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Abstract

Hylleraas did the calculation of the ground stata 1926 using the
variational parametera. In this paper we trace Hylleraas historic calculan,
the use of computer enables us to improve the appmation found by
Hylleraas . The program was written in FORTRAN lgoage, designed in
such away that for a particular value of dimensio®, we varied the
variational parameter @ and the corresponding minimum energy was
computed. The optimal value of the dimension D, ths D =20, and for all
possible values of the basis state, the variatiopatametera=1.05 has the
lowest energy of #9.015104V; compared with the historic calculation of
Hylleraas the difference is onl®.032%V. 0.02%)

1.0 Introduction

The Helium atom consists of a nucleus of chargartl two electrons which we label 1
and 2. Each electron is attracted to the nucleus and the totoorte repel each other. We
assume, this will turn out to be correct, that no forces, other tie electromagnetic ones
(JCoulomb to a very good approximation) are necessary to descridgrthmic of the Helium
atom with the help of quantum mechanics [6].

The largest quantities of Helium are obtained from natural §he low solubility of
Helium in water, and thus in the body fluids is the reason for uséligm to replace nitrogen in
“air” breathed by divers and other working in high-pressure gih®ee in order to prevent the
"bends”. The melting point of Helium is -272@ and the boiling point of Helium is -268 6
with density of 0.17&gm?, [[1]].

These atoms have the simplest energy level schemes. basigigve find it necessary to
take into account the Coulomb repulsion between the two valeratmakerather more explicitly
[2], and not merely represent it by an average field. All thaufes of the energy level spectra of
atoms with two valence electrons are brought out by the examplgliom and as in this case,
we have the additional simplification of knowing precisely what ¢entral field is namely just
that due to the nucleus, we shall confine our attention to this case.

2.0  Solution of Helium atom problem by the Hylleraas method
If these were no interaction between the electrons, one coulinitetethe ground state
wave function for the helium atom analytically [9]. One would only have togmit e
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electron into the ground state of the Schrddinger equation for thelerteon problem. One
would have

Og(,1,) = EX[{_'_—Z (r+ rz)j (2.1)

_4rEn
- 2

= 0.52917A

where o

is the Bohr radius. From now on we use the abbreviatiandr, for |r1| and1,]. If one calculates
the expectation values of the Hamilton operator with the nirethlstate equation (1.1), this
corresponds to the perturbation calculation, one certainly ob#ainsstimate of the binding
energy, but it still differs from the true value by sevekal

The estimate can be improved by taking account of the facedcht electron shields
the other electron from a portion of the nucleus-electron interadthis is most easily achieved
by replacing the nuclear charge numBen equation (2.1) by an effective nuclear charge number
Z =7/

o
®g(r,1,) = eXF{FZ(rl + rz)j (2.2)

The expression in equation (2.2), however, does not take accountfattiieat, because of their
mutual repulsion, the electron have reduced probability of being tgether, as this expression
is purely a product of single particle wave functins.howesgg can take equation (2.2) as a
starting point for the construction of a function basis, by myltigl @ ¢ by suitable factors.
Hylleraas introduced the following basis functions, obtained in this way [4]

(Djkm(rll rz) = (rl + rz)j (rl - rz)k|r1 - r2|mq323(r1' rz)
(J,k,m=0)

The tilde indicates that basis functions are not orthogonal t@wookher. Only even values are
allowed fork [10], because the space wave function in the ground statebsnggmmetric with
regard to interchange of the two electrons .The wave function ismaiste

Yrr) = 2 80P (1 r,) (2.4)

j.k,m
The elements of the function basis with> 0 enable us to allow approximately for the

effect of the mutual repulsion of electrons. In his historicudation Hylleraas used only three
states, namelyj,(k, m=(0,0,0), (0,0,1), (0, 2,0). In what follows we shall, for the sake ofitigre
often denote the triadl, k, m) by n [5].

The representation of the Schrodinger equation on the non-orthogonalebasison
(2.3) leads to the general eigenvalue equation

(2.3)

> (A, -EN,,)a, =0 (2.5)
with H , =<® [H|® > (2.6)
and Nnn’ =< &)n &)n’ > (27)

The matrixN occurring in equations (2.5) and (2.7) is calledrtbem matrix. It contains
all the information on the non-orthogonal of function basis equati@). (Bhe matrixN is real
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and symmetric [7]. Because of the linear independence of treib&salso positive definite, i.e.
all its eigenvalues are greater than zero. Nsdl™*andN™ therefore exist. With the matrIX™
we can orthonormalize the basis equation (2.3). We set

® =Y (N7) Y (2.8)

nn n

where (N®),, denote the rin matrix element of the matrix R.The basis of the transformed
statesd, is orthonormal.

