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Abstract 
 

The paper considers the contribution of space-time noise to the 
oscillatory behaviour of solutions of a linear neutral stochastic delay 
differential equation. It was established that under certain conditions on the 
time lags and their speed of adjustments, the presence of noise generates 
oscillation in the solution of the equation irrespective of the magnitude of the 
time lags. This is contrary to the comparable classical neutral differential 
equation which can permit a non-oscillatory solution. 
 

 
 
1.0 Introduction 

Neutral stochastic delay differential equations form a special class of stochastic 
functional differential equations. In recent years, there has been much activities concerning the 
oscillation theory of classical delay differential equations as well as neutral differential equations 
(see for example[3, 2, 7], [5], [11], [12], [13]. For instance, [9] considered the first order neutral 
differential equation 
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d

 It has been established by the authors that the new sharp conditions for the oscillation of 
all solutions of (1.1) are as follows: 

Suppose that 

( ) [ )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 0inf

,1

.0,

,,0,,,,,

01

0

>

≤≤≤+

≥+−−=>

ℜ∈Γ∞∈ℜ∞∈

∫

∫

−∞→

+−

++

t

rtt

t

rt

dssPLimiv

tttdssQtRiii

zeroyidenticallnotandrtQtPtPrii

andrtCRQPi

σ

σσ
σ

  

( ) ( ) ( ) 0inf >∫ −∞→

t

rtt
dssHLimthatsuchtHfunctioncontinuouspositiveaexistsTherev  

 
 
 
Telephone: +234-0803-508-5758 

 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 391 - 398 
Differential equations with several time lags, Augustine O. Atonuje, J of NAMP 

 

 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) TttPfor

dsduuH
sP

sHrsQ

tH

tP

dssHtP
tH

dssH
tHrtP

rtHtPrtR
vi

t

s

t

rt

t

rt

t

rtt

≥>

>






−
+−+






+











−
−−

∫∫

∫∫

−+−

−−Γ≥>

,0

1exp

exp
1

expinf
,0

σσ

λ

λ
σ

σ

λ
λ

λ

 

Then every solution of (1.1) is oscillatory. 
 Also [8] obtained sufficient conditions for oscillation of all solutions of the neutral 
system 
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In spite of all these efforts, it appears however, that not much work has been done in respect of 
the effects of space-time noise of Ito type on the oscillatory behaviour of solutions of neutral 
stochastic delay differential equations (NSDDEs). 
 In the present paper, we study the oscillatory properties of solutions of a first order linear 
neutral stochastic delay differential equation of the form 
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where { } 0,0,,max
1

>>=Γ
≤≤ ijijj

nj
bar σ  are continuous functions, r is a positive real number, 

nj σσσσ ,....,, 21=  are non-negative constants and ( ) ( ) ( )( )*
1 ,......., tBtBtB n=  is a standard 

Brownian motion on a given probability space ( )PF ,,Ω . 

 A solution of (1.3) is a random process ( ) ni XXXtX ,,, 21 Λ= which is continuous with 

probability 1 and satisfies (1.3) for all t. The solution X(t) is adapted to a family of 
ebrasa lg−σ  generated by the process B(t). It is well known that oscillation in first order linear 

classical delay differential equations is caused by the presence of time lags or delays. In our main 
result, it is shown that under certain conditions on the time lags and their speed of adjustments, 
the presence of space-time noise generates oscillation in the solution in the NSDDE (1.3). This 
happens even if the comparable classical neutral differential equation permits a non-oscillatory 
solution. 
 
2.0 Preliminary notes 

Throughout this article, we will always compare the oscillatory results of the solution of 
the NSDDE (1.3) with the oscillatory results of the corresponding classical differential equation 
of neutral type of the form   
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which satisfies the same initial function as (1.3). We consider the coefficient of the neutral term 
to be a general matrix but not a diagonal one. Also our main result is reduced to the oscillation of 
scalar neutral differential equation so that the effects of the adjustment speeds are preserved. 
 
