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Abstract 
 

Optimal control theory, generally, is to determine the control signals 
which will cause a process to satisfy the physical constraints and at the same 
time optimize some performance criterion.  In this work, a numerical method 
for finding solution to linear optimal control problems with bounded state 
constraints is examined. The method applied is based on Legendre series by 
parameterization of both the state and the control variables involving a 
derivative. 
 

 
 
1.0 Introduction 

Human beings are constantly confronted with the problem of controlling a system and 
faced with many alternative ways of doing certain things. 

Constrained optimal control problem arises from the basic control problem Uu ∈  and is 
to choose the control vector such that the state vector x is transferred from x0 to a terminal point at 
a particular time T, where some (or all or none) of the state variables are specified. 

The region U of the control problem is called the admissible control region and it is the 
set from where the control and control region can be obtained. 

If the transfer can be accomplished, the problem in optimal control is to effect the transfer 

so that functional ),,(00
tuxfJ

T

∫=
 

is optimized, f0 is a function depending on 

mn uuuxxxx ,,,,,,,, .21321 ⋅⋅⋅⋅⋅⋅  and t  which is continuous with continuous partial derivatives. 

The formulation of the problem requires: A mathematical model of the process to be 
constructed, a statement of the physical constraints and specification of a performance criterion. 

A non trivial part of this problem is to model the process and the objective is to obtain the 
simplest mathematical description that adequately predicts the response of the physical system to 
all anticipated inputs. 

For example, if )(),...,(),( 21 txtxtx n  are the state variables of the process at time t and  

)(),...,(),( 21 tututu n  are the control input into the process at time t, then the system may be 

described by n-first-order differential equations  
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  as the control vector. 

The state equation can be written as: )),(),(()( ttutxatx =&  

A typical optimal control problem is of the form: 

Minimize the integral:    ]),(),([
0

ttutxf
ft

t∫     
(1.1) 

Subject to     ))(),(,()( tutxtatx =     (1.2) 

With known initial condition of the state variables as:  00 )( xtx =  and fttt ≥≤0 , 

where, ),( uxJ is the objective function, )(tu  is the control applied to the system at time t , 0t is 

the given initial time, ft is the given final time, T
nxxxxtx ),...,,,()( 321= is an n-vector called 

the state vector, T
nuuuutu ),...,,,()( 321= is an m-vector called the control vector, 

u mℜ∈  is referred to as the set of controls, u(t)∈  U, ∀  t∈[t0,tf] and a corresponding trajectory x; 
define on [t0,tf] which satisfy equation (1.2) is called a dynamic system.  

It is important to note that: 
(i) The process of adjusting the objective functional to achieve a specific goal is called 

the control process and the controlling mechanism is called the control vector. 
(ii) The final time tf would be needed to be specified because it is the time which 

minimizes the objective functional (1.1). 
(iii) Maximizing a problem ),( uxJ  may be re-stated as minimization of the problem 

),( uxJ− . 
The solution of optimal control problems could be determined by either computational or 

analytical method. 
In analytical methods, given a problem of the form: 

Minimize ),( uxJ = dttuxf
ft

t
),,(

0
0∫ , such that )(tx&  = ),,,( tuxf  ,)( 0 atx =  and Stx f ∈)( . By 

introducing the Lagrange multiplier λ(t) we form the augmented functional:  

+= ∫ dttuxfJ
ft

t
),,([

0
0

* ( ) dtxtuxf ],, &−λ . 

Assuming that f and g are smooth sufficiently, solution of the form )(tx and λ(t) which 
are piecewise smooth and u(t) which is piecewise continuous are obtained. 

According to [1] and [3] the integral )(0 xffF −+= λ  is a function of two variables x 

and u arriving at the two Euler equations 
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This result is the Hamiltonian ,0 ffH λλ +=  and can be expressed as: 

      
x
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∂
∂−=λ      (1.3) 
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and     0=
∂
∂

u

H
      (1.4) 

Hence, (1.3) and (1.4) together with x&+ x = u govern the optional paths.  
  Two conditions are needed to complete the solution on integrating, since we have two 
first order differential equations, these are given by (i) atx =)( 0  (ii) btx f =)( .  

In computational method, [4] observed that “obtaining an exact or analytical solutions for 
linear optimal control problems are available only for relatively simple problems while non-linear 
analytical solution of optimal control problems are out of reach”. 

Teo, [13] worked on approximate analytical solution based on power series expansion 
while [8], [9] and [12] shed more light on parameterization method. 