<P ch' >=0 (2.9)
For the matrix elements 6f on the orthonormalised basis we obtain,
H  =<®H[® >= (N TN 72 ) (2.10)

The last expression is again the' mfement of the matrix product in brackets. Finally we
transform the co-efficient,&ccurring in equations (2.4) and (2.5). From

w:zéncbn =Y a ®, (2.11)
n n
And the transformation equation (2.8) one obtains,

4,=Y(N") a,,

a,=>(N") 4

We can now see how the basis transformation equation (2.8}satfex general eigenvalue
equation (2.5). In matrix notation equation (2.5) read

(H - NE)a=0 (2.13)

where & denotes the column vector formed with the compor@ntsVe insert the unit matrix in

(2.12)

the form 1=N*NN* in equation (2.10) betwee(i:l — NE) and &, multiply by N* from the
eft and obtain (N AN 72 — EN 2NN N %8 = 0 (2.1)
The expressionN %I:IN_}/2 is equal to the matrix (Hfjnappearing in equation (2.7), the

expressionN %2 NN %2 is the unit matrix, and\ %2 a is according to equation (2.12) equal to
the column vector a with the componeats

Over the years since Hyllerass’ original work, tremendeffierts have been made to
improve upon that work, using larger and larger expansions, addirgycomplicated terms, etc.,
with the net result that the non-relativistic ground statergy of Helium's electrons is now
known, to 35 significant figures to be [3] E = -2.903 72 a.u., a truly remarkable result. The
orthonormalisation of the basis (2.4) has led from the genegahwdlue equation (2.5) via
equation (2.1). Not only the eigenvalues but also the wave dumndgti calculated from the
eigenvectors is the same for both equations. With equationw2.hpave also obtained a scheme
by which the general eigenvalue equation can be solved numeiRjall/e shall therefore not
explicitly carry out the orthonormalisation of the basis (2.19un program; instead we shall set
up the general eigenvalue equation (2.2) and write a subroutirieef@olution which works
essentially according to the scheme of equation (2.11). The suleroull have independent of
the particular example that we are considering.
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As matrix elements of the Hamilton operator we now have
_ \
, =1 , +C , W (3.15)

nn nn nn

3.0 Results

Hylleraas constructed a relatively small number of basitestthat are suited to the
physical problem. The basis states contain a non-linear parametgich may be freely varied
.The matrix elements of the Hamilton operator depend on thatieariparameten, accordingly
all the eigenvaluegj and all the associated eigenvectay depend on the parameter

We now applied the theorem of Hylleraas which states thateitpenvalueskj of

Z Hm,an, = Eij &y n=1L D cannot be lower than the exact eigenvalues of the Schrodinger

equation, regardless also of the dimension D and of the variation paramgjer
The theorem of Hylleraas [5] is used not only to find the bpgroximation for the true
eigenvalues, but also to assess the quality of the approximdfive calculation of the

eigenvalues fromz Hm, a, = Eij a,;.N= LL ,D for various values of the variation parameter

and obtain the minimum for the eigenvalues in which we are steeteThe minimum for the
Dimension is 1 and the maximum is 20 in the program, otherwiserdlgeam will not run (The
program will read error or it will be terminated). The basge |, k, m) must not be more than 3,
which is {+k+m) < 3.

For D = 1 using the basis state with the indige&,(m) = (0, 0, 1), (0, 2, 0) and (0, 0, 0)
was used to plot the araph of eneray aaainst variation paramgges $éhown in Figure 3.1 [9].
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Figure 3.2 The graph of energy versus variation
parameten for the basis state the basis statk, (n) =
(0,0,1), (0,2,0) for E1, for E2 with indices (0,1,01,1,1)
and for E3 with the indices (0,0,0), (0,1,0)

Figure 3.1 The graph of energy versus variation parameter
a for the basis state (0,0,1), (0,2,0) and (0,0,0)

In figure 3.1, (E1) is a graph for basis state (0,0,1), the valuesergy eigenvalues start
from -56.808258V at variation parametea 0.70. The minimum values of the variation
parameter lie at 1.00 of the eigenvalue —70.86889%0om the value its increase up to —
53.752062V.

