
Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 287 - 290 
Commutative Noetherian semigroups, Adewale O. Oduwale, J of NAMP 

Journal of the Nigerian Association of Mathematical Physics 
Volume 15 (November, 2009), pp 287 - 290 

© J. of NAMP 
 
 

Finitely generated commutative Noetherian semigroups  
 
 

Adewale O. Oduwale 
Department of Mathematics, 

University of Benin, Benin City, Nigeria. 
 
 

Abstract 
 

We provide a short and more direct proof that a commutative 
semigroup is finitely generated if its lattice of congruences is Noetherian. 
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1.0 Introduction 

Let R be a unitary commutative ring and S a commutative monoid.  Gilmer proves in [3] 
that the monoid ring R[S] is Noetherian if and only if R is Noetherian and S is finitely generated. 
The proof consists of three parts: 
(i) If R[S] is Noetherian, then R is Noetherian and Cong S, the lattice of congruenes of S, is 

Noetherian. 
(ii) If Cong S is Noetherian, then S is finitely generated (as a semigroup or as a monoid). 
(iii) If R is Noetherian and S is finitely generated then R[S] is Noetherian. 

By far, the hardest part of this proof is the pure monoid theory represented by (ii) in this 
list.   We will say that a monoid (or semigroup) is Noetherian if its lattice of congruences is 
Noetherian.  Then (ii) says that any Noetherian monoid is finitely generated.  The proof of this is 
due to Budach [1] and fills Chapter 5 of [3].  It depends on a primary decomposition theorem for 
congruences on Noetherian semigroups proved by Drbohlav in [2]. 

The purpose of this paper is to provide a shorter and more direct proof of this result.  In 
fact, it is just as easy to show that any Noetherian semigroup is finitely generated, a result which 
Gilmer obtained in [4] by reducing to the monoid case. 
2.0 Main results 

We obtain with some definitions, notation and basic properties of partially ordered sets 
and semigroups. 
Definition 2.1 

Let L be a partially ordered set.  Then L is Artinian  if every nonempty subset of L has  
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a minimal element (equivalently, L satisfies the descending chain condition, d.c.c.), and L is 
Noetherian if every nonempty subset of L has a maximal element (equivalently, L satisfies the 
ascending chain condition, a.c.c.). 
Definition 2.2 

If LK →σ  is a strictly increasing (decreasing) map between partially ordered sets and 
L is Noetherian, then K is Noetherian (Artinian). 
Definition 2.3 

A lower set of L is a subset ⊆D L such that for all ∈yx, L, if yx ≤  and Dy ∈ , then 

Dx ∈ .  We write ⇓ L for the set of lower sets of L ordered by inclusion.  L embeds in ⇓ L  via 

the map  { ∈yx α L }| xy ≤ , hence if ⇓ L  is Artinian, then so is L .  The lower set generated by 

a subset ⊆A L is ∈x{ L | there exists Aa ∈ , such that ax ≤ }. 
The proof of the main theorem of this paper proceeds by reducing the question about 

finite generation of semigroups to the following purely order theoretic result: 
Lemma 2.1 

Let L be a partially ordered set.  If L is Noetherian and ⇓ L is Artinian, then L is finite. 
Proof 

Suppose to the contrary that L is infinite.  Since L is Noetherian we can construct an 
infinite sequence }|{ Ν∈nan  of distinct elements of L such that a1 is maximal in L, and for all 

2≥n , an is maximal in L given that 1 2 3 1{ , , , , }na a a a −K .  For Nn ∈ , let nD  for all 1≥n , there 

must be some n such that .1+= nn DD   In particular, .1+∈ nn Da   This means that mn aa ≤  for 

some nm > .  But mn aa =  is not possible because the elements in the sequence are distinct, and 

mn aa ≤  is not possible since an is maximal in L given that 1 2 3 1{ , , , , }na a a a −K , a set which also 

contains am. Thus we have a contradiction. 
Remark 2.1 

This lemma follows also from the standard result [6], [7], [8, 1.4] that, if ⇓ L  is Artinian, 
then any infinite sequence in L is Noetherian, then no such infinite strictly increasing sequence, 
and so L cannot be infinite. 

For the definitions and basic properties of commutative semigroups we refer the reader to 
[3].  If S is a commutative semigroup, we will write Cong S for the set of congruences of S 
ordered in the usual way: ~~ ′≤  if for all yxSyx ~,, ∈  implies yx ~′ .  If Cong S is 
Noetherian, we say that S is a Noetherian semigroup.  The smallest congruence in Cong S is 
equality, also e, the identity congruence.  The largest congruence is the universal congruence 
defined by x~y for all Syx ∈, .  For a fixed congruence ~, Cong (S/~) is isomorphic to the subset 

~}~|~{ ≥′′  of Cong S.  In particular, if S is Noetherian then so is S/~.  The subsemigroup 

generated by an element a or subset A of S will be written a  or A .  In this paper “(finitely) 

generated” means “(finitely) generated as a semigroup”. 
Define a relation ≤ on S by yx ≤  if ysxoryx =+=  for some Ss ∈ .  It is easy to 

see that ≤ is reflexive and transitive.  Since it is possible to have xyx ≤≤  but yx ≠ , the 

relation ≤ is not, in general, a partial order on S. 
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One important case in which ≤ is a partial order on S is when every element is an 
idempotent, that is, b =2b for all Sb ∈ .  In this circumstance (S, ≤) is a (join-) semilattice in 
which + and ∨ coincide.  See, for example, [5, 1.3.2]. 
 

