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Abstract

We present an analysis of the boundary layer flow of a reacting
fluid. We show that the problem has a solution. We present an analytical
solution for the limiting case of the Frank-Kamenetskii parameter &.

Numerical Results feature preliminary when £=0(1) .

1.0 Introduction

In this paper, we investigate the characteristics of the solutioneafcting boundary
layer equation of flow over a stretching sheet in the presence of a mdgpet

Recently [4] investigated the boundary layer equation of flow avstretching sheet in
the presence of a magnetic field. The obtained analyticati@olfor the velocity field and
temperature in the boundary layer was obtained numerically.

Earlier, Gupta and Gupta investigated heat and mass trandfgdia magnetic fluid
flow, over an isothermal stretching sheet. Chen and Char {éhaed the works of Gupta and
Gupta to a non isothermal stretching sheet. On the other handy¢8tigated extensible surface
and presented an analytical solution for the boundary layer f#ajavelu and Nayfeh [6]
investigated convective heat transfer.

Makinde [3] investigated a flow past a moving vertical poroasepl In this paper, we
extended the works of [4] to an Arrhenius reacting flow. Tlhenn in the power law equation
is 1 and activation energy zero in our model we obtain the special cae of [4

2.0 Mathematical formulation
The appropriate continuity, momentum and energy steady equations are:

u o 21
0x ay
2 2
u ou +V v 6_121 o, u (2.2)
0x oy ay Yo,
2 _E
T v 0T Rog gy ew 2.3)
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0X oy oy £cp
respectively. The boundary conditions are
u=ax,v=0T=T, at y=0 (2.4)
u-0T->T, asy —» o« (2.5)

Hereu andv are velocity components iandy directions respectively is the density
of the liquid, v is the kinemetic viscosity, is the strength of the applied magnetiuc fietds
the electrical conductivity of the fluid, is the fluid temperature is the fluid thermal diffusivity
andcp is the specific heat at constari. is the pre-exponential factdQ is the heat release per
unit massE is the activationR is universal gas constant and n is a natural number. m54j], E
=0,andA=1

3.0 Analysis

3.1 Existence of solution
Equations (2.1) — (2.5) admit self similar solutions of the form

u=axf'(p), v=-vav f(p), /7:\/§ y

g E (T—ij, = R,

RT, \T,-T. E

-E

2 RT,,

R - g HO , R :X, N :&

ap a oepa

such that equations (2.2) — (2.5) become
fm_ f!2+ ffn = Rfl (31)
8

-P f@ =@ + N@"ev™? (3.2)
f(0)=0, f(0)=1f'(0)=0 (3.3)
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6(0) =%, 6(=) =0 (3.4)
HereR, P, andN represent the Chandrasekhar number, Prandtl number and [4] kawetty
analytical solution for the momentum equation as

f(”):].—e_m'l ’ u:axe‘m”, V:@(l—e‘mﬂj’

m
wherem = J1+R.

Unlike equation (3.1), equation (3.2) has no analytical solution. Bushall now show that
equation (3.3) has a numerical solution which satisfies (3.4)
Theorem 3.1
Equation (3.2) which satisfies (3.4) has a solution when f satisfies (3.23.8hd (
In the proof we shall need the following:
Consider the initial value system
1

X

1
X2

f, (00N %0t), % () =%
f, 00N %0t), %, () = Xy *)
Xy =, (A %0t), %, () = %0

Theorem 3.2 [7]

. ... of .. . . . _—
If the partial derlvatlvesa—', I, ]=1A ,n are continuous in the regidm of definition,
X.
]
then problem (*) has a unique solution.
We are now in a position to prove our theorem.

Proof
Let X, =77, X, =6, X, = & then
x =1, x(0)=0 (3.5)
X =%, %(0) =a (say), afinite. (3.6)
L= - Nexp 2 -P f 3.7
Y e
That is
6 = f (4%, %) =1
% =, (6% %) =%
L= (%, %, %) = - NX, exg —2—| - p, f
X = Ty (4%, %) . t{lmxzj p, f(x)x
Clearlyg are continuous. Hence by the above theorem, the problem has a unique Jjlution.
X]
Remark 3.1

This theorem only states that our problem has a solution. Th&osols only unique
when the initial gradient is fixed. Our problem may indeed have more thanlatierso
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3.2 Asymptotic analysis
Suppose the Frank-Kamenetskii paramétes small, i.e 0&<<1. We may neglect the

Arrhenious term@" exp{

. We then solve
1+06

-p f6=6" 6(00)=10 6(o)=0 (3.8)