In Parameterization method, the optimal control problem is transformed into parameter 
optimization problem which is believe to be simpler than the original control problem. 

This work, therefore, consider parameterization of optimal control problem with 
derivative control via Legendre polynomial. 

 
2.0 Main result 

Consider the time-invariant linear quadratic optimal control u*( t) that minimizes the 
quadratic performance index 

∫ +=
tf

to
dttQutPxJ ])()([ 22      (2.1) 

Subject to the system state equations and the initial conditions given by 
)()()()( tDutCxtutx +=− &&

 
and ottx =)( 0  

where, nmUX mn ≤ℜ∈ℜ∈ ,, . P  and Q  are positive, semi definite and positive definite 
symmetric matrices respectively. 

The time variable t∈[t0, tf] in the optimal control problem is transformed into variable 
τ ∈ [-1,1] of the Legendry polynomial using the relation:  

{ })()(
2

1
00 ff ttttt ++−= τ  

(Since Legendre functions are valid in this plane) and )(
2

1
0tt

d

dt
f −=

τ
.  Hence, (2.1) becomes 
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and 

ottx =)( 0      (2.2) 

where, A and B are constant, ∫ +=
tf

t
dttbutaxJ

0

2 ])()([ 2  is the cost function, )(tx&  is the state 

variable at  time t and )(tu&  is the control variable at time t  See [5, 6, 7, 10, 11 and 14]. 
Assume a Legendre series of the form: 
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where pi’s are polynomials, such that  
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Substituting (2.2) and (2.3) into (2.4), we have; 
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i.e  ZtBu
dt

du =+ )( . This is a first order differential equation and by solving (2.5), we have 
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When substituting (2.3) and (2.7) into (2.2) with series of integrations using 
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Then, the state and control variables are approximated. J(x) is reduced by applying the 

following theorem:  
Theorem 2.1 

If J = ∑
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 where 

.,,1,0, Nji Λ=  Then, the new optimal control problem is a transformed parameterized 
optimization problem.  

This parameterized optimization problem is likely to be quadratic in the unknown 
parameters. 
Proof 

See, [9]. 
Theorem 2.2 

If H  is positive definite, then, bFFHFHa TT 111* )( −−−=  and the value of  converges 
to the solution of the problem as N blows up from 2, 4, 6, 8 to infinity. 
Proof 

See, [13]. 
 

3.0 Numerical examples 
The above method is implemented to solve the following examples. MatLab package was 

used to obtain results for the problems [2]. 
Example 3.1 

Minimize the functional 

dtuxJ )2.05.0( 221

0
+= ∫     

(3.1) 

Subject to 16.0)0(,2.05.0 =+=− xuxux &&  

which can also be expressed as Min J = dtx )( 5
12

2
1

1

0
+∫  subject to  

    16.0)0(,2.05.0 =+=− xuxux &&    (3.2)   
The numerical solution is shown in Table 3.1. 
Example 3.2 

Consider problem of the form: dtuxJ )( 221

0
+= ∫  subject to 

124.0)1(,5.005.0 =−+=− xuxux &&    (3.3) 
The numerical solution is shown in Table 2.2. 
 

Table 3.1: Results for Numerical Example 3.1 
 

Value of N Numerical value of J Exact solution of J 
2 0.01729678078504 0.01685546779576 
4 0.01685488458218 0.01685546779576 
6 0.01685456779576 0.01685546779576 
8 0.01684546374862 0.01685546779576 
10 0.01684546367321 0.01685546779576 
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Table 3.2:  Result of Numerical Example 3.2 
 

Value of N Numerical value of J Exact solution of J 
2 0.12647262524285 0.12647262524285 
4 0.12633548972548 0.12647262524285 
6 0.12633445678099 0.12647262524285 
8 0.12633445678078 0.12647262524285 
10 0.12633445678077 0.12647262524285 

 
4.0 Discussion and conclusion  

From the results presented in Tables 3.1, and 3.2, it can be seen that our method gives 
results that are favourably comparable to the exact solutions using MatLab. 

This is another attempt to solve continuous optimal problem with the control variable 
being a derivative. It has, generally, been established, by Cauchy, that if N grows, in a particular 
system and  ( - being small), then the system converges. From Table 3.1 and 
3.2, we note that the value of J  converges as N increases. We intend to use Chebyshev 
polynomial to linearise our problem and compare the solution with the present work and existing 
results. 
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