Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), pp 281 - 286 © J. of NAMP

On congruence lattices

¹Adewale O. Oduwale, ²Cecil B. Adejayan and ³Steve D. Oluwaniyi ^{1,2}Department of Mathematics, University of Benin, Benin City, Nigeria. ³Olympiads Department, National Mathematical Centre, Kwali-Abuja, Nigeria.

Abstract

Investigations of the lattice of congruences on a semigroup have taken two different directions. One approach is to study special congruences on a semigroup, and describe their relative positions within the lattice of congruences. For some classes C_1 and C_2 , it will happen that the intersection σ is, of course, the minimum C_1 congruence on S, and S/σ is a maximal homomorphic image of S of type C_1 . For instance, it is easily seen that the intersection of all commutative congruences on any semigroup is a commutative congruence, and so every semigroup has a minimum commutative congruence. Similarly, every semigroup has a minimum band congruence (denoted β) and a minimum semilattice congruence (denoted η). We outline some results dealing with the lattice of congruences of a semigroup. It is clear that a modular lattices is a semimodular, but the converse, however, is not true.

Keywords

Complete lattice, modularity, homomorphic, isomomorhic

AMS Subject classifications: 20M10 and 08A30

1.0 Introduction

1.1 Preliminaries

Recall from [2], [5], [6] and [10] that an equivalence relation α on a semigroup *S* is called a congruence if $x \alpha y$ and $s \in S$ imply that sxasy and xsays. A congruence α , of partitions *S*, is the set S/α of α -classes which forms a semigroup, that is, a homomorphic image of *S*. Conversely, every homomorphic image of *S* is isomorphic to S/α for some congruence α . Thus, congruences play much the same role that normal subgroups do in group theory and ideals in ring theory.

¹Corresponding author: ¹e-mail address: adewaleoduwale@yahoo.com ¹Telephone: +234-08039590966 ²Telephone: +234-08032192355 ³e-mail address: deleoluwaniyi@yahoo.com ³Telephone: +234-08036443805

Suppose that ρ and σ are congruences on *S*, with $\rho \subseteq \sigma$. Then there is a unique homomorphism $\phi: S / \rho \to S / \alpha$ such that Figure 1.1 commutes.

Figure 1.1: Homomorphism $\phi: S / \rho \rightarrow S / \alpha$

Define σ/ρ to be the relation on σ/ρ given by

$$\rho^{b}(x)\sigma/\rho\rho^{b}(y) \Leftrightarrow \sigma^{b}(x) = \sigma^{b}(y).$$

This relation is well-defined and follows from the fact that $\rho \subseteq \sigma$: if $x \rho x'$ and $y \rho y'$, then $x \sigma x'$ and $y \sigma y'$. It is easy to see that σ / ρ is congruence. And it then follows from the first isomorphism theorem that

$$(S/\rho)/(\sigma/\rho) \cong S/\sigma$$

giving an analog of the third isomorphism theorem.

Definition 1.1

A lattice *L* is called *modular* if

$$a \le c \Longrightarrow (a \lor b) \land c = a \lor (b \land c) \,.$$

Now in any lattice, if it is true that $(a \lor b) \land c \ge a \lor (b \land c)$, *L* is modular if and only if

$$a \le c \Longrightarrow (a \lor b) \land c \le a \lor (b \land c)$$

 $a \lor b = c \lor b$

Equivalent to the condition of modularity is the conditions that

$$a \le c, a \land b = c \land b$$

which imply that a = c; that is, there is no sublattice isomorphic as shown in Figure 1.2. *Definition* **1.2**

In a lattice, we say that a covers b if $a \phi b$ and there is no element x such that a f x f b. We write $a \phi b$ to indicate that a covers b.

Definition 1.3

A lattice is (*upper*) semimodular if $a \Leftrightarrow a \land b$ and $b \Leftrightarrow a \land b$ together imply that $a \lor b \Leftrightarrow a$ and $a \lor b \Leftrightarrow b$.

It is natural to ask whether congruence lattices on various types of semigroups have either of these properties. It is fairly well known, for instance, that the lattice of normal subgroups of a group is modular, and thus the lattice of congruences on a group is modular. Although this fact has a group-theoretic proof, we will examine it from a semigroup-theoretic viewpoint.

