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Nomenclature 
cp: specific heat at constant pressure 
v : fluid transverse velocity 
k0 = K0: permeability parameter 
K : non-dimensional reaction parameter 
T : fluid temperature 
u: fluid axial velocity 
Cj : skin-friction coefficient 
Grc : mass Grashof number 
Grτ : thermal Grashof number 
M :Hartmann number 
Nu : Nuselt number 
Sh : Sherwood number 
Pr : Prandtl number 
Sc : Schmidt number 
y : transverse or horizontal coordinate 
c : non-dimensional concentration 
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Abstract 
 

This paper reports the analytical calculation of entropy generation 
due to unsteady heat and mass transfer flow of an incompressible, electrically 
conducting, and viscous fluid past an infinite vertical porous plate along with 
porous medium of time dependent permeability with radiative heat transfer 
and variable suction. The fluid and the plates are in a state of solid body 
rotation with constant angular velocity about the z-axis normal to the plates.  
Solution of an oscillatory boundary layer flow bounded by two horizontal flat 
plates, one of which is oscillating in its own plane and the other at rest, is 
developed by asymptotic expansion in order of epsilon for velocity, 
temperature and magnetic fields. The influences of the chemical reaction 
parameter, the thermal and mass Grashof numbers, heat 
generation/absorption and Hartmann number on total entropy generation 
were investigated, reported and discussed. A parametric study of all 
parameters involved was considered, and a representative set of results 
showing the effects are illustrated. 
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Grτ: thermal Grashof number 
t : time 

1−=i : complex identity 
 
Greek Symbols 
θ: non - dimensional fluid temperature 
φ  : heat generation/absorption coefficient 
ω : angular velocity 
 
Dimensionless Group 
Grt :  dimensionless thermal Grashof number 
Grc : dimensionless mass Grashof number 
ɛ: epsilon, 0  ≤ ɛ << 1 
 
Subscripts 
ω : condition on the wall 
∞: ambient condition 
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1.0 Introduction 
 Unsteady oscillatory free convective flows play an important role in chemical 
engineering, turbo machinery and aerospace technology such flows arise due to either unsteady 
motion of a boundary or boundary temperatures. Besides unsteadiness may also be due to 
oscillatory free stream velocity and temperature. In the past decades an intensive research effort 
has been devoted to problems on heat and mass transfer in view of their application to 
astrophysics, geophysics and engineering. The phenomenon of heat and mass transfer is observed 
on buoyancy induced motions in the atmosphere, in bodies of water, quasi – solid bodies, such as 
earth and so on. In addition, the phenomenon of heat and mass transfer is also encountered in 
chemical process industries such as polymer production and food processing.  
 Cookey et al [1] proposed a model for the study of MHD free convection flow 
past an infinite heated vertical plate in a porous medium, they observed that increased 
cooling of the plate was accompanied with an increase in the velocity. Taneja and Jain [2] 
looked at the Unsteady MHD flow in a porous medium in the presence of radiative heat where 
they obtained expressions for the velocity, temperature and rate of heat transfer. The study of 
fluid flow in porous media in the presence of radiative heat is of paramount importance in 
geothermal engineering and in astrophysics hence a lot of works have been reported in the 
literature. Cookey et al [1] has a good review of some of these works. 
 The contemporary trend in the field of heat transfer and thermal designs is the second 
Law (of Thermodynamics) analysis and its design-related concept of entropy generation 
minimization [3]. Entropy generation is associated with thermodynamic irreversibility, which is 
common in all types of heat transfer processes. Different sources of irreversibility are responsible 
for heat transfer’s generation of entropy like heat transfer across finite temperature gradient, 
viscous effects, characteristics of convective heat transfer, etc. Thus entropy generation depends 
functionally on the local values of velocity and temperature in the domain of interest. Energy 
conversion processes are accompanied by an irreversible increase in entropy, which leads to a 
decrease in available energy. 
 Nag and Kumar [4] studied second Law optimization for convective heat transfer through 
a duct with constant heat flux. In their study, they plotted the variation of entropy generation 
versus the temperature difference of the bulk flow and the surface using a duty parameter. Shuja 
and Yilbas [5] analyzed the entropy generation in an impinging jet and [6], [7], [8] consider 
swirling jet impingement on an adiabatic wall for various flow conditions. The dissipation of 
energy takes the form of a sum of products of conjugate forces and fluxes associated to the 
problem under consideration; this was presented by the text of [9]. The fluxes are expressed as 
linear functions of all forces, as constitutive equations, subjected to the reciprocal relations of 
Onsager. Entropy generation in MagnetoHydroDynamic (MHD) flow of uniformly stretched 
vertical permeable surface in the presence of heat generation/absorption and chemical reaction 
was studied and reported by [3] 
 The present paper reports an analytical determination of the entropy generation of 
unsteady oscillatory flow of an incompressible viscous, radiating, electrically conducting fluid 
past an infinite vertical wall with constant heat embedded in a porous medium of variable suction. 
Expressions are given for the velocity, temperature and induced magnetic field. 
 
