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Abstract

Investigations of the lattice of congruences on a semigroup have
taken two different directions. One approach is to study special congruences
on a semigroup, and describe their relative positions within the lattice of
congruences. For some classes C; and C,, it will happen that the intersection
ois, of course, the minimum C; congruence on S, and S/g is a maximal
homomorphic image of S of type C;. For instance, it is easily seen that the
intersection of all commutative congruences on any semigroup is a
commutative congruence, and so every semigroup has a minimum
commutative congruence. Similarly, every semigroup has a minimum band
congruence (denoted B) and a minimum semilattice congruence (denoted 7).
We outline some results dealing with the lattice of congruences of a
semigroup. It is clear that a modular lattices is a semimodular, but the
converse, however, isnot true.
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1.0 Introduction
11 Preliminaries

Recall from [2], [5], [6] and [10] that an equivalence relatioon a semigroufis called
acongruence if Xay andslS imply thatsxasy andxsays. A congruence, of partitionsS is

the set SI of a-classes which forms a semigroup, that is, a homomorphic image of
Conversely, every homomorphic image $fis isomorphic toS/a for some congruence.
Thus, congruences play much the same role that normal subgroupgrdaprtheory and ideals
in ring theory.
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Suppose thap and o are congruences o8 with o Ll o. Then there is a unique
homomorphismg: S/ p — S/a such that Figure 1.1 commutes.

O.b

N

S/p
Figure 1.1: Homomorphism¢ : S/ p —» S/ a
Definea/p to be the relation os/p given by
P (ol pp°ly) = a°()=a°(y).
This relation is well-defined and follows from the facttttﬁDU: if xpx andypy, then

xoX andyoy'. ltis easy to see that/ p is congruence. And it then follows from the first
isomorphism theorem that

P\

<

(S/p)/ (aglp)CSlo
giving an analog of the third isomorphism theorem.
Definition 1.1
A latticeL is calledmodular if
as<c= (aCLb)Cc=al(bCc).
Now in any lattice, if it is true thafa Cb) Cc=>al (bCc), L is modular if and only if
asc=(aCLb)Cc=<al(bCc)
Equivalent to the condition of modularity is the conditions that
as<c,alb=cCb
and alCb=cChb

which imply thata = c; that is, there is no sublattice isomorphic as shown in Figure 1.2.
Definition 1.2

In a lattice, we say tha covers b if a¢ b and there is no element such that
af xf b. We writea ¢ b to indicate thaa coversb.
Definition 1.3

A lattice is(upper) semimodular if a ¢ aC b andb ¢ albtogether imply that
alCbgaandalCbghb.

It is natural to ask whether congruence lattices on various types @reaps have either
of these properties. It is fairly well known, for instanttet the lattice of normal subgroups of a
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group is modular, and thus the lattice of congruences on a group is moAlilasugh this fact
has a group-theoretic proof, we will examine it from a semigroup-theeretvpoint.

Figure 1.2 Non-isomorphic sublattice

Lemmal.4
If Gis a group angg ando are congruences, @) thenpos = c0p.
Proof
Supposea poob. Then there is some ]G such thatapcob. Then

a=ccfagbcapbc™ =b

andaoopb, showing thatooo Lo op . Similarly,copll poo. H
Lemma 1.5

SupposeK is a sublattice of A(S), where S is a semigroup and suppose that
poog=cop forall p,o K . ThenK is modular.
Proof

Supposea, B,y 0K with a<y. Sinceaof=oa, we havealB=aop. If
(xy)d(@Lp) Ly, then (x,y) Uy and there is some[]S such that(x,z)Ja and (zy)US.
But then (zX)Oa [y, and so(z,y) Oy by transitivity. Thus(z,y) OSLCy. So(x,z2)0a
and(z,y)OB Ly, and thus(x,y) Dao (BLy)=aL(BLy). N
Combining these lemmas, we obtain

Theorem 1.6
If Sis a group, thehlS) is modular

2.0 Some additional results
In this section we state, mostly without proof, some furtheult® on congruences and
congruence lattices.
Theorem 2.1[1, Corollary 2]
If Sis a semilattice, the(S) is semimodular.
Theorem 2.2[4]
If Sis a completely simple semigroup, tHe(®) is semimodular.
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These results lead us to look at the congruence latticesefigroup that is constructed from
groups and perhaps semilattices. For instance, is it trughthdattice of congruences on a a
strong semilattice of groups is semimodular? The following ei@rshows that this that this
conjecture is not true.

