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Abstract 
 

  A review of second order difference equation is presented with 
instructive analysis of second-order rational difference equations. After 
classifying the various types of these equations and introducing some 
preliminary results, we systematically investigate each equation for 
convergence of solutions to the equilibrium. The convergence rate of 
solutions of a second order rational difference equation has been treated. We 
also investigate the rate of convergence of solutions of some special cases of 
the equation xn+1= (α+βxn+γxn−1)/(A+Bxn+Cxn−1), n = 0,1,…, with 
positive parameters and nonnegative initial conditions which gives precise 
results about the rate of convergence of the solutions that converge to the 
equilibrium. 
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1.0 Introduction. 
 A second order difference equation is similar to a second order differential equation 
involving the unknown function y, its derivatives y' and y'', and the variable x. The solving of a 
second order difference equation is very similar to the method of solving a second order 
differential equation [6]. Kalabu and Kulenovi [4] systematically investigated each equation for 
semicycles, invariant intervals, boundedness, periodicity and global stability. They also presented 
prototype results towards the development of the basic theory of the global behaviour of solutions 
of nonlinear difference equations of order greater than one. The techniques and results are also 
extremely useful in analyzing the equations in the mathematical models of various biological 
systems and other applications [4, 7]. 
 
2.0 Difference equation 
 A difference equation is an equation involving the differences between successive values 
of a function of an integer variable. It can be regarded as the discrete version of a differential 
equation. For example the difference equation f(n+1) - f(n) = g(n) is the discrete version of the 
differential equation f'(x) = g(x). We can see difference equation from at least three points of 
views: as sequence of number, discrete dynamical system and iterated function.  
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It is the same thing but we look at different angle. Difference equation is a sequence of numbers 
that are generated recursively using a rule to relate each number in the sequence to previous 
numbers in the sequence as presented in Figure 2.1, {1, 1, 2, 3, 5, 8, 13, 21,…}. The  Sequence 

{1, 1, 2, 3, 5, 8, 13, 21,….} is called Fibonacci sequence, generated with rule y(k+2) = y(k+1) + 
y(k) for k = 0, 1, 2, 3,…, and initial value y(0) =  y0 = 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Sequence of difference equation. 
Sequence {3, 5, 7, 9,...} has rule y(k+1) = 2y(k) + 3 for k = 0, 1, 2, 3,…,.  Both sequences have 
initial value y(0) = 0y  = 0.  A general second-order difference equation is of the form  

xt+2 =  f (t, xt, xt+1).     (2.1) 
This second-order difference equation has a unique solution and by successive calculation we can 
see that given x0 and x1 there exists a uniquely determined value of xt for all t ≥ 2.The solving of a 
second order difference equation is very similar to the method of solving a second order 
differential equation [6].  A second order difference equation of the form 

y(x + 2) + ay(x + 1) + by(x) = 0     (2.2) 
has the following characteristic equation which is written out as 

2 0a bλ λ+ + =      (2.3) 
Consider the following cases. 
2.1 Real and distinct roots 

Case I:  
 The roots 1λ  and  2λ  of the quadratic equation (2.3) are real and distinct. Then the 

general solution of the original finite –difference equation is expressed as 

y(x) = 1 1 2 2( ) ( )x xx xθ λ θ λ+ ,    (2.4) 

where 1( )xθ  and 2 ( )xθ  are arbitrary periodic functions with unit period, ( )k xθ = ( 1)k xθ + , k = 

1, 2.  If kθ ≡  constant, it follows from (2.4) that there are particular solutions 

y(x) = 1 1 2 2
x xC Cλ λ+ b     (2.5) 

where C1 and C2 are arbitrary constants. 
2.2 Equal roots 
 Case II 

The quadratic equation (2.3) has equal roots, 1 2λ λ λ= = . In this case, the general 

solution of the functional equation is given by 

y = [ 1 2( ) ( )] xx x xθ θ λ+      (2.6) 

