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Abstract

This paper reports the analytical calculation of entropy generation
due to unsteady heat and mass transfer flow of an incompressible, eectrically
conducting, and viscous fluid past an infinite vertical porous plate along with
porous medium of time dependent permeability with radiative heat transfer
and variable suction. The fluid and the plates are in a state of solid body
rotation with constant angular velocity about the z-axis normal to the plates.
Solution of an oscillatory boundary layer flow bounded by two horizontal flat
plates, one of which is oscillating in its own plane and the other at redt, is
developed by asymptotic expansion in order of epsilon for velocity,
temperature and magnetic fields. The influences of the chemical reaction
parameter, the thermal and mass Grashof numbers, heat
generation/absorption and Hartmann number on total entropy generation
were investigated, reported and discussed. A parametric study of all
parameters involved was considered, and a representative set of results
showing the effects are illustrated.
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Grr: thermal Grashof number
t:time
i = +/— 1 : complex identity

Nomenclature

C,- specific heat at constant pressure
v : fluid transverse velocity

ko = KO: permeability parameter

K : non-dimensional reaction parameter Greek Symbols

T : fluid temperature 0: non - dimensional fluid temperature

u: fluid axial velocity ¢ : heat generation/absorption coefficient
C; : skin-friction coefficient o : angular velocity

Grc : mass Grashof number

Grz : thermal Grashof number Dimensionless Group

M :Hartmann number Grt: dimensionless thermal Grashof number
Nu : Nuselt number Grc : dimensionless mass Grashof number
Sh: Sherwood number €. epsilon, 0<e<<1

Pr : Prandtl number

Sc: Schmidt number Subscripts

y : transverse or horizontal coordinate o : condition on the wall

¢ : non-dimensional concentration o ambient condition
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1.0  Introduction

Unsteady oscillatory free convective flows play an importapie in chemical
engineering, turbo machinery and aerospace technology such floeislaego either unsteady
motion of a boundary or boundary temperatures. Besides unsteadinesdsmdye adue to
oscillatory free stream velocity and temperature. Inpgt decades an intensive research effort
has been devoted to problems on heat and mass transferwinoti¢heir application to
astrophysics, geophysics and engineering. The phenomenon of heasanlansfer is observed
on buoyancy induced motions in the atmosphere, in bodies of water, quasi bostdis, such as
earth and so on. In addition, the phenomenon of heat and mass transereacuntered in
chemical process industries such as polymer production and food processing.

Cookey et al [1] proposed a model for the study of MHD free comvefibw
past an infinite heated vertical plate in a porous medium, theywvelosénat increased
cooling of theplate was accompanied with an increase in the velocity. aargd Jain [2]
looked at the Unsteady MHD flow in a porous medium in the presehdiative heat where
they obtained expressions for the velocity, temperature and rdteabftransfer. The study of
fluid flow in porous media in the presence of radiative heabfi paramount importance in
geothermal engineering and in astrophysics hence a lot of viaks been reported in the
literature. Cookey et al [1] has a good review of some of these works.

The contemporary trend in the field of heat transfer andniddedesigns is the second
Law (of Thermodynamics) analysis and its design-related pbno& entropy generation
minimization [3]. Entropy generation is associated with tleetynamic irreversibility, which is
common in all types of heat transfer processes. Differentesuf irreversibility are responsible
for heat transfer's generation of entropy like heat transfevsa finite temperature gradient,
viscous effects, characteristics of convective heat tansfc. Thus entropy generation depends
functionally on the local values of velocity and temperaturéhéxdomain of interest. Energy
conversion processes are accompanied by an irreversible inaneastopy, which leads to a
decrease in available energy.

Nag and Kumar [4] studied second Law optimization for comwetieat transfer through
a duct with constant heat flux. In their study, they plottedviiméation of entropy generation
versus the temperature difference of the bulk flow anduhace using a duty parameter. Shuja
and Yilbas [5] analyzed the entropy generation in an impingin@net [6], [7], [8] consider
swirling jet impingement on an adiabatic wall for various flomnditions. The dissipation of
energy takes the form of a sum of products of conjugategoand fluxes associated to the
problem under consideration; this was presented by the text of [9ffluXes are expressed as
linear functions of all forces, as constitutive equations, stdgeto the reciprocal relations of
Onsager. Entropy generation in MagnetoHydroDynamic (MHD) flow ofoumiy stretched
vertical permeable surface in the presence of heat geneahgongtion and chemical reaction
was studied and reported by [3]

The present paper reports an analytical determination of ttiepgngeneration of
unsteady oscillatory flow of an incompressible viscous, radiagtegtrically conducting fluid
past an infinite vertical wall with constant heat embedded in a porous meduamaifle suction.
Expressions are given for the velocity, temperature and induced maggidtic f

2.0  Governing equation

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009461 - 468
Slip velocity on oscillatory MHD flowA. M. Okedoye and A.O Adesanyapf NAMP



In this study we consider the two-dimensional oscillatory flow mfirecompressible
viscous, radiating, electrically conducting fluid past an infingetigal wall with constant heat

embedded in a porous medium of variable suction with velocity compmﬁe’,v’) in the
(x', y') direction. The limiting surface is moved in impulsively, with a constaltoity, either

in the direction of the flow or in the opposite direction in the gmes of transverse magnetic
field. In Cartesian co—ordinate systexraxis is assumed to be along the plate in the direction of
the flow andy—axis normal to it. A uniform magnetic field is introduced ndrtoahe direction

of the flow. The induced magnetic field is not negligible, so thathe region considered,
(Hx,Hy,0). Within the framework of these assumptions, under the usual Bougsines
approximations, the magnetohydrodynamic flow relevant to the problgoverned by the set of
equations proposed by [10].