2.0 Governing equation 
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In this study we consider the two-dimensional oscillatory flow of an incompressible 
viscous, radiating, electrically conducting fluid past an infinite vertical wall with constant heat 
embedded in a porous medium of variable suction with velocity components ( )vu ′′,  in the 

( )yx ′′,  direction. The limiting surface is moved in impulsively, with a constant velocity, either  

 
 
 
in the direction of the flow or in the opposite direction in the presence of transverse magnetic 
field. In Cartesian co–ordinate system, x-axis is assumed to be along the plate in the direction of 
the flow and y–axis normal to it. A uniform magnetic field is introduced normal to the direction 
of the flow. The induced magnetic field is not negligible, so that in the region considered, 
(Hx',Hy',0). Within the framework of these assumptions, under the usual Boussinesq 
approximations, the magnetohydrodynamic flow relevant to the problem is governed by the set of 
equations proposed by [10]. 
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3.0 Method of solution 

To solve the problem as posed in equations (2.1) – (2.3), we seek a perturbative series 
expansion about ε for our dependent variables. This is justified since ε is small; thus we write 
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For the stream we have tieU ωε+=1 .  Substituting equations (2.4) and (3.1) and the expression 
for the stream into equations (2.1), (2.2) and (2.3),equating the harmonic and non–harmonic terms 

and neglecting the coefficient of 2ε , we obtain the equations governing the steady state motion 
and the equations governing the transient. 
 These two sets of equations are now solved analytically for the velocity, magnetic and the 
temperature fields. The solutions are 
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The functions ( )yu0 , ( )y0θ  and ( )yH0  (given by equations (3.2)), are the mean velocity, the 

mean temperature and the mean induced magnetic field, respectively; and ( )yu1 , ( )y1θ  and 

( )yH1  (given by equations (3.3)), are respectively, the oscillatory part velocity, the oscillatory 
part temperature and the oscillatory part induced magnetic field. 
 Now substituting equations (2.1) – (2.2) into equation (3.1), we obtain the required 
expressions for velocity and temperature; 

 ( ) ( )yrymmyyntimyyn eaaeaeaeaeeaeatyu 1111
2926252423129, −−−−−− ++++++= ωε  (3.4) 

 ( ) ( )ymmytimy eaeaeety 1
21, −−− ++= ωεθ       (3.5) 

 Having obtained expressions for velocity, temperature and magnetic induction we now 
obtain a function for the entropy generation. 
 
4.0 Entropy generation rate  
 For an incompressible Newtonian fluid, the local entropy generation rate is given by 
Okedoye et al (see [3]): 
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 On the right hand side of the above equation, the first term is due to fluid friction, the 
second is due to mass diffusion and the third term is due to heat conduction. The fourth term is 
due to heat transfer induced by mass diffusion and the fifth is due to chemical reactions. In the 
case of non – reactive mixture, the heat due to diffusion is negligible, and thus the entropy 
generation rate is rewritten as 
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 In convective heat and mass transfer and MHD flow, irreversibility arises due to the heat 
transfer, the viscous effects and the mass transfer. The entropy generation rate is expressed as the 
sum of contributions due to viscous, thermal and diffusive effects, and thus it depends 
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functionally on the local values of temperature, velocity and concentration in the domain of 
interest. 