1 2 3 21 … 5 8 1 13 

y(0),  y(1),       y(2) ,     y(3),      y(4),      y(5) ,     y(6) ,     y(7)  

y(2) = y(1) + y(0) y(k+2) = y(k+1) + y(k) 
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2.3 Complex roots 
 Case III 

In the case of complex conjugate roots, (cos sin )iλ ρ β β= ± , the general solution of 
the functional equation is expressed as: 

y = 1 2( ) os( ) sin( )x xx c x xθ ρ β θ ρ β+ ,    (2.7) 

where 1( )xθ  and 2 ( )xθ  are arbitrary periodic functions with unit period. 

 
3.0 Rational difference equation 
 The convergence rate of solutions of a second order rational difference equation is now 
investigated: 

yn+1 = 1

1

n n

n n

y y

A By Cy

α β λ −

−

+ +
+ +

, n = 0,1,…,    (3.1) 

where the parameters α, β, λ , A, B, and C are positive real numbers and the initial conditions y1, 
y0 are arbitrary nonnegative real numbers [2]. 
. In our study, related nonlinear second-order rational difference equations which were 
investigated (2,5,6,7,8,9,10) in order to determine their contributions and it was discovered that 
the study of these equations was quite challenging.  Three special cases of equations (2.1, 3.1) are 
considered at n = 0, 1,…, 

yn+1 = 
1n n

B C

y y −

+ ,     (3.2) 

yn+1  = 
1

1

n n

n n

px x

qx x
−

−

+
+

,     (3.3) 

yn+1 = 
1

1

n n

n

px x

q x
−

−

+
+

,     (3.4) 

where all the parameters are assumed to be positive and the initial conditions x-1, x0 are arbitrary 
positive real numbers.  It can now be shown that the asymptotics of solutions that converge to the 
equilibrium depends on the character of the roots of the characteristic equation of the linearized 
equation evaluated at the equilibrium [4]. The results on asymptotics of (1.2, 9), (1.3, 10), and 
(1.4, 11) will show all the complexity of the asymptotics of the general equation (3.1). 
Here we give some necessary definitions and results that we will use later. 

Let I be an interval of real numbers and let 1f C∈ [I * I, I].   Let y I∈  be an 
equilibrium point of the difference equation 

yn+1 = f(xn, xn-1), n = 0, 1, …,      (3.5) 
that is ( , )y f y y= .  Let    

s =  ( , ),
f

y y
u

∂
∂

 t =  ( , ),
f

y y
v

∂
∂

    (3.6) 

denote the partial derivatives of f(u,v) evaluated at an equilibrium y  of (3.5).  Then the equation  
Zn+1 = sZn + tZn-1, n = 0, 1,…    (3.7)  

is called the linearized equation associated with (3.5) about the equilibrium point y .  
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3.1 Linearized stability 

Theorem 3.1 
(a) If both roots of the quadratic equation:  

λ
2 − sλ − t = 0     (3.8) 

lie in the open unit disk |λ| < 1, then the equilibrium y  of (3.5) is locally asymptotically stable. 
(b) If at least one of the roots of (3.8) has an absolute value greater than one, then the 
equilibrium y  of (3.5) is unstable. 
(c) A necessary and sufficient condition for both roots of (3.8) to lie in the open unit disk |λ| 
< 1 is  

|s| < 1−t < 2.     (3.9) 
In this case, the locally asymptotically stable equilibrium y  is also called a sink. 

(d) A necessary and sufficient condition for both roots of (3.8) to have absolute values 
greater than one is 

|t| > 1, |s| < |1−t|.                (3.10) 
(e) A necessary and sufficient condition for one root of (3.8) to have an absolute value 
greater than one and for the other to have an absolute value less than one is 

s2 + 4t > 0, |s| > |1−t|                (3.11) 
In this case, the unstable equilibrium y  is called a saddle point. 

