Journal of the Nigerian Association of Mathematical Physics
 Volume 15 (November, 2009), pp 281-286
 © J. of NAMP

On congruence lattices

${ }^{1}$ Adewale O. Oduwale, ${ }^{2}$ Cecil B. Adejayan and ${ }^{3}$ Steve D. Oluwaniyi
${ }^{1,2}$ Department of Mathematics, University of Benin, Benin City, Nigeria.
${ }^{3}$ Olympiads Department, National Mathematical Centre, Kwali-Abuja, Nigeria.

Abstract

Investigations of the lattice of congruences on a semigroup have taken two different directions. One approach is to study special congruences on a semigroup, and describe their relative positions within the lattice of congruences. For some classes C_{1} and C_{2}, it will happen that the intersection σ is, of course, the minimum C_{1} congruence on S, and S / σ is a maximal homomorphic image of S of type C_{1}. For instance, it is easily seen that the intersection of all commutative congruences on any semigroup is a commutative congruence, and so every semigroup has a minimum commutative congruence. Similarly, every semigroup has a minimum band congruence (denoted β) and a minimum semilattice congruence (denoted η). We outline some results dealing with the lattice of congruences of a semigroup. It is clear that a modular lattices is a semimodular, but the converse, however, is not true.

Keywords

Complete lattice, modularity, homomorphic, isomomorhic
AMS Subject classifications: 20M10 and 08A30

1.0 Introduction

1.1 Preliminaries

Recall from [2], [5], [6] and [10] that an equivalence relation α on a semigroup S is called a congruence if $x \alpha y$ and $s \in S$ imply that sxasy and xsays. A congruence α, of partitions S, is the set S / α of α-classes which forms a semigroup, that is, a homomorphic image of S. Conversely, every homomorphic image of S is isomorphic to S / α for some congruence α. Thus, congruences play much the same role that normal subgroups do in group theory and ideals in ring theory.
${ }^{1}$ Corresponding author:
${ }^{1}$ e-mail address: adewaleoduwale @ yahoo.com
${ }^{1}$ Telephone: +234-08039590966
${ }^{2}$ Telephone: +234-08032192355

${ }^{3}$ e-mail address: deleoluwaniyi@ yahoo.com
 ${ }^{3}$ Telephone: +234-08036443805

Suppose that ρ and σ are congruences on S, with $\rho \subseteq \sigma$. Then there is a unique homomorphism $\phi: S / \rho \rightarrow S / \alpha$ such that Figure 1.1 commutes.

Figure 1.1: Homomorphism $\phi: S / \rho \rightarrow S / \alpha$
Define σ / ρ to be the relation on σ / ρ given by

$$
\rho^{b}(x) \sigma / \rho \rho^{b}(y) \Leftrightarrow \sigma^{b}(x)=\sigma^{b}(y) .
$$

This relation is well-defined and follows from the fact that $\rho \subseteq \sigma$: if $x \rho x^{\prime}$ and $y \rho y^{\prime}$, then $x \sigma x^{\prime}$ and $y \sigma y^{\prime}$. It is easy to see that σ / ρ is congruence. And it then follows from the first isomorphism theorem that

$$
(S / \rho) /(\sigma / \rho) \cong S / \sigma
$$

giving an analog of the third isomorphism theorem.

Definition 1.1

A lattice L is called modular if

$$
a \leq c \Rightarrow(a \vee b) \wedge c=a \vee(b \wedge c) .
$$

Now in any lattice, if it is true that $(a \vee b) \wedge c \geq a \vee(b \wedge c), L$ is modular if and only if

$$
a \leq c \Rightarrow(a \vee b) \wedge c \leq a \vee(b \wedge c)
$$

Equivalent to the condition of modularity is the conditions that
and

$$
\begin{gathered}
a \leq c, a \wedge b=c \wedge b \\
a \vee b=c \vee b
\end{gathered}
$$

which imply that $a=c$; that is, there is no sublattice isomorphic as shown in Figure 1.2.

