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Abstract

Optimal control theory, generally, isto determine the control signals
which will cause a process to satisfy the physical constraints and at the same
time optimize some performance criterion. In this work, a numerical method
for finding solution to linear optimal control problems with bounded state
constraints is examined. The method applied is based on Legendre series by
parameterization of both the state and the control variables involving a
derivative.

1.0 Introduction

Human beings are constantly confronted with the problem of caongal system and
faced with many alternative ways of doing certain things.

Constrained optimal control problem arises from the basicagoblemu JU and is
to choose the control vector such that the state vecsdransferred from, to a terminal point at
a particular timdl, where some (or all or none) of the state variables are specified.

The regionU of the control problem is called the admissible controlaregind it is the
set from where the control and control region can be obtained.

If the transfer can be accomplished, the problem in optimal control it &fe transfer

"
so that functional J:L fo(x,u,t) is optimized, fo is a function depending on

X, %, %5, X, U, U, LML andt which is continuous with continuous partial derivatives.

The formulation of the problem requires: A mathematical model ofptbeess to be
constructed, a statement of the physical constraints and specificationrfifrenpace criterion.

A non trivial part of this problem is to model the process and the objective is o thigta
simplest mathematical description that adequately preitietsesponse of the physical system to
all anticipated inputs.

For example, ifx, (t), X, (t),...,X,(t) are the state variables of the process at tiared

u, (t),u,(t),...,u,(t) are the control input into the process at timéhen the system may be
described by-first-order differential equations

% (1) = & (% (1), % (1), (1), W (1), Uy () .Uy (1), 1)
(1) = @, (% (1), X, (1), %, (1), Uy (1), U, (1)), U (1), 1)
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X,(1) = a, (% (1), %, (1), %, (1), 1y (1), U, (D)), (1), )

x, (t) u, (t)
. _ | %) _[ ()
with x(t) = M as the state vector of the system aft)l = M as the control vector.

X, (t) u, (t)
The state equation can be written &) =a(x(t), u(t),t)
A typical optimal control problem is of the form:

Minimize the integral: j;f fx(t),u(t),t] (1.1)
Subject to x(t) =a(t, x(t),u(t)) 1.2)

With known initial condition of the state variables ast(t,) =X, and t, <t=>t,,
where, J(x,u) is the objective functionu(t) is the control applied to the system at titnet, is
the given initial time,t, is the given final timeX(t) = (X, X,, X5,...,X,) " is ann-vector called
the state vector(t) = (ul,uz,u3,...,un)T is anm-vector called the control vector,

ud O™ is referred to as the set of contral@) ] U, O tU[tot] and a corresponding trajectory X;
define on {otj] which satisfy equation (1.2) is called a dynamic system.

It is important to note that:

() The process of adjusting the objective functional to aehge specific goal is called
the control process and the controlling mechanism is called the contral. vect

(i) The final time { would be needed to be specified because it is the time which
minimizes the objective functional (1.1).

(iii) Maximizing a problem J(x,u) may be re-stated as minimization of the problem
- J(x,u).

The solution of optimal control problems could be determined by eithhaputational or
analytical method.

In analytical methods, given a problem of the form:

Minimize J(X, u):j:f fo(x,u,t)dt, such that&t) = f(x,u,t), x(t,) =a, andx(t,)0IS. By
introducing the Lagrange multipliéft) we form the augmented functional:
J*:f[%anm+Ameﬂ—&m.

Assuming thaf andg are smooth sufficiently, solution of the forx(t) andA(t) which
are piecewise smooth ant) which is piecewise continuous are obtained.

According to [1] and [3] the integrdf = f, + A(f —X) is a function of two variables
andu arriving at the two Euler equations

ﬂ—i(ﬂjzo anda_F—i(ﬂj:O ie %+Ai(ﬂj:o
ox dt\adu ou dt\du ou dt\ ou

This result is the Hamiltoniai = Af, + Af, and can be expressed as:
oH

A=——0
()4

(1.3)
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and 6_H =0 (1.4)
ou

Hence, (1.3) and (1.4) together wil+ x = u govern the optional paths.
Two conditions are needed to complete the solution on integraiimge we have two

first order differential equations, these are given by(f)) = a (ii) x(t;) =b.

In computational method, [4] observed that “obtaining an exact oytaadlisolutions for
linear optimal control problems are available only foatigely simple problems while non-linear
analytical solution of optimal control problems are out of reach”.

Teo, [13] worked on approximate analytical solution based on powies stpansion
while [8], [9] and [12] shed more light on parameterization method.

In Parameterization method, the optimal control problem isfoemed into parameter
optimization problem which is believe to be simpler than the originatagmioblem.

This work, therefore, consider parameterization of optimal obnproblem with
derivative control via Legendre polynomial.