The set of points whose orbits converge to an attracting equilibrium point or, periodic 
point is called the basin of attraction, [1]. 
Definition 3.1 

 Let T be a map on R2 and let p be an equilibrium point or a periodic point for T. The 

basin of attraction of p, denoted by pΦ , is the set of points y 2R∈  such that |Tk(x) – Tk(p)| → 0, 

as k→∞, that is, 

pΦ  = { y 2R∈ : |Tk(x) – Tk(p)| → 0, as k→∞},               (3.12) 

The positive and negative semicycles of a solution of (3.5) relative to an equilibrium point y  is 
now defined. 

A positive semicycle of a solution {yn} of (3.5) consists of a set of  terms {yr, yr+1, …, 
ym), all greater than or equal to the equilibrium y , with r ≥ −1 and m ≤ ∞ and 
such that either r = −1 or r > −1, yr-1 < y , and either m = ∞ or m < ∞, ym+1 < y .  
A negative semicycle of a solution {yn} of (3.5) consists of a set of terms {yr, yr+1, …, ym), all less 
than the equilibrium y , with r ≥ −1 and m ≤ ∞ and such that either r = −1 or r > −1, yr-1 ≥  y, and 
either m = ∞ or m < ∞, ym+1 ≥  y .  
Theorem 3.2 

This theorem is a slight modification of the result obtained in [5].  It is assumed that f : 
[0,∞]×[0,∞] → [0,∞]                  (3.13) 

is a continuous function satisfying the following properties: 
(a) there exist L and U, 0 < L < U, such that 

f(L,L) ≥ L, f(U,U) ≤ U,                  (3.14) 
and f(y, Z) is non-decreasing in y and Z in [L,U]; 
(b) the equation 

f(y,y) = y                    (3.15) 
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has a unique positive solution in [L,U].  Then (3.5) has a unique equilibrium [ , ]y L U∈  and 

every solution of (3.5) with initial values y-1, 0 [ , ]y L U∈  converges to y . 

 
 
 
 
 
Proof 

Set    h0 = L, H0 = U,                   (3.16) 
and for i = 1, 2,…,   
Set    Hi = f(Hi-1, Hi-1), hi = f(hi-1, hi-1),                 (3.17) 
Now observe that for each i ≥ 0, 

h0 ≤ h1 ≤ … ≤ hi ≤ … ≤ Hi ≤ … ≤ H1 ≤ H0,   
The next two theorems give precise information about the asymptotics of linear non-autonomous 
difference equations. Consider the scalar kth-order linear difference equation 

y(n+k) + p1(n)y(n+k −1)+ …. + pk(n)y(n) = 0,               (3.18) 

where k is a positive integer and pi: 
+¢ → £  for i = 1, …, k. Assume that 

qi = lim ( ),ik
p n

→∞
 i = 1, …, k,   exist in £                 (3.19) 

Consider the limiting equation of (3.18)), 
y(n+k)+q1y(n+k −1) + …. + qky(n) = 0.                (3.20) 

Then the following results describe the asymptotics of solutions of (3.18) [3]. 
Theorem 3.3 (Poincare’s theorem.)  

Consider (3.18) subject to condition (3.19).  Let λ1, ..., λk be the roots of the characteristic 
equation 

λ
k + q1λ

k-1 + … + qk = 0                 (3.21) 
of the limiting equation (3.20), and suppose that 

|λi |≠ |λj | for i ≠ j                 (3.22) 
If y(n) is a solution of (3.18), then either y(n) = 0 for all large n or there exists an index j ∈  {1, 
…, k} such that 

( 1)
lim

( ) j
n

y n

y n
λ

→∞

+ = .                 (3.23) 

The related results were obtained by Perron, which was improved upon by Pituk [4]. 
Theorem 3.4 

Suppose that (3.18) holds. If y(n) is a solution of (3.19), then either y(n) = 0 eventually, or 

    
1

lim( ( ) ) n
j j

n
y n λ

→∞
= ,                 (3.24) 

where λ1, …, λk are the (not necessarily distinct) roots of the characteristic equation (3.21). 
 
