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Abstract

A class of single server vacation queues, which have batch arrivals
and single server, is considered in discrete time. Here the server goes on
vacation of random length as soon as the system becomes empty. On return
from vacation, if he finds any customers waiting in the queue, the server
starts serving the customers one by one until the queue size is zero (the queue
discipline is FIFO); otherwise he takes another vacation and so on. The
vacation model understudy here is the Gated systems: In a gated system, as
soon as the server returns from vacation it places a gate behind the last
waiting customer. It then begins to serve only the customers who are within
the gate, based on some rules of how many or how long it could serve. It is
shown here that the interarrival, service, vacation and server operation time
can be cast with markov based representation then this class of vacation
models can then be studied as matrix-product problem which belongs to a
class of matrix analytic family - thereby allowing us to use result from [2] to
solve the resulting matrix product problem. Most importantly it is shown that
using discrete time modelling approach to study some vacation model is more
appropriate and makes the model much more algorithmically tractable.
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1.0 Introduction

Vacation in queueing context mean the period the server iatteotding to a particular
targeted queue. The server may be under repair, attending to other quéunesydosced to stop
serving customers in the particular queue. Vacation model haveused extensively to study
various systems, such as polling and priority systems.

In a polling systemN queues are attended to by one server who attends to only one
gueue at a time. The server attends to one queue for a petiotediased on some predefined
rules and then proceeds to the next queue and so on.

Consider an arbitrary queue among thgueues. The customers in this particular queue
view the server as being away on a vacation because thegtareing attended to. This example
of polling system is very common in computer systems wherecegsor has to attend to several
queues of jobs.
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Another example is road intersection control by traffic sign&lsany given time one
section of the road receives the green signal for service el other section receives the red
signal to stop service. The sections which receive theigedlsare not receiving service and to
them the server is on a vacation

Priority queues are also sometimes studied as vacation q@aresder a single server
system with at least two classes of customers in whicle tisea priority for service. A low
priority group of customers may keep receiving service urttigher priority customer arrives,
after which the server may switch, depending on the predefined, nd serving this higher
priority customer. While the higher priority customer isaiging service the low priority group
of customers sees the server as having gone on a vacation.

Several types of method have been used to study vacation model, ranging from embedded
Markov chain to the classical transform approach. It is my hopee the matrix-geometric
method, set up in discrete time [2] to investigate the bactal discrete time queue with server
vacation. This includes single server vacation queues with laatofal, provided that the
service, vacation and operational times can be represented laykavvbased model and the
system is set up in discrete time. Vacation models as classifielebjl Pare stated below:

1. Gated systems

In a gated system, as soon as the server returns from a vacptames a gate behind the
last waiting customer. It then begins to serve only the ces®mho are within the gate, based
on some rules of how many or how long it could serve.

2. Ungated systems

In an ungated system the server only applies the rule of how anamyw long it could
serve.

Under each of the classification above, we have further &gtwuch as: single or
multiple vacations; time-limited service — preemptive and-preemptive, random interruptions
for vacation, and others.

The subject of vacation queues has appeared in differeatuiterin the last fifty years.
For detail study of previous work in vacation models [1].

Here we will mention some few papers and books that are in tlatialiref this research
work.

Doshi [6] gave a survey of queuing systems where some vacatooms. The queuing
systems he study are those where the server works on pramdrgecondary customers such
situation arise in many computer, communication, production and many tblcea§tic systems.
He formulated two models. First, the server keeps takingtieas until on return from vacation
there is at least one customer present. Second, the st@grekactly one vacation at the end of
each busy period. He also gave variety of techniques used ingtilly system. He then show
that with the help of the two model it is possible to anabtrer model as vacation model for
detail of his work see [5].

In their work [3] considers a discrete time gated vacasigstem. The numbers of
customers arriving in the primary and secondary queues are monadmns of independent and
identically distributions i(i d) with common probability mass function and a corresponding
probability generating function. The model combines both gated and exbawstation system.
They obtain various performance measures such as moments of tieecgnéents and moment
of customer delay.

Their systems also take multiple vacations like those pf J& addition to the work
above [4] investigate the gated multiple vacation queue in thst¢i@e. The generalized
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multiple vacation queuing models he developed allows captuggerddrmance amongst the
multiple vacation, single vacation and limited multiple vacation gatedingieystems.