According to Bejan [12], the characteristic entropy transfer rate is given by: 
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T
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where k, L, To and ∆T are respectively, the thermal conductivity, the characteristic length of the 
enclosure, a reference temperature and a reference temperature difference. 
 Following Okedoye et al [3], dimensionless entropy Generation rate is given as 
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where hn,Γ  and fn,Γ  are thermal and viscous irreversibility respectively. Dimensionless terms 

denoted 1λ , and called irreversibilities distribution ratio, are given by: 
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where 0T  is the reference temperature, which in our case, the bulk is the bulk temperature.  

 The local entropy generation rate is a function of temperature and velocity gradients in 
the y directions in the entire calculation domain. 
 Using the above equation, on substituting equations (3.4) and (3.5) into (4.1) for 
irreversibilities, we have  
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5.0 Discussion 
 In this study, dimensionless numbers (ω, Grτ, Pr, M, Ra, B and Pm) are used in the 
governing combined heat and mass transfer equations. The exploitation of the entropy generation 
equation limits our choices of the Prandtl and the Schmidt numbers to the case of plasma only. 
Furthermore, the Prandtl and Schmidt numbers are fixed at 0.71 and 0.6 respectively. The 
analytical simulations presented in this work has been conducted in order to study the effects of 
the thermal Grashof number, radiation parameter, suction parameter, magnetic Prandtl number 
and the Hartmann number on entropy generation. 
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For small thermal Grashof number, there is practically little or no convection and the 
entropy generation due to fluid friction is zero, consequently the total entropy generation is 
reduced to the entropy generation due to heat transfer. At higher Grashof number heat transfer 
due to convection begins to play a significant role increasing the flow velocity and in turn the 
entropy generation due to the viscous effects. Also the isotherms are deformed increasing the 
temperature gradient and consequently the entropy generation due to heat transfer.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1: Variation of Entropy Generation 

with time 

 
Figure 5.2: Entropy Generation various 

thermal Grashof number for 

Grt = 0, 2, 6, 6, 
8 t = 0, 0.2, 0.5, 

0.8 
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 We carried out the analysis using the values ɛ = 0.2, Pm = 1, Pr = 0.71, M = 0.5, ωt = π/2, 
Grτ = 2, V = 0.2 and Ra = 0.2 except where stated otherwise.  The positive values indicate that the 
impulsive velocity of the limiting surface is in a direction opposite to that of the flow. 
 In figure 5.1 and 5.2, we show the distribution of entropy generation at various time. It 
could be seen that entropy generation decreases as either time or the thermal grashof number 
increases. From figure 5.3, we see that entropy generation decreases away from the surface as 
Hartmann number increases and oscillate within the fluid body. The effect of limiting surface 
velocity (V) on the entropy generation is shown in figure 5.4, for the limiting surface moving in  
 
 

 
Figure 5.3: Variation of Entropy Generation 

with Hartmann number 

 
Figure 5.4: Entropy Generation  for various 

limiting surface velocity 

 
Figure 5.7: Distribution of Entropy 

Generation for various magnetic Prandtl 
number 

 
Figure 5.6: Entropy Generation  for various 

various suction parameter 

 B = 0.1, 0.2, 0.3, 0.4, 1, 2 

Figure 5.5: Variation of Entropy Generation 
with radiation parameter 

Ra =- 0.2, 0, 0.2, 0.4 
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a direction of the flow or opposite direction to that of the flow. It was discovered that as |V| 
increases the entropy generation increases. We also observe that increase in radiation parameter 
brings about increase in entropy generation as shown in figure 5.5. We show figure 5.6, the effect 
of suction parameter B on the entropy generation. It was discovered that entropy generation 
decreases as suction parameter increases, while in figure 5.7, we noticed that increase in magnetic 
Prandtl number Pm increases the entropy generation. 
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