Definition 1.2

In a lattice, we say that a covers b if $a \phi b$ and there is no element x such that $a \mathrm{f} x \mathrm{f} b$. We write $a \phi b$ to indicate that a covers b.

Definition 1.3

A lattice is (upper) semimodular if $a \phi a \wedge b$ and $b \phi a \wedge b$ together imply that $a \vee b \phi a$ and $a \vee b \phi b$.

It is natural to ask whether congruence lattices on various types of semigroups have either of these properties. It is fairly well known, for instance, that the lattice of normal subgroups of a
group is modular, and thus the lattice of congruences on a group is modular. Although this fact has a group-theoretic proof, we will examine it from a semigroup-theoretic viewpoint.

Figure 1.2: Non-isomorphic sublattice

Lemma 1.4

If G is a group and ρ and σ are congruences, on G, then $\rho 0 \sigma=\sigma 0 \rho$.
Proof
Suppose $a \rho \mathrm{o} \sigma b$. Then there is some $c \in G$ such that $a \rho c \sigma b$. Then

$$
a=c c^{-1} a \sigma b c^{-1} a \rho b c^{-c}=b
$$

and $a \sigma \mathrm{o} \rho b$, showing that $\rho \mathrm{o} \sigma \subseteq \sigma \mathrm{o} \rho$. Similarly, $\sigma \mathrm{o} \rho \subseteq \rho \mathrm{o} \sigma$.
Lemma 1.5
Suppose K is a sublattice of $\Lambda(S)$, where S is a semigroup and suppose that $\rho \mathrm{o} \sigma=\sigma \mathrm{o} \rho$ for all $\rho, \sigma \in K$. Then K is modular.
Proof
Suppose $\alpha, \beta, \gamma \in K$ with $\alpha \leq \gamma$. Since $\alpha \mathrm{o} \beta=\beta \mathrm{o} \alpha$, we have $\alpha \vee \beta=\alpha \mathrm{o} \beta$. If $(x, y) \in(\alpha \vee \beta) \wedge \gamma$, then $(x, y) \in \gamma$ and there is some $z \in S$ such that $(x, z) \in \alpha$ and $(z, y) \in \beta$. But then $(z, x) \in \alpha \subseteq \gamma$, and so $(z, y) \in \gamma$ by transitivity. Thus $(z, y) \in \beta \wedge \gamma$. So $(x, z) \in \alpha$ and $(z, y) \in \beta \wedge \gamma$, and thus $(x, y) \in \alpha o(\beta \wedge \gamma)=\alpha \vee(\beta \wedge \gamma)$.
Combining these lemmas, we obtain

Theorem 1.6

If S is a group, then $\wedge(S)$ is modular.

2.0 Some additional results

In this section we state, mostly without proof, some further results on congruences and congruence lattices.
Theorem 2.1 [1, Corollary 2]
If S is a semilattice, then $\wedge(S)$ is semimodular.

Theorem 2.2 [4]

If S is a completely simple semigroup, then $\wedge(S)$ is semimodular.

These results lead us to look at the congruence lattice of a semigroup that is constructed from groups and perhaps semilattices. For instance, is it true that the lattice of congruences on a a strong semilattice of groups is semimodular? The following example shows that this that this conjecture is not true.

Example 2.3

Let S be the strong semilattice of groups $G_{e} \mathrm{Y} G_{f}$, where $G_{e}=\{e, a\}$ is a group with identity e, and $G_{f}=\{f, b\}$ is a group with identity f, and where the multiplication is defined by way of the isomorphism $\phi_{e, f}: G_{e} \rightarrow G_{f}$. The congruences on S are:
(i) $S \times S$
(ii) σ, the congruence whose classes are $\{e, f\}$ and $\{a, b\}$
(iii) $0 s$
(iv) H , the congruence whose classes are $\{e, a\}$ and $\{f, b\}$
(v) $\quad \alpha$, the congruence whose classes are $\{e\},\{a\}$ and $\{f, b\}$

It is easy to check that these congruences form a non-modular lattice. One the other hand, we have

Theorem 2.4

If S is a regular