In the above graph (E2) shows the basis state with theem@0,2,0) which has positive
values of the energy eigenvalue of all the basis state diinensionD = 1.The graph cut the
variation parameter at 0.9,its increases up to —-56.178614 of the eigenvalue.
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The curve (E3) is a graph of the basis state (0, 0, 0),hwér@bles us to treat the
electron-electron interaction in the first order perturbatfmoty. As we can see at= 1 the
basis state with the indiceg k, m) = (0, 0, 0) we got the value calculated for the first order
perturbation theory, which is —74.834¥¥4at the variation parameter of 1.00

For D = 2 with the basis state (j, k, m) = (0,0,1), (0,2,0) for E1, for EB witlices
(0,1,1), (1,2,1) and for E3 with the indices (0,0,0), (0,1,0) and we plot &ph gf variation
parameterd) against the energy eigenvalues E in (electron Volts) as shdgsiie 3.2
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for basis the basis stajek, m) = (0,0,0), (0,0,1), (0,1,0),
(1,0,0), (2,0,0), (0,2,0), (0,0,2), (2,1,0), (2)04D,2,1),
Figure 3.3 The graph energy versus variation paramete! (0,1,2)
for the basis state (j, k, m) = (2,0,0), (0,2,0)0(2), (1,0,0),
(0,1,0), (0,0,1) for E1 and (0,0,0), (1,1,1), @)1(1,0,2),
(0,0,2), (1,0,1) for E

The minimum energy eigenvalue is -79.0087@ta = 1.15, which is almost the value,
got by the experimental calculation of the ground state energy of the helium atom

For D = 6 at the basis statg k, m) = (2,0,0), (0,2,0), (0,0,2), (1,0,0), (0,1,0), (0,0,1) for
El and (0,0,0), (1,1,1), (2,1,0), (1,0,2), (0,0,2), (1,0,1) for E2, we plot a gfagiergy versus
variation parametex as shown in figure 3.3.

The minimum for El is -77.173893 @t0.90 and for E2 is -78.593471aat1.00.

For D = 13with the basis state (j, k, m) = (2,1,0), (2,0,1), (0,2,1), (1,0,2), 0(1,2,0),
(0,0,0), (1,1,1), (1,1,0), (1,0,2), (0,1,2), (1,0,0), (0,0,1) the energy-variation parame/e is as
shown in figure 3.4.

Lastly forD = 20 , which is the maximum value of dimension , we make us# tfe
possible values that,k,m) can accommodate which are between 0 and 3.The basis state are
follows (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,1), (1,1,0), (1,0,2), (0,1,1), (2,0,0), (0,2,0), (0,0,2),
(1,2,0), (2,1,0), (2,0,1), (0,2,2), (1,0,2), (3,0,0), (0,3,0), (0,0,3), (0,1,2).

Using these we plot a graph of energy eigenvalue againativarparameten as shown
in figure 3.5.

The minimum of the ground state energy liea & 1.05 and has the value -79.015804
Comparing with the historic calculation of Hylleraas the differésaaly 0.0328V, compared
with the first order perturbation calculation the difference of addiV.

4.0 Conclusion

In general the basis state wkh= 0 or 3 has no component of eigenvector. The element
of the function basis witlm >0 enables us to allow approximation for the effect of the mutual
repulsion of the electrons. We have seen that there is an impeovef the estimate for the
energy obtained witlm > 0 ork > 0, whereas the terms with = 0,k = 0,j > 0 make little
contribution. Even if we could solve the Schrodinger equation examiltyground state energy
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would therefore differ from the experimental one by few hunt@ieedif aneV. Since the
experimental value for the ground state energy is e¥Q @We have therefore already achieved the
best possible agreement with a computational value of -79.088104
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Figure 3.5 The graph energy versus variation parametfar basis state are as follows (0,0,0),
(0,0,1), (0,1,0), (1,0,0), (1,1,1), (1,1,0), (1)9/0,1,1), (2,0,0), (0,2,0), (0,0,2), (1,2,0),1(D),
(2,0,1), (0,2,1), (1,0,2), (3,0,0), (0,3,0), (0), (0,1,2
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