4.0 Rate of convergence of equation 

The rate of convergence of equation 

1
1

n
n n

B C
y

y y+
−

= +     (4.1) 

Equation (3.2) has a unique equilibrium point y = B C+ .  The linearized equation associated 
with (3.2) about x is  

    Zn+1 + 1 0n n

B C
z z

B C B C −+ =
+ +

, n = 0,1,…,   (4.2) 
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This equation was considered in [5], where the method of full limiting sequences was used to 
prove that the equilibrium is globally asymptotically stable for all values of parameters B and C. 
Here, we want to establish the rate of this convergence. The characteristic equation 
 
 
 
 

 
 
 

2 0
B C

B C B C
λ λ+ + =

+ +
, n = 0,1,…,    (4.3) 

that corresponds to (4.2) has roots 
2 4 ( )

2( )

B B C B C

B C
λ±

− ± − +
=

+
    (4.4) 

Theorem 4.1 
 All solutions of (3.2) which are eventually different from the equilibrium satisfy the 

following. 
(1) If the condition 

C < 
2(1 2)

B

+
     (4.5) 

holds, then   1lim n

n
n

y y

y y
λ+

+→∞

−
=

−
  or    1lim n

n
n

y y

y y
λ+

−→∞

−
=

−
,  (4.6) 

where λ+  and λ−  are the real roots given by (4.4).  In particular, all solutions of (3.2) oscillate. 

(ii) If the condition 

C = 
2(1 2)

B

+
     (4.7) 

holds, then  

( )1

lim
2( )

n
n

n

B
y y

B C→∞
− =

+
    (4.8) 

(iii) If the condition 
2(1 2)

B
C >

+
 holds, then 

( )1

lim n
nn

y y λ±→∞
− =      (4.9) 

where λ+  and λ−  are the complex roots.  

Proof 
We have 

1 1
1 1

( ) ( )n n n
n n n n

B C B C
y y y y y y y

y y y y y y+ −
− −

− = + − = − − − −              (4.10) 

Set tn = yn - y . Then we obtain: 
tn+1 + pntn + qntn-1 = 0,                (4.11) 
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where     pn = ,
n

B

y y
 qn = 

1n

C

y y−

                (4.12) 

Since the equilibrium is a global attractor, we obtain 

lim nn

B
p

B C→∞
=

+
, lim nn

C
q

B C→∞
=

+
               (4.13) 

Thus, the limiting equation of (3,2) is the linearized equation (4.2) whose characteristic 
equation is (4.5). The discriminant of this equation is given by 

D = B2 – 4C(B+C) = ( 2 ( ))( 2 ( ))B C B C B C B C− + + +               (4.14) 

 
 
 
 

Conditions (4.5), (4.7) and (4.9) are the conditions for D > 0, D = 0, and D < 0, 
respectively.  Now, statement (i) follows as an immediate consequence of Poincare’s theorem and 
statements (ii) and (iii) follow as the consequences of Theorem 3.4.   Finally, the statement on 
oscillatory solutions follows from the asymptotic estimate (3.6) and the fact that in the case D > 0 
both roots λ+  and λ−  < 0.  

Figure 4.1 visualizes the regions for the different asymptotic behaviour of solutions of  (1.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Regions for the different asymptotic behavior of solutions of (9). 

 
5.0 Conclusion 
 We investigated the rate of convergence of solutions of some special cases of the 
equation xn + 1 = (α+βxn + γxn-1)/(A+Bxn + Cxn-1). The rate of convergence of the equation to 
equilibrium with positive parameters and nonnegative initial conditions was determined based on 
certain theorems such as Poincare’s theorem. 
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