Γ+Γ  is the 

diffusive irreversibility.  Dimensionless terms denoted λi(1 ≤ i ≤ 3, and called irreversibilities 
distribution ratios, are given by: 
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Where Co and To are respectively the reference concentration and temperature, which are in our 
case, the bulk concentration and the bulk temperature.  
 The local entropy generation rate is a function of temperature and velocity gradients in 
the y directions in the entire calculation domain. 
 Using the above equation, on substituting equations (3.8) to (3.13) for irreversibilities, we 
have  
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5.0 Discussion 
 In this study, four dimensionless numbers (ω, Grτ, Grc, k, Pr, Sc, M, φ  and K) are used 
in the governing combined heat and mass transfer equations. The exploitation of the entropy 
generation equation limits the choices of the Prandtl and the Schmidt numbers to the case of 
plasma only. Furthermore the Prandtl and Schmidt numbers are fixed at 0.71 and 0.6 respectively.  

The analytical simulations presented in this work has been conducted in order to study 
the effects of the thermal and mass Grashof numbers, heat generation/absorption, chemical 
reaction parameter, permeability factor and the Hartmann number on entropy generated in steady 
state conditions.  
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For small thermal Grashof number, there is practically little or no convection and the 
entropy generation due to fluid friction is zero, consequently the total entropy generation is 
reduced to the entropy generation due to heat transfer. At higher Grashof number heat transfer 
due to convection begins to play a significant role increasing the flow velocity and in turn the 
entropy generation due to the viscous effects. Also the isotherms are deformed, which increases 
the temperature gradient and consequently the entropy generation due to heat transfer. For our 
analysis, the values assigned to the constants are: K0 = 0.31, Sc = 0.6, Pr = 0,71, t = 1, Grt = 1, ɛ 
= 0.2, Grc = 1, φ  = 1.5, M = 0.5, K = -1. 0.8,=1.571,= 1λω 0.4= and 0.4= 22 λλ  unless 
where stated otherwise.  The entropy generated is highest at the surface and continually decreases 
to zero far from the plate. The entropy generated increases as generative chemical reaction 
increase and decrease as destructive chemical reaction increase; this is shown in figure  

 
 
 
5.1. The effect of permeability parameter on the entropy is shown in figure 5.2, it could be seen 
that increase in permeability leads to increase in entropy generated. Entropy generated has 
maximum values when the magnetic induction is zero and decrease for values either side of 0, as 
shown in figure 5.3 it could be seen that entropy generated decrease faster close to the plate. We 
displayed in figure 5.4 the effect of φ  on entropy, it is observed that increase in heat absorption 
leads to increase in entropy generated. Figures 5.5 and 5.6 shows the effect of mass and thermal 
grashof numbers respectively on the entropy generated. It could be seen that increase in either 
mass or thermal grashof number resulted into increase in entropy. The oscillatory effect of ω on 
the entropy is shown in figure 5.7. At any point during the flow, the entropy generated oscillate as 
position element or ω  increases. 
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Figure 5.1: Entropy distribution as a 
function of reaction parameter (y, K) 

 
 

Figure 5.4: Entropy distribution for 
various values of heat 

 

 
 

Figure 5.2: Entropy distribution for 
various values of permeability factor 

 
 

Figure 5.3: Entropy distribution for 
various values of magnetic induction 

 
Figure 5.5: Entropy distribution for 
various values of mass grashof number  

generation/absorption 

 
Figure 5.7: Entropy distribution as 

function of ω  
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