 
 
Definition 2.1 
 A solution ( )nxxxx ,,, 21 Λ=   of (2.1) is said to be oscillatory if at least one of the 

components of the solution is oscillatory. This holds if it contains arbitrarIily large zeros; i.e. if 
there exists a sequence ( ){ } +∞==

∞→ n
n

nn tLimthatsuchtxoftxt )(0: , otherwise, it is said to be 

non-oscillatory. Hence x(t) is non-oscillatory if there exists a t1 > 0 such that |xi(t)| > 0 for all 
.,,2,1,1 nitt Λ=≥  If  ( )txi  > 0 for all 1tt ≥ , then the solution is said to be eventually 

positive. If ( )txi  < 0 for all 1tt ≥ , then the solution is said to be eventually negative. A solution 

which is either eventually positive or eventually negative is said to be non-oscillatory. For 
random processes, we have the following: 
Definition 2.2 [1] 
 A non-trivial continuous function [ ) ℜ→∞,: 0tf  is said to be oscillatory if the 

collection ( ){ } ∞==≥= ff SupWsatisfiestfttW 0:0 . A function which is not oscillatory is 

said to be non-oscillatory. This is extended to random processes as follows: 
 A stochastic process ( ){ } ( )PFtripleprobabiltytheondefinedwtX t ,,, 0 Ω≥ and with 

continuous sample paths is said to be oscillatory almost surely if there exists a subset 

[ ] 1** =ΩΩ⊆Ω Pwith  such that for all *Ω∈w  the path X(.,w) is oscillatory. Otherwise it is 
said to be non-oscillatory. 
 The first step towards achieving our result is to write the solution X(t) of the NSDDE 
(1.3), a random process (which though continuous, is nowhere differentiable) in terms of the 
differentiable solution Z(t) of a random neutral differential equation 
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where Pj(t) is a positive continuous function defined on some subset Ω⊆Ω*  by  
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We note that P as in (2.3) depends on the increments of a standard Brownian motion. The 
large deviations in these increments ensure that P is sufficiently large to stimulate oscillation in 
(2.2). 
 We now tap from many existing and extensive oscillatory and non-oscillatory results in 
the deterministic theory of oscillation (covering differential equations of neutral types) for use on 
a path-wise basis, that is, for all Ω∈w , which apply directly to (2.2). The following concerning 
oscillation of solutions is a special case of the result found in [6]. 
Proposition 2.1 
 Assume that  
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Then all non-trivial solutions of  
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are oscillatory. 
 We can also have results pertaining to non-oscillatory solutions. The following is a 
special case of the result found in Gopalsamy [4] (Theorem 5.2.12). 
Proposition 2.2 
 Let σ,,rc  be non-negative numbers, 0< c < 1, ( )+ℜℜ∈>≥ ,.0,0 CPLetr jσ  and 
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Then (2.4) has a non-oscillatory solution. 
 In the remaining part of the paper, we apply a method of proof used in Appleby and 
Buckwar [1], [11] and a result concerning solution transformation (See [2], [10]) to create a 
conjugation relation which enables us to obtain oscillatory information about the solution of the 
NSDDE (1.3). This is done by analyzing the oscillatory behaviour of the solution of (2.2) through 
appropriate choice of deterministic results as in proposition 2.1 and proposition 2.2, which apply 
directly to (2.2). 
 
3.0 Solution transformations: 

 In this section, we introduce a stationary random bijective coordinate change ( ){ } 0,. ≥Λ tt  

which satisfies the following properties:  
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H2: There exists a continuous semi-martingale ( ){ } ( ) thatsuchwitht t σ<∈<Γ ℜ∈ 0,.  the 
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For details of the properties of the bijective random coordinate change, ( ){ } ℜ∈Λ tt,. we refer to 

[10] and the references therein. Now as before, we let ( ){ } 0≥ttX  be the solution of the NSDDE 

(1.3), ( ){ } 0≥ttZ  be the solution of the random neutral differential equation (2.2) and let 

( ){ } ℜ∈Λ tt,. be the stationary bijective coordinate change with the properties as above. We define 

for all Ω∈≥ wt ,0 , the following conjugation relation 
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( ) ( ) ( )( ) ( )wwtZwtwtX ,0,,,0, 1−ΛΛ= οοθ    (3.1) 
Hence the solution of the NSDDE, X(t) is expressed as the conjugation relation of the random  
 
 
 
 
bijective coordinate change or process ( ),.tΛ  and the solution Z(t) of the random neutral 
differential equation (2.2). By this conjugation relation, the zeros of the process Z correspond 
w.p.1 to the zeros of the solution X of the SNDDE (1.3). We can now obtain information about 
the oscillatory behaviour of the process X on a path-wise basis by analyzing the oscillatory 
properties of Z. 
 
