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Abstract 
 

A mathematical model describing the motion of the oval and round 
windows is studied. The exact solutions of the equations of motion are 
obtained. For certain model configurations, the displacement patterns of the 
motions consist of sinusoidal waveforms that are in cycles were obtained. The 
qualitative effect of a transmitted pressure along the tympanic canal is 
discussed. 

 
 
 
1.0 Introduction 

Sound waves are collected by the pinna and directed through the external auditory 
meatus to impinge on the tympanic membrane or eardrum. The vibrations then pass 
through the middle ear, which incidentally, is open to the throat through the Eustachian 
tube. The movement of air pressure through the tube equalizes the air pressure on both 
sides of the eardrum. In human beings, vibrations are normally carried through the 
middle ear by a series of three bones: the hammer, anvil and stirrup (or malleus, incus 
and stapes respectively) known as the ossiscles. The train of bones connect the tympanic 
membrane with the oval window of the cochlea, the inevitable organ where vibrations are 
converted into nerve impulses. But in conducting vibrations, these bones also increase 
their strength, that is, the pressure they exert. Pressure is force divided by the area on 
which the force acts, and the area of the tympanic membrane is about 30 times that of the 
oval window. At the tympanic membrane, sound pressure received are relatively lost, 
most is transmitted to the cochlea amplified to a 22-fold greater pressure on the inner ear 
(for more details see Cal et al [1]. Dalhoff et al [2], Ghaffari et al [3]. 

The mechanical forces that are transmitted by the bones of the middle ear are 
transformed into hydraulic pressure variation when the stapes strike the oval window. 
The cochlea is filled with fluid, and so any pressure applied to the oval window is 
transmitted through it, just as the pressure applied to the car’s brake pedal is transmitted 
through its hydraulic system to the wheels. Some of this pressure continues as a wave to 
the far end of the cochlea and back through the tympanic canal to the round window,  
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which moves out or in and allows the pressure inside the cochlea to remain relatively 
constant. Most of the pressure applied by the oval windows is transmitted to the basilar 
membrane, which responds with a vibration of its own, see Montgomery [7], Rajan [8], 
Temchin et al [9]. 

In this paper, a mathematical model which is a system of partial differential 
equations is studied, see [5]. However, there are relatively few papers dealing with the 
study of motion of oval and round windows. For instance, in solving linear partial 
differential equation, one comes across differential equations containing several 
parameters with auxiliary conditions that the solutions satisfy a boundary condition at 
several points. 
 
2.0 The mathematical model 

A mathematical Model describing the motion of the oval and round windows is 
formulated as follows: 

The model is an enclosed two dimensional cavity and the basilar membrane 
appears in it as thin plate immersed in the fluid. Thus, we assume liberalized two 
dimensional potential flow in the configuration depicted in Figure 2.1 below. 

 
Figure2.1: Potential flow Model of Cochlea 

The 1x  and 3x  are the fluid variables of enclosed two dimensionals cavity. The upper 

domain where 3x o> is denoted by l while for 3 0x <  is denoted by l−  and 1x L=  is 

the end of the cavity. 
On 1 30, 0x x l= < < , the equation of motion of the oval window is given by: 

2
1 1

0 0 0 1 0 1 32
(0, , )m r k x t

t t

ξ ξ ξ ρ ρ∂ ∂+ + = −
∂ ∂

   (2.1) 

The velocity at the oval window and that of the fluid at the point of contact is given by:   

1 1
1

1

,    0on x
t x

ξ φ∂ ∂= =
∂ ∂

    (2.2) 

On 1 30, 0x l x= − < < , the equation of motion of the round window is given by: 
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2
2 2

0 0 0 2 2 32
(0, , )m r k p x t

t t

ξ ξ ξ∂ ∂+ + = −
∂ ∂    

(2.3) 

The velocity at the round window and that of the fluid at the point of contact is given by: 

2 2
1

1

,    0on x
t x

ξ φ∂ ∂= =
∂ ∂

      (2.4) 

1ξ  and 2ξ  are the displacements of the oval and round windows respectively. Equations 

(1 – 4) valid on 1 0x =  are equations of motion of the oval and round windows with their 

boundary conditions respectively, which were adapted from the work of Lesser and 
Berkley [4, 5]. 
The constant values of the parameter for the oval and round windows are denoted by 0m , 

mass per unit area, 0r , damping in dyne sec/cm3 and 0k , stiffness in dyne /cm3. We seek 

a solution such that the field variables will be proportional to i t ste eω = . 
We write 

Re( )steφ φ= , 3 3Re( )stu u e= , Re( )st
i ip p e= , Re( )steξ ξ= . 