2.0 Main result
Consider the time-invariant linear quadratic optimal contrgk) that minimizes the
guadratic performance index

3 = [IPX(t) + Qui(h) Tt 2.1)

Subject to the system state equations and the initial conditions given by
®t) — dkt) = Cx(t) + Du(t) and x(t,) =t

where, X OO",U 00", m<n. P and Q are positive, semi definite and positive definite

symmetric matrices respectively.
The time variablal[to, t] in the optimal control problem is transformed into variable
7 [J[-1,1] of the Legendry polynomial using the relation:

t:%{(tf —t,) 7+ (t, ) }

(Since Legendre functions are valid in this plane) %}dz %(tf -t,). Hence, (2.1) becomes
r

te o 2 . 1
Minimize J = jt [PX(7) + QU (7)d7] subject to7) —&7) =§(Ax(r)+Bu(r))

and
X(tO) = to (22)

tf
where,A andB are constant,) = J.to[axz(t) + buz (t)]dt is the cost function¥t) is the state

variable at time and &t) is the control variable at time See [5, 6, 7, 10, 11 and 14].
Assume a Legendre series of the form:

x(r) = Zai Pi =8Py * Pyt &P, +...+ay Py
i=0

wherep;’s are polynomials, such that
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x*r)=%a’p’ (23)
i=0
=a% pzo + a21p21 +LL+a’y pZN

Yo o Y 7 Y
and 1) =) (4i-3P,_, > a,,+> (@i-3)P,, > a, . From (2.2), we have
i—0 = = i

1) - 8ir) = 2 (AX(7) + Bu(r)

du _1fdx

dit (2.4)

Substituting (2.2) and (2.3) into (2.4), we have;

&) + Au(t) =% > @i-3p,, 3T 2@~ Py 2,3, -BY.ap

j=i

y Yoyt S 5
Let 5 :% i 4i-3) P, , faz,--l + z(]) (4i-3) P, lea

2 —BY ap |-then
i=1 j=i ;.
&t) + Au(t)=Z (2.5)
i.e % + Bu(t) = Z. This is a first order differential equation and by solving (2.5), we have

u(t) = Ce™® +% z (2.6)

Substituting foiZ in (2.6) becomes
U(T) =Ce™ + E Z (4| _3) P2i—2 Zazj—l + Z (4| _3) Pzi—l ZaZj !

2

u(r) = Ce™ + %[ > (4i-3)P,,-C szlJZazjl + [Z (41=3) Py —CP }Zaﬂ

j=i i=0

Uz(t)zce_ZBt"'E 2(4_3) PZi—Z_CPZJ—l Za2j—1+ 2(4_3) Py _CPZj ZaZ] (2.7)

When substituting (2.3) and (2.7) into (2.2) with series of integrations using

2 L
. =
b 2i+1
jPindrz
a 0, i £
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Then, the state and control variables are approximd¢edis reduced by applying the
following theorem:
Theorem 2.1

N+1

If J= ZC [LJ which is obtained from the Hessian Matrix Hf =
= (2 +1 03,03,

i,j =0LA ,N. Then, the new optimal control problem is a transformed parazeste

optimization problem.

This parameterized optimization problem is likely to be caédrin the unknown
parameters.
Proof

See, [9].
Theorem 2.2

If H is positive definite, therga’ = H ™F" (FH 'F")™b and the value gf converges
to the solution of the problem &kblows up from 2, 4, 6, 8 to infinity.
Proof

See, [13].

2
where

3.0  Numerical examples
The above method is implemented to solve the following examplatd.ald package was
used to obtain results for the problems [2].
Example 3.1
Minimize the functional

1
J :jo (05x? +02u?)dt (3.1)
Subject to¥— 0.5&= x + 0.2u, x(0) = 016

1
which can also be expressed as MinJ})J £1 x* +1)dt subject to

B~ 05&= x+ 0.2u, x(0) = 016 (3.2)
The numerical solution is shown in Table 3.1.
Example 3.2
Consider problem of the form] = J.: ( X* + u?)dt subject to
B~ 005&= x+05u, x(-1)=0.124 (3.3)

The numerical solution is shown in Table 2.2.

Table 3.1:Results for Numerical Example 3.1

Value of N Numerical value ofJ | Exact solution ofJ
0.01729678078504 0.016855467795[76
0.01685488458218 0.016855467795[76
0.01685456779576 0.016855467795[76
0.01684546374862 0.016855467795[76
0.01684546367321 0.01685546779576

[iny
om@#l\)
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Table 3.2: Result of Numerical Example 3.2

Value of N | Numerical value of J Exact solution of J
2 0.12647262524285 0.12647262524285
4 0.12633548972548 0.12647262524285
6 0.12633445678099 0.12647262524285
8 0.12633445678078 0.12647262524285
10 0.12633445678077 0.12647262524285

4.0  Discussion and conclusion

From the results presented in Tables 3.1, and 3.2, it carehetlsst our method gives
results that are favourably comparable to the exact solutions usthgthla

This is another attempt to solve continuous optimal problétim the control variable
being a derivative. It has, generally, been established, by Catelhyf N grows, in a particular
system ancly,, — v, +,| < € (¢- being small), then the system converges. From Table 3.1 and
3.2, we note that the value o} converges as N increases. We intend to use Chebyshev
polynomial to linearise our problem and compare the solution witpréssent work and existing
results.
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