Figure 1.2: Non-isomorphic sublattice

Lemma 1.4

If G is a group and ρ and σ are congruences, on G, then $\rho \circ \sigma = \sigma \circ \rho$.

Proof

Suppose $a \rho \circ \sigma b$. Then there is some $c \in G$ such that $a \rho c \sigma b$. Then

$$a = cc^{-1}a\sigma bc^{-1}a\rho bc^{-c} = b$$

and $a\sigma \circ \rho b$, showing that $\rho \circ \sigma \subseteq \sigma \circ \rho$. Similarly, $\sigma \circ \rho \subseteq \rho \circ \sigma$.

Lemma 1.5

Suppose K is a sublattice of $\Lambda(S)$, where S is a semigroup and suppose that $\rho \circ \sigma = \sigma \circ \rho$ for all $\rho, \sigma \in K$. Then K is modular.

Proof

Suppose $\alpha, \beta, \gamma \in K$ with $\alpha \leq \gamma$. Since $\alpha \circ \beta = \beta \circ \alpha$, we have $\alpha \lor \beta = \alpha \circ \beta$. If $(x, y) \in (\alpha \lor \beta) \land \gamma$, then $(x, y) \in \gamma$ and there is some $z \in S$ such that $(x, z) \in \alpha$ and $(z, y) \in \beta$. But then $(z, x) \in \alpha \subseteq \gamma$, and so $(z, y) \in \gamma$ by transitivity. Thus $(z, y) \in \beta \land \gamma$. So $(x, z) \in \alpha$ and $(z, y) \in \beta \land \gamma$, and thus $(x, y) \in \alpha \circ (\beta \land \gamma) = \alpha \lor (\beta \land \gamma)$. Combining these lemmas, we obtain

Combining these reminas, we

Theorem 1.6

If *S* is a group, then \wedge (*S*) is modular.

2.0 Some additional results

In this section we state, mostly without proof, some further results on congruences and congruence lattices.

Theorem **2.1** [1, Corollary 2]

If *S* is a semilattice, then $\wedge(S)$ is semimodular.

Theorem **2.2** [4]

If *S* is a completely simple semigroup, then $\wedge(S)$ is semimodular.

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 281 - 286 On congruence lattices, A. O. Oduwale, C. B. Adejayan and S. D. Oluwaniyi J of NAMP These results lead us to look at the congruence lattice of a semigroup that is constructed from groups and perhaps semilattices. For instance, is it true that the lattice of congruences on a a strong semilattice of groups is semimodular? The following example shows that this that this conjecture is not true.

Example 2.3

Let S be the strong semilattice of groups $G_e Y G_f$, where $G_e = \{e, a\}$ is a group with identity e, and $G_f = \{f, b\}$ is a group with identity f, and where the multiplication is defined by way of the isomorphism $\phi_{e,f} : G_e \to G_f$. The congruences on S are:

(*i*) $S \times S$

(*ii*) σ , the congruence whose classes are $\{e, f\}$ and $\{a, b\}$

(iii) 0*s*

(*iv*) H, the congruence whose classes are $\{e, a\}$ and $\{f, b\}$

(v) α , the congruence whose classes are $\{e\}$, $\{a\}$ and $\{f, b\}$

It is easy to check that these congruences form a non-modular lattice. One the other hand, we have

Theorem 2.4

If *S* is a regular semigroup, then *S* has a minimum group congruence.

Proof

Recall from [9] that a regular semigroup is a group if and only if it has a unique idempotent. Let $\Gamma(S)$ be the sublattice of $\wedge(S)$ consisting of all group congruences, and let $\sigma = I \Gamma(S)$. Then S/σ is a homomorphic image of *S*, and therefore is regular. And if S/σ has idempotents $\sigma^b(x)$ and $\sigma^b(y)$, then $x^2 \sigma x$ and $y^2 \sigma y$, so for every $\rho \in \Gamma(S)$, $x^2 \rho x$ and $y^2 \rho y$. But for each $\rho \in \Gamma(S), S/\rho$ has a unique idempotent, and so $x\rho y$ for all $\rho \in \Gamma(S)$. Thus $x\sigma y$, so there is a unique idempotent in S/σ , showing that S/σ is a group.

The following results of [3] and [4] typify the approach of investigating the position of special congruences within $\wedge(S)$.