Choudhury [2] uses the compound Poisson arrival and generalizeibnawatnalyze
Batch Arrival Poisson queue with vacation.

In another development [11] treat the batch Markovian arrivatges whose vacation
schedule and lengths of whose vacation times depend on the quebheoletigg system at the
beginning of a vacation. Alfa [1] provides a generalized form for a classooétdigime vacation
model. He provides a unified framework for analyzing vacation feadediscrete time and
present matrix-analytic method for analyzing them.

Jau-Chuan [7] studies the policy M¥/G/1 queue with server vacations; startup and
breakdowns, where the arrival form a compound poisson process ame $engs are generally
distributed.

Ojobor and Omosigho [9] study the effect of two queue disciplifieQFand LIFO) on
some measure of performance of a single server queue sysitrggnsimulation. The approach is
to generate arrival times and service for 200 customers ancugtemer is served through a
single server queueing system under each queue discipline.

Ojobor and Omosigho [10] study batch arrival discrete time quatheungated server
vacation. They consider class of single server vacation quetnssh have batch arrivals and
single server, is considered in discrete time. Here the sgoesron vacation of random length as
soon as the system becomes empty. On return from vacatiorfjriibeany customers waiting in
the queue, the server starts serving the customers one by tdnbeigueue size is zero (the
gueue discipline is FIFO); otherwise he takes another vacatidrso on. The vacation model
they study here is the Ungated systems

Other class of vacation model of interest to researchely l&s the case of vacation
models in retrial systems. This class is very impomdr@n studying mobile communication and
some computer networks. For results see [12].

Modern telecommunication systems have become more digitahsyshan analog these
days. It is therefore more appropriate to develop vacation sxedeth are applicable to these
systems using discrete time approach.

The aim of the current contribution is to investigate the Batcivalrdiscrete time queue
with server vacation. The goal is to model Batch Arrival afimn models in discrete time and
use the matrix analytic method to analyze the model. Hereesteict ourself to thegated
vacation system

2.0 Batch arrival discrete time queue model with gated vacation system

In this section we shall consider the extension of [2] model. dlimeis to remodel [1]
model to allow room for batch arrival with server vacatiorrephrase of the model is given as
follows:

. i = the number of items in the system.

. i’ = number of items inside a gate (when applicable).

. k = the phase of arrival: arrival is phase type with repreSent@, T). The arrival rate is
A. Here the arrival is in batches i.e. the batch arrival is@lkype with representatida,
T).

. ] = the phase of service: service is phase type with represer{gton

. j' = the phase of service interruption. This hed phases including phase 0, when there
is no interrupted service.

. | = the phase of vacation: vacation is phase type with represer{@tipn
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. u = the time clock of a server’s visit (or the number sgrse far by a server during a
visit) — the use depends on the model. This could also represemph#se of the
operational time with representationU).

The following parameters are also define

. N = the limited time of a single visit by a server for a time-limited/ige.

. M = the limited number of customers to be served during a seisierfor number-
limited service.

For some models where services may be interrupted we neddfit@ a matrixQ which

represents the phase at which an interrupted service begins whesuihed, given the

interruption phase. The eIemet@s_,l'J.Lrefer to the probability that a service interrupted in phase

J'1 resumes in phage when the service re-starts. For example, a preemptive resemiee has
Q =1 and a preemptive repeat service rule Qas1p.

2.1 Gated
Here we consider the gated system. The state space for this syde=orised below:
. A, = (0 k1) k=12 .nl=12_7r
. A=k D),i=12,.., k=12, .nl=12 .7
. A= (i, (i*k,j)),i=12,... k=12, .., ni'=12,..i—1,j=12,...m
. A= ((*=ikj)i=12..k=12,..,nj=12,..,m

ForA, = (0.k, 1), the first O refers to an empty system, k refers to pbhagival and | refers to
the phase of vacation. By definition of the gated system we have more thaacation.
Let A, = ATUAT AL The state space for the gated vacation system is givaraby

A= -_\.:_l |-_\;

=1

When the system is in stafeg = 1, the chain can only have transitions to stafes, A..4 or
remain in statd.. However, because we have a supplementary varidblet level:  which

depend on, the transition probabilities are level dependent 0. This Markov chain is thus a

level dependent QBD. If we now label the states lexicogcaptaer, and let the first index be
know as level except for level i=1. When the system is itesi, the chain can only have

transitions to stated, or remain in state®,. This Markov chain is thus a level-independent
QBD. If we now label the states in lexicographic order, anthiefirst index be level,i = 0 .