2
1@—(1+ Bge"“)@:GrrH+lau“ +a—l:—M2u— u —+M oH (2.1)
4 ot oy 4 gy oy K, (1+ Age'™) oy
106 w060 _ 10%0
Z—-(@+Bege“)—=—"—-R# 2.2
4 ot ( )ay Pr dy? R 22)
2
1a—H—(1+Bge"“)a—H:ia ';'+M@ (2.3)
4 ot dy Pmay oy
Subject to the boundary conditions, Shidlovskiy [11]
u=0, =1+&“, H=1+ g }
(2.4)
u(y) -0, 8(y) -0, H(y)-0asy - o

3.0  Method of solution
To solve the problem as posed in equations (2.1) — (2.3), we gesmtugbative series
expansion about for our dependent variables. This is justified sigesmall; thus we write

u(y,t)=u, (y) +&“ u(y) +o(£%) +....
8(y,1)=6,(y)+&“ G(y)+o(e) +... (3.1)
H(y,t)=H,(y)+&“H,(y)+0o(e) +....

For the stream we hawd =1+&'“. Substituting equations (2.4) and (3.1) and the expression

for the stream into equations (2.1), (2.2) and (2.3),equating the harmonic andrmamibderms

and neglecting the coefficient af*, we obtain the equations governing the steady state motion
and the equations governing the transient.

These two sets of equations are now solved analytically for the yeloeignetic and the
temperature fields. The solutions are

g,(y)=e™
Uy (Y)=a,e™ +a,e™ (3.2)
Ho(y) = a13e_nly + a14e—my + ( —3 a14)
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6, (y)=ae ™ +a,e™
Uy(Y) = 8™ +a,8™ + 8,8 ™ + 8, + e ™ (3.3)
Hi=a,e™ +aye™ +a,e ™ +a,e™ +ay,

wherem:%(PH Pr2+4PrRa), m:%[Pr+\/Prz——4Pr(¢)+%}j],

1 1 1
n1=g(2a3-36as+a7). fy = 5 8 =63 + 2y

. —4iBm i 1
with &, =—"2 ,a2=e"‘-ai,a13=[n12—n1—(M2(1+pm)+ED%n,
1
a“:[mz_m_(Mz(“Pm)Jrk_oDMa;m
=3 2 o » 8y = 0
N’ —n a, +na, -Pmag m’ —m'a,, + ma, - Pma,
= ~an = %7 =— + +
s e rma P g, 2 T (e Bt )
az{(M2+l+m}—PmM2 +nl—n12j+a98(nl—1]—MPmBa}3
_ k, 4 K,
0~ MPn
az{(Mz(l—Pm)+k10+iZ)j+m—m2 +a128(m—k10]—MPmBq4—Grza1
%" MP
az{(M2+l<t+iflu_PmMj+m_sz_Gnaz agg((M2+klo+'Z)—Pml\/F]+rl—rf]
e MP %~ MP

a,=1+Pm, a4:—(M2(1— Pm)+%+ ij, a :(M2+%J ,8,=Grr (m—-Pm)

/3
a, = (— 368, a, +1088, +8a’ +12,/12a] - 3aZ a% —54a, a,a, +81a’ +12a5a )‘

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009461 - 468
Slip velocity on oscillatory MHD flowA. M. Okedoye and A.O Adesanyapf NAMP



%=M, 8= as -—%ag(rf ( kojrﬁ%] agMPnlﬂ

a Y —a,nt +a, m-a

a,, = B(aglz( (Pm+%)m+%n] Grra (m-Pm)+ MumqJ

Pma

T y Bp7 = (_36317318 +108316 + 88182

Ay :G”az(ml - Pm)1 A =

L Ta,-ta,
12\/123173 - 331723182 - 54617618616 + 3162 +12a166182 j Ay = 3T
7

The functionsJO(y), Ho(y) and Ho(y) (given by equations (3.2)), are the mean velocity, the
mean temperature and the mean induced magnetic field, rgspgcand ul(y), 671(y) and

Hl(y) (given by equations (3.3)), are respectively, the oscillgpary velocity, the oscillatory
part temperature and the oscillatory part induced magnetic field.

Now substituting equations (2.1) — (2.2) into equation (3.1), we roltke required
expressions for velocity and temperature;

u(y,t)=a,e™ +a,e™ + a8 (a,e™ +a, 8™ +a,e™ +a, tae ) (34)
Oy,t)=e™ + g (ale‘my + aze‘"‘ly) (3.5)

Having obtained expressions for velocity, temperature and nmegneétiction we now
obtain a function for the entropy generation.

4.0 Entropy generation rate
For an incompressible Newtonian fluid, the local entropy generaditenis given by

Okedoye et al (see [3]):
du, | du, du, ou ou
:E i [ J _EZ‘]ai a CI oT EZSaJai a _lng,ug
T{ox \ox; ox | T4 oX, T2 6x T% ox ) T3
On the right hand side of the above equation, the first tedsto fluid friction, the
second is due to mass diffusion and the third term is due to dw@ddaation. The fourth term is
due to heat transfer induced by mass diffusion and the fiftbasta chemical reactions. In the

case of non — reactive mixture, the heat due to diffusion isgilggli and thus the entropy
generation rate is rewritten as

Al (ol
Tox, \ox. odx ) T4 0X; 0X;

In convective heat and mass transfer and MHD flow, irrdwéitgiarises due to the heat
transfer, the viscous effects and the mass transfer. Thapgmeneration rate is expressed as the
sum of contributions due to viscous, thermal and diffusive effectd, thus it depends
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functionally on the local values of temperature, velocity aodcentration in the domain of
interest.
According to Bejan [12], the characteristic entropy transfer rajwen by:

[_0 =k £
LT,

wherek, L, To andAT are respectively, the thermal conductivity, the charatietength of the
enclosure, a reference temperature and a reference temperdeunescif.
Following Okedoye et al [3], dimensionless entropy Generation rateeis ga/

2 2
(2] (2] "

We can now define the followings:

2 2
I_n,h = (%J ! I_n,f :Al(%] ’
oy oy

where ', and I, ; are thermal and viscous irreversibility respectively. &isionless terms

denoted41, and called irreversibilities distribution ratio, are given by:

whereT, is the reference temperature, which in our case, the bulk is the byl&reegnre.

The local entropy generation rate is a function of temperahdges@locity gradients in
they directions in the entire calculation domain.

Using the above equation, on substituting equations (3.4) and (3.5)4idfp fér
irreversibilities, we have

M= (— me ™ + ge'“ (— ame™ -a,me ™ ))2 + /1(— ane™ —a,me"™ +

f _ _ _ _ _ 2
a'“ (— a,yne™ —ame™ -a,,me™ —a,,me ™ —a,re" ))

5.0 Discussion

In this study, dimensionless numbess Grz, Pr, M, Ra, BandPm) are used in the
governing combined heat and mass transfer equations. Thetatxpioof the entropy generation
equation limits our choices of the Prandtl and the Schmidt numbehe tcase of plasma only.
Furthermore, the Prandtl and Schmidt numbers are fixed at 0.71 and 0.6tivebpeThe
analytical simulations presented in this work has been conductedento study the effects of
the thermal Grashof number, radiation parameter, suction parammetgnetic Prandtl number
and the Hartmann number on entropy generation.
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Figure 5.1: Variation?f)f Entropy Generation Figure 5.2: Entropy Generation various
with time thermal Grashof number for

For small thermal Grashof number, there is practicallyelitt no convection and the
entropy generation due to fluid friction is zero, consequentlytated entropy generation is
reduced to the entropy generation due to heat transfer. At highshd@ number heat transfer
due to convection begins to play a significant role increasiaglow velocity and in turn the
entropy generation due to the viscous effects. Also the isothemendeformed increasing the
temperature gradient and consequently the entropy generation due tortséat.tra
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Figure 5.3: Variation of Entropy Generation Figure 5.6: Entropy Generation for various
with Hartmann number various suction parameter
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Figure 5.5: Variation of Entropy Generation
with radiation parameter

We carried out the analysis using the vakue€.2,Pm=1,Pr=0.71M = 0.5,0t =7/2,

Grr =2,V =0.2 andRa= 0.2 except where stated otherwise. The positive values indicateehat t
impulsive velocity of the limiting surface is in a direction oppotstthat of the flow.

In figure 5.1 and 5.2, we show the distribution of entropy generativaraus time. It
could be seen that entropy generation decreases as eitbeortithe thermal grashof number
increases. From figure 5.3, we see that entropy generatioradesraway from the surface as
Hartmann number increases and oscillate within the fluid body. Tlet &ff limiting surface
velocity (V) on the entropy generation is shown in figure 5.4, for the limiting surface mioving
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a direction of the flow or opposite direction to that of the flowwdts discovered that ag| |
increases the entropy generation increases. We also obserugcthase in radiation parameter
brings about increase in entropy generation as shown in figure 5.5alvdigure 5.6, the effect
of suction parameteB on the entropy generation. It was discovered that entropy gemera
decreases as suction parameter increases, while in figureebnotieed that increase in magnetic
Prandtl numbePmincreases the entropy generation.
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