Example 2.3
Let S be the strong semilattice of grouf Y G, , where G, ={e,a} is a group with

identity e, and G, ={ f,b} is a group with identit§, and where the multiplication is defined by

way of the isomorphisng, ; : G, — G;. The congruences @are:

() SxS
(i) o, the congruence whose classes aré}{and {a, b}
(iii)  Os

(iv) H, the congruence whose classes araj{and {f, b}
(V) a, the congruence whose classes afe{{a} and {f, b}

It is easy to check that these congruences form a non-moduiee.laDne the other
hand, we have
Theorem 2.4

If Sis a regular semigroup, th&has a minimum group congruence.
Proof

Recall from [9] that a regular semigroup is a group if and @niy has a unique
idempotent. Letl (S) be the sublattice of (S) consisting of all group congruences, and let

o =1T(S). ThenS/o is a homomorphic image & and therefore is regular. And8/0
has idempotents®(x) and g°(y), thenx? o x and y?o'y, so for everyp T (S), x?p X and

y>py. But for each p0T(S),S/ 0 has a unique idempotent, and x0y for all pO(S).
Thus X0 vy, so there is a unique idempotent3i o, showing thatS/ o is a group.

The following results of [3] and [4] typify the approach ofestigating the positillls of
special congruences within (S) .
Theorem 2.5[3, Theorems 1.3, 1.4]
If Sis a regular semigroup, then
H*O S 0OR* n L*and 7= D* = J*
Definition 2.6
Let Sbe a semigroup ané [1 S. We say thad is unitary if
alA xOUS, axUA= xUA
and allA xOS, xaUA= xOA
Theorem 2.7[3, Corollary 2.7]
If Sis a regular semigroup, them| [ is the minimumJBG congruence o (UBG =
band of groupsin which E is unitary)
Another approach is to attempt to use certain sublatticés(&) to describe the global
structure of C (S). In this direction, we note that, on a band of gro8pthe following are
sublattices ofl_ (S).

B(S = lattice of band congruences §n
M(S = lattice of idempotent-separating congruenceS on
D(9 = lattice of congruences @xcontained irD.
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Theorem 2.8[11, Theorem 3.9]
Let Sbe a band of groups. Then the map
@:D(S) - B(S) xM(9)
given by

w(p)=(pPLH pLH)
is an embedding.
Definition 2.9
Let Sbe a regular semigroup. Qn(S), define a relatio® by
(P, p,)0E = p,| (EsxEs)=p,l (EsxEs)
That is, two congruences aaelated if they partition the idempotents in the same wWRgilly
and Scheiblich proved in [7] that eaBkclass of an inverse semigroup is a complete, modular
sublattice ofC (S). This was later extended by Scheiblich in [8]. Exploiting éhislation, we
define the following class of semigroups.

Definition 2.10
A semigroupS is called®-modular if each6-class of C (S) is a modular sublattice of

C(S).
Theorem 2.11[11, Theorems 3.14, 3.15]

Let S be a band of groups. Thes is &modular if and only if the mapping
Y (S) - B(S)xM(S) given by

@(p)=(pLH pLH)
is an embedding.
It is immediate that the intersection of a nonempty collectbrcongruences on a
semigroupS is a congruence o8 Moreover, ifa is an equivalence relation &and leta*
denote | {p/p isacongruencenSanda O p}, then a* is the smallest congruence

containinga. Thus, the sdilS) is acomplete lattice, in the sense that every nonempty subset has
a meet and a join.

3.0 Conclusion

Not every semigroup has a minimum group congruence. For exafepl be the
infinite cyclic semigroup on one generator. Tgneup homomorphic images & are precisely
the groups (£ +), and so there is no maximal group homomorphic imade ahd therefore no
minimal group congruence.
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