The resulting transition matrix for this Markov chain can themdpgesented in equation (2.1)
below. We then apply the matrix geometric result to solve it.

The interior block matrices for the system, i.e. the mﬂ:_:_-_, A andA,-_:_:l

which represent the transition frain te A ., A.te A andA, te A _,, i = 2. Here we shall

reblock Alfa model to allow room for batch arrival. The blocknicas for the system are given
below:
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Apo Ao
Ao Ayx Ay
Ay Ay Ags
p = A3z Azz Az, (2.1)
where
Aoy = [(;—:; ge, (T ©(s°8)) I(i-1)ETS(5°B) |
L [(Tc'ffj;?[. e; S(T°a) & (L°B) l
i+ 0 I(D)&(T°a) S
4 [Té? e; ETE(L° B) l
o 0 I(DHETES+I1(i— 1) AT °a)E (5°B)
iy 0 0
where I = [MT") ﬂ]

I(v) is an identity matrix of size v and is of appropriate order as defined earlier. Here the term
zero on the top left corner refers to transition during a vacatith batch arrival; that is no

arrival. The termzero on the top right corner refers to a transition from vacatioreteice

commencement with batch arrival; that is no vacationAmed. the term! (i — 1) ET & 5°B)
on the bottom right corner refers to a transition during sewittebatch arrival. The term on the

bottom left corner(e; &e, (T &(5°6 ]) refers to a transition from a service with batch

arrival.
Next we apply the matrix -product solution by [12]. In order to obtaite choose a level
i =k, such that the probability of arrival during a vacation editegk is less than some very

small value £ = 1077, usuallyg = 12 We then assume that the chances of the number in
the gate exceedingk is negligible — hence we approximate by p(k) with
‘4.;1:+L‘.5\'+L‘—1 =*“1.E|:+'_'A.'Y+E‘..E|: o — A{ and ‘4.;1:+L‘.,:{+L‘+1 = A‘k—‘_ “'-I’ [ _ 0 . This
now becomes a level independent system with transition matribaisto that Ojobor (2008) but
with a large boundary.

2.2 Matrix-Product solution for P

For the class of problems above results available in literadre for finite order ie.
(n,m,r,s) <==,

The system describe above is a spatially inhomogenous QBD pincdisgrete time,
sometimes referred to as level-dependent QBD. Because spttial inhomogeneity we cannot
apply the standard matrix-geometric method as [10]. In orderalkzulate the equilibrium
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distribution we must first evaluate the matrifes k = 0, which are minimal non-negative
solutions to

Ri = Apsesr + Redis + Re|RisiAsis],  Vk=20
where( R, :}:J, is expected number of visits to state,j) before first visit to level k conditional
on the process starting in stakgi)( It is easy to show here that the steady state veatanoe

determined as follows
k-1
Xp = -rk-'.RR‘-l = Xp | | R)- ;k =1
.-=C

where X, is obtained by solving the system of equations

Xg [A::.o T RCA‘..O] =Xy
and the normalization expression

[xo ZEL[MTCE R 111 = LwhereR_; =1

is then applied. Note that provided the system is stable the solution to

Xy [Arz.ce + RCAL.G-] = Xp
satisfies

%o [T [T R < o,

Ramaswami and Taylor obtained explicit solutionRari= 0, 1, 2, 3, ... see [6].
Note that the matriceSk are the minimal non-negative solutions to the maiadratic equations

G = Api-1+ Apale + Aprs1Grsn G, k= 0.
All gated systems are of this type.

3.0 Performance measures
We shall look at the performance of the system understudy. Fidg¢fivef, as a column

vectors whose element is either 0 or 1. We also dgfiflleas row vector which is of the same
order asx,. The element oit; have a relationship which corresponds to the elemeﬁ.t"of

Let J represent the set of all location ifi* for which there are 1's, hence all the other
location have 0's. Examplel, (1 = ﬁ) which implies the values of 1's in all location
where the number in the gate is betweihand i3 inclusive. Hence we write the
correspondingf; * vectorasf,* () = f,*(i* =17 13).