4.0 The main result: 
4.1 Assumptions 

We need the following assumptions on the time lags and their speed of adjustments [5]: 
G1: nσσσ ,,, 21 Λ  are positive numbers and r is a non-negative number. 

G2: ( )nibij ,,2,1, Λ= are bounded continuous functions defined for 0≥t . 

G3: ( )niaij ,,2,1, Λ=  are bounded continuous functions with bounded derivatives such that 
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In the main result below, we establish that whenever h(t) = t-r satisfies the hypothesis of 
proposition 2.1 and assumptions G1 – G4 hold, then the solution of the SNDDE (1.3), where noise 
is present, oscillates with probability 1 for any given initial datum. 
Theorem 4.1 
 Assume that the time lags and their speed of adjustments ijijj acr ,,,σ  satisfy the 

assumptions G1 – G2 and h(t) = t – r is non-decreasing. Then the NSDDE (1.3) has an oscillatory 
solution w. p. 1 on [ )∞,0  for every given initial datum φ . 
Proof 

By the conjugation relation ( ) ( ) ( )( ) ( )wwtZwtwtX ,0,,,0, 1−ΛΛ= οοθ , the class  

( ){ }0:0 =≥= tXtW  satisfies the condition ∞=SupW  if and only if the collection  

( ){ } 1..,00:0 pwWSupsatisfiestZtW ==≥=  

Now for all t > 0 and ,Ω∈w  we define 

( ) ( ) ( )wtwrtawtP ,,, 1−Λ−Λ−= ο     (4.4) 
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We observe that P(.) is a non-negative continuous function on the half interval [ )∞,0 . Also Z 
satisfies 
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Then as P(.) and h(t) = t-r satisfy the hypothesis of proposition 2.1 on a path-wise basis. It 
follows that the path Z(.,w) is oscillatory. If not, we assume on the contrary that there exists a 
non-oscillatory solution Z(t) which is  eventually positive, that is, there exists t1 > 0 such that 
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which implies that Z(t) < 0. This is a contradiction showing that (i) is impossible. 
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Taking advantage of the periodicity of Pi(s) in (4.10), we obtain 
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Again integrating (4.9) over [t-r, t*], we get 
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Combining (4.12) and (4.13) and consequent of the fact that Z(t) –cZ(t-r) is non-increasing, we 
have 
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From (4.13), we have 
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which contradicts condition G3 of proposition 2.1. Therefore Z is oscillatory w. p.1. So the 

trajectory X(.,w) is oscillatory. By (3.1). It follows that the subset Ω⊆Ω*  is an almost sure 

event. Hence the solution X of the NSDDE (1.3) is oscillatory w. p.1 on [ )∞,0 . 

 Integrating the deviation (2.3) for tt > , over [t-r,t ], (See [1]), we have 
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he crucial factor which generates oscillation in the NSDDE (1.3) is the large enough deviation in 
the increments of the Brownian motion. This holds if 
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 In the classical equation (2.1) (where noise is absent), if the time lags are small enough, 
the integral in (4.20) is made so small that the condition of proposition 2.2 holds and at that 
ssssmoment the classical neutral differential equation (2.1) has a non-oscillatory solution. 
However, the presence of multiplicative noise in the SNDDE ensures that the integral in (4.20) 
holds irrespective of the magnitude of the time lags. Although the noise has not completely 
replaced the time lags as the cause of oscillation, we note that the time lags are no longer the sole 
cause of oscillation in the SNDDE. 
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