On 1 30, 0x x l= < < ,  
2

0 1 0 1 0 1 0 1 3(0, )m s r s k p p xξ ξ ξ+ + = −  - (2.5) 

with the boundary condition  1
1

1

s
x

φξ ∂=
∂

     (2.6) 

On 1 30, 0x l x= − < < ,  
2

0 2 0 2 0 2 2 3(0, )m s r s k p xξ ξ ξ+ + = −  - - (2.7) 

with boundary condition   2
2

1

s
x

φξ ∂=
∂

  - - (2.8) 

To solve equations (2.5) and (2.7) 
2

0 1 0 1 0 1 0 1 3(0, )m s r s k p p xξ ξ ξ+ + = −  
2

0 2 0 2 0 2 2 3(0, )m s r s k p xξ ξ ξ+ + = −  

   - - - - (2.9) 

where      =    - --            (2.10) 

Applying equation (2.6) at , gives  

              (2.11) 

(See Mbah and Adagba [6]). 
Generally,  is given by 
 

 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 311 - 316 
Motion of the oval and round windows, O. H. Adagba, J of NAMP 

  -          -(2.12) 

Similarly, the equation for the round window is 

 
Using equation (2.10) it can be written compactly as 

  -            (2.13) 

Applying (2.8) to (2.13) gives 

            (2.14) 

Generally,  

Using the fact that , the problem as presented can be simplified 
by redefining the arbitrary time functions in the introduction of the velocity potentials. 
Thus, for region 2, where 

  . 

Allowing , we obtain . Hence  valued at , gives 

 - -                     (2.15) 

Substituting (2.15) into (2.11), we obtain  

 
Recalling that  

 

             (2.16) 

Similarly,  
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Figure 3.1: Displacement at the oval window 
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Figure 3.2: Displacement at the round window 

 

  -            (2.17) 

 
3.0 Discussion 

We seek for a solution such that the field variables will be proportional to 

. Hence, the first step in the method of analysis of the model is the choice of 
values for the constants.  The values for the constants are: 

 (calculated),  

 adapted from the works of Lesser and Berkley [4,5]. 

 with the parameters having the same meaning as earlier 
stated. 
ζ1 and ζ2 are the displacements of the oval and round, windows respectively. 

Equations (2.1 – 2.4) valid on 1 0x =  are equations of the oval and round windows 

with their boundary conditions. 
Equations (2.16, 2.17) were used by Math card 7 Professional to plot figures 3.1 

and 3.2 which are the displacements at the oval and round windows respectively. These 
depict sinusoidal waveforms that are in cycles. The direction of propagation is in opposite 
directions, which agrees with the theory, that is, as the oval window bulges outwards, the 
converse will be the case of the round window. 

 
 
 
 
 
      ξ1(x,t)       ξ2(x,t)      
 
 
 
 

Yi,j =ξ1(x,t)     Yi,j =ξ2(x,t) 
 

 
 
 
4.0 Conclusion 

The problem of cochlea model [4,5] is not considered here and a paper treating 
this problem has been published. The conclusion of this exploratory effort, it seems 
pertinent to point out a desirable course for future research. Input signals of finite 
duration and various displacements both sequentially and simultaneously should be 
considered to obtain a better understanding of the transient behaviour. The motion of oval 
and round windows in relation to their transmission and physical properties should  
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be investigated, and the qualitative results presented in this article can be seen on 
sinusoidal waveforms in cycles and auditory thresholds (see references) should be re-
examined in the light of the finding from more sophisticated models. The result of such 
research would permit a meaningful quantitative comparison of the model’s behaviour to 
the physiological evidence. 
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