3.1 Queue length Distribution (Gated Case)
Based on the result in section 2.2, the vector x can be partitioned as

x = [X,Xy,%; .. ]

and further as
X; = [X;1,X:2, 0 X, S S SR
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The marginal probability densityy;; , of finding | customers in the system at an arbitrary igne
given as

Vi = Xy 1_
Let v, be the marginal probability of finding (Batch) customers in the system at an arbitrary
time, then

.‘IIL: = }‘ 1
We denote the mean number of customers waiting in the system at arbiteabyi; .

The conditional probabilit)l"f', of finding | customers waiting in the system during a vacatson, i

obtained as follows. Let, be the probability that the server is on vacation then

v, = X1+ x, X2, [T RIS (L =T,7), and)’ = R N |

R |

A

=

"
0
Also let denote the conditional expectation of the number of custonating when the server is
on vacation by,
— | fi(l=1.r)
Hy = Xg Zj*::' i:l_[-'-zc. j;[?: EE—
T : Vg
The conditional probabilityt"f, of finding | customers waiting in the system during service i
obtained as follows. Lef; be the probability that service is ongoing at an arbittiang. Then

So = 1 — 1, . Therefore we have
."'?:5 ==

The conditional expectation of the number of customers wattirtige system when the server is
busy servingji, , is given by

) 1 1-f;{I=1.r)
e =%|22: SIS, R =2,

o
3.2 Distribution of work in the system
To write the equation for the work in the system for thelleleependent case, we need to

define the followingS, = SB, G¥(y) = S''s, y > 1, G;(:;f}:Sf,fEl and
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G-(v) =5, G (w— l)-rSG [U Dwz=i+1, =22 . The matrixG < (Lf is of
dimensionm x n. Note thaiG’(y) = 0, for ally > 1. G¥(y) = 0, for ally < v andG%(0) =
by definition. Also leDo =T andD, = T°«

For the level-dependent case let

X = [I:[.‘:"k-:s.:]’
where the superscriptrepresents vacation asdepresents service, and ; impliesx, , _..
Note that for the level-dependent case we have
- [‘"3 .:'l—:l.: 20 15 "..]

The probabilityH,‘p that the amount of work in the system at instant of return from

vacation is ‘a’ is given by

V7 = .—1[22_{;{ ((Dee1)8(0°6% 9 @)1) + 2 (D, 817 26 1]

= 50, B 61 + T3, (D1 (07649 (@) ) 1)

he probability1’} that the amount of work left behind just after vacation start ‘a’ isrgby

vy = -".:-“-Z x:,,.(D,&s°)1 and

vy = ZZ Z Z (D 2((s*s9)6Y T a—w + 1))

=1 w=14d=0
where

h=3%% _.' ll(DCLs 1

Z ZZ Z Z o (Da8((s* 5264+ (@ —w + 1)))1.

a=1:1=11 w=1d=0
3.3 Waltlng time distribution
Let x,,i =0 be partiton asx, = [x],x;.,...,x],]. Define the vectors

Z;,1 = 0 as the corresponding vectorsxtg wherez,corresponds to the steady state vector of
the system as seen by a (Batch) arriving customers. Then
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N

z§ = 2 ((TPa)®(L+ 1°6)) + 472 Z 1, ((T%a) ® (s°8))
u=1

2! = ((Toa)®L®Im + 1)) + 7, (T° ) ®5®s™)
+ 25,y ((MPa)®6®s°)] iz 1
z;, = 7 [ (T ) ®(L°® Q)]
75, = 47 [ (TP @)®s) + 22 (TP )@(s°8))]

i=1,2=u<N

We define
72 = z¥ (1 ® Dand for i = 1definez’” = z*(1 ® )
72 =22,0@D
Let
7= (20,27, iz
Finally, let

z° = |22 27 25 ...) alsoletz"*! = 2"
is partition the same way &°.

Let w_be the probability that a customer waiting time is less tbr equal to a unit of
time. Then

w,=241 a=0.

4.0 Conclusion

We have showed here that the matrices Presented by [Bpa&rblocked to allow batch
arrival with gated vacation and the method of matrix produthén used to solve the resulting
matrix problem.
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