In proving that Noetherian semigroups are finitely generated, certain congruences which 
behave well with respect to generating sets are the key: A congruence ~ on a semigroup S 
satisfies * or is a *-congruence if it has the following property: If Y is a subset of S whose image 
in S/~ is itself, then S is generated by Y and is finite. 

Note that the identity congruence satisfies *, and that S is finitely generated if and only if 
the universal congruence satisfies *. 
Lemma 2.2 

Let S be a Noetherian semigroup.  If the identity congruence is the only *-congruence on 
S,< then S is trivial. 
Proof 
(i) (S, ≤ ) is a partially ordered set.  Since ≤ is reflexive and transitive, it remains only to 
show that a ≤ b ≤ a implies a = b for Sba ∈, .  If a ≤ b ≤ a, then either a = b or 1tba +=  and 

2tab +=  for some Stt ∈21, .  

In the second case, set 21,ttT =  and define the congruence ~ by x ~ y if x = y or there 

exist Ttt ∈′,  such that tyx +=  and txy ′+= .  By construction, we have a~b, so to prove a = 
b it suffices to show that ~ is a *-congruence. 

Suppose that the image of SY ⊆  generates S/~, then for any element Sx ∈  we have x~y 

for some Yy ∈  or Ytttyx ,, 21∈+=  for some Tt ∈ .  Thus YttS ,, 21=  and ~ is a *-

congruence. 

(ii) ),( ≤⇓ S  is Artinian.  In particular, (S, ≤) is Artinian.  For ),,( ≤∈⇓ SD  definite the 

congruence D
~

 by yDx
~

 if either yx =  or Dx ∉  and Dy ∉ .  It is easy to show that the map 

DD
~α  from ),( ≤⇓ S  to Cong S is decreasing.  

This map is, infact strictly decreasing when restricted to proper lower sets of ( , )S ≤ .  If 

),(, ≤∈⇓ SED  with ,SED ⊂⊂  then for any DEx \∈  and ESy \∈  we have 
D

yx ~  but 

not yEx
~

.  Therefore .
~~
ED >  

Since Cong S is Noetherian, this implies that the set of proper lower sets of S is Artinian.  

It follows immediately that ),( ≤⇓ S  is Artinian. 

(iii) (S, ≤) is a semilattice, that is, b = 2b for all Sb ∈ .  For Sb ∈  define the congruence ~ 
by x ~ y if either yx =  or yxb ,≤  and nbymbx +=+  for some Nnm ∈, .  By construction 
we have b ~ 2b, so to prove b = 2b it suffices to show that ~ is a *-congruence. 

Suppose the image of SY ⊆  generates S\~.  We will show that .,YbS =   If, to the 

contrary YbS ,≠ , we have x ~ y for some Yy ∈ .  Since Yyx ∈≠ , we must have 

yxb ,≤  and nbymbx +=+ for some Nnm ∈, .  Since bx ≠ , there is some x′  such that 

xbx ′+= .  The element x′  cannot be in Yb,  since that would imply the same for x.  By the 

minimality of x we have x′  = x, that x = X + b.  From this we get Ybnbymbx ,∈+=+ , a 

contradiction. 
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(iv) (S, ≤) is Noetherian.  For an element Ss ∈  define the congruence s~  by ysx~  if 

ysxs +=+ .  It is easy to check that, since S is a semiattice, the map ss ~α  from (S, ≤) to 

Cong S is strictly increasing.  Since Cong S is Noetherian, so is (S, ≤). 
 

 
 

(v) S is trivial.  We now have that (S, ≤) is Noetherian and ),( ≤⇓ S  is Aritinian, so from 
Lemma 2.1, we know that S is finite.  But in this case, the universal congruence on S satisfies *.  
Thus the universal congruence is also the identity congruence, meaning that S is trivial. 
Theorem 2.1 

Any Noetherian semigroup is finitely generated. 
Proof 

Let S be a Noetherian semigroup. Let ≈  be a maximal *-congruence on S and 
./ ≈=′ SS  We show that the only *-congruence on S′ is represented by a congruence ~ on S 

such that ~≤≈ .  If SY ⊆ generates S/~ and ~ satisfies * with respect to S′, then Y is a finite set 

and generates ≈/S .  But then, since ≈ satisfies *, Y is a finite set and also generates S.  Thus ~ is 
a *-congruence with respect to S.  By the maximality of ≈, we have ≈ = ~, that is ~ represents the 
identify congruence on S′. 

 
3.0 Conclusion 

Since (S, ≤) is partially ordered, the complement of a proper lower set is an ideal of S and 

vice versa.  Moreover, for a proper lower set D, the congruence D
~

 is the Rees congruence 
associated to the ideal S\D.  Hence we have also proved that the set of ideals of S ordered by 
inclusion is Noetherian, a fact which is true in any Noetherian semigroup.  See [3, 5.1]. 
 Since S′ is a Noetherian semigroup whose only *congruence is the identity congruence, 
Lemma 2.2 implies that S′ is trivial.  It follows immediately that ≈ is the universal congruence 
and hence S is finitely generated. 
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