Theorem **2.5** [3, Theorems 1.3, 1.4]

If *S* is a regular semigroup, then

$$H^* \subset \beta \subseteq R^* \cap L^*$$
 and $\eta = D^* = J^*$

Definition 2.6

Let *S* be a semigroup and $A \subseteq S$. We say that *A* is unitary if

```
a \in A, x \in S, ax \in A \Rightarrow x \in A
a \in A, x \in S, xa \in A \Rightarrow x \in A
```

and

Theorem 2.7 [3, Corollary 2.7] If S is a regular semigroup, then $\sigma I \beta$ is the minimum UBG congruence on S (UBG =

band of groups in which E is unitary)

Another approach is to attempt to use certain sublattices of $\wedge(S)$ to describe the global structure of $\wedge(S)$. In this direction, we note that, on a band of groups S, the following are sublattices of $\wedge(S)$.

B(S) =lattice of band congruences on SM(S) =lattice of idempotent-separating congruences on SD(S) =lattice of congruences on S contained in D. *Theorem* **2.8** [11, Theorem 3.9]

Let *S* be a band of groups. Then the map

 $\phi: D(S) \to B(S) \times M(S)$

given by

$$\psi(\rho) = (\rho \lor H, \rho \land H)$$

is an embedding.

Definition 2.9

Let *S* be a regular semigroup. On \wedge (*S*), define a relation θ by

$$(\rho_1, \rho_2) \in \theta \Leftrightarrow \rho_1 I \ (Es \times Es) = \rho_2 I \ (Es \times Es)$$

That is, two congruences are θ -related if they partition the idempotents in the same way. Reilly and Scheiblich proved in [7] that each θ -class of an inverse semigroup is a complete, modular sublattice of $\wedge(S)$. This was later extended by Scheiblich in [8]. Exploiting this θ relation, we define the following class of semigroups.

Definition 2.10

A semigroup S is called θ -modular if each θ -class of $\wedge(S)$ is a modular sublattice of $\wedge(S)$.

Theorem **2.11** [11, Theorems 3.14, 3.15]

Let S be a band of groups. Then S is θ -modular if and only if the mapping $\psi: \wedge(S) \to B(S) \times M(S)$ given by

$$\psi(\rho) = (\rho \lor H, \rho \land H)$$

is an embedding.

It is immediate that the intersection of a nonempty collection of congruences on a semigroup S is a congruence on S. Moreover, if α is an equivalence relation on S and let α^* denote I { ρ/ρ is a congruence on S and $\alpha \subseteq \rho$ }, then α^* is the smallest congruence containing α . Thus, the set $\wedge(S)$ is a *complete* lattice, in the sense that every nonempty subset has a meet and a join.

3.0 Conclusion

Not every semigroup has a minimum group congruence. For example, let *S* be the infinite cyclic semigroup on one generator. The *group* homomorphic images of *S* are precisely the groups $(Z_{n, +})$, and so there is no maximal group homomorphic image of *S*, and therefore no minimal group congruence.

References

- [1] Hall, T. E., *On the lattice of congruences on a semilattice*, J. Austral. Math. Soc. XII (1971), 456-460.
- [2] Howie, John. M., "Fundamentals of Semigroup Theory," Oxford University Press, Oxford, 1995.
- [3] Howie, J.M., and G. Lallement, *Certain fundamental congruences on a regular semigroup*, Proc. Glasgow Math. Associ. **7** (1966), 145 156.
- [4] Lallement, G. *Demi-groups reguliers*, Annali di Matematica Pura et Applicata **77** (1967), 47 163.
- [5] Mitsch, Heinz, *Semigroups and their lattice of congruences*, Semigroup Forum **26** (1983) , 1-63.

- [6] Mitsch, H., Semigroups and their lattice of congruences II, Semigroup Forum 54 (1997), 1-42.
- [7] Reilly, N. R., and H. E. Scheiblich, *Congruences on regular semigroups*, Pacific J. Math. **23** (1967), 349 360.
- [8] Scheiblich, H. Certain congruence and quotient lattices related to completely 0-simple and primitive regular semigroups, Glasgow Math. J. 10 (1969), 21 24.
- [9] Spitznagel, Carl R., *Structure in semigroups I*, seminar notes, 1997.
- [10] Spitznagel, Carl R., *Structure in semigroups II*, seminar notes, 1997.
- [11] Spitznagel, Carl R., The *lattice of congruences on a band of groups*, Glasgow Math. J. 14 (1973), 187 197.