Equation (3.8) admits analytical solution. In fact,
0dn) = ex{&j }exp—(ﬂj{&i ex- ms)} ds—ex &j Texp— (&j[&i ext- n‘é} dsT
nf)s m). m nf)s m). m

heorem 3.3[8]

Let u" + g(x)u'dh(x)u = f(x) (**)

u(@) =y, u'(a) = » ()

where functiorf, g andh are defined ind, b) with g andh bounded.
Suppose thatl, (X) and u, (X) are solutions of (**) in4, b) which satisfy (***). Thenu, = u,
in (a,b).
Theorem 3.4

Letn =1 andE = 0 Then problem (2.1) — (2.5) has a unique solution.
Proof

1-e™ B} _ 1-e™
Clearly f (’7) =———,u=axe™™ gnq V=ENa& | ——| and
m m
they are unique. Alsod” + p, f 8 +N& =0, (0) =1and& (0)= a(say). Hence by [8]
TheorenmB is also unique. This completes the proof foraco . |

Theorem 3.5[8]
Let u" + g(x)u O h(x)u = f(x) (F**%)
u(a) =y, u'(@) = y, ()
where functiorf, g andh are defined ing, b) with g andh bounded.
Suppose that, (X) and uz(X) are solutions of (****) in @, b) which satisfy. Themw; = u, in
(ab).
Theorem 3.6

Letn=1 andE = 0 Then problem (2.1) — (2.5) has a unique solution.
Proof

m

they are unique. Alsod” + p, f ' + N8 =0,6(0)=1and 6'(0) = a (say ). Hence by
[6] TheoremB is also unique. This completes the proof |

Theorem 3.7[6]
Letu” + g(x)u-+ h(xu = f(x),x>a, U@ =y1 ,U'@) = 7

1-e™ “m 1-e™™
Clearly f(’7) = —m u=axe ™ apg V = Jav (—J and
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The functionZ,(X) andZ,(X) are said to be upper and lower solution&if g(X)Z; + h(X)Z, >
f(X) andZ,'+ g(X) Z, + h(X)Z, <f(X) Zx(a) <y andZ,(a) <y, respectively.That isZ,(X) < U(X)
< Zy(X).
Theorem 3.8

Let 8+ Pri(n7)d + N8 = 6,N>0,6(0)=1,6(0) = a. ThenZy(X) = 1 andZ, (X) =
0, are upper and lower solutions i.e8 < 1
Proof ’ . , )

LetZy(X) =1. Thenz; =0,Z; =0andN > 0. LetZ,=0. ThenZ, = 0,Z, = 0 andN(0)
=0. Hence & @ < 1. This completes the proof |

3.3 Numerical results
We present the numerical result for the various parameters as shbigaiie 3.1..
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Figure 3.1 The graph shows the dimensionless Figure 3.2 The graph shows the dimensionless
temperatur@(n) against the position whene - 0.1 temperatur®(n) against the position whene = 0.2.
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Figure 3.3 The graph shows the dimensionless
temperaturd{n) against the position whenes = 0.5
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4.0 Discussion of results
We have presented a boundary layer analysis of a reacting \Wewshow the flow
properties and numerical results show that the activationyepargmeter has influence on the

temperature .1t is easily seen in figures 2-4 that the tealperature isl(10,5,2) respectively.
&

The higher the wall temperature the longer the point where its influencefedtno

Appendix
Program bode (input, output);
const h=0.001;
m=1.2247;
N=0.1;
e=0.1;
Pr=0.71,;
var x1, x2, x3 : Array[0..20] of real;
Gv, fla, f1b, flc, f2a, f2b, f2c:real;
i;integer;
Begin
write (‘supply the Guess value:";
readin(Gv);
writeln('i:3,' x1:12,' x2:12,' x3"12);
x1[0]:=0;
x2[0]:=10;
x3[0]:=Gv;
for i:=0 to 20 do
Begin
fla:=h;
flb:=h*x3[i];
flc:=h*d*(-N*x2[i[*exp(x2[i]/1+e*x2[i]))-(Pr*((1-e xp(-m*x1[i]))/m)*x3[i]);
f2a:=h;
f2b:=h*(x3[i]+f1c);
f2c:=h*d*(-N*(x2[i]+f1b)*exp((x2[i]+f1b)/1+e*(x2[i]+f1b)))-
(Pr+((1-exp(-m*(x1[i]+fla)))/m)*(x3[i]+f1c));
x1[i+1]:=x1[i]+0.5*(fLa+f2a);
x2[i+1]:=x2[i]+0.5*(f1b+f2b);
x3[i+1]:=x3[i]+0.5*(f1c+f2c);
writeIn(i:3, x1[i]:12:4, x2[i]:12:4, x3[i]:12:4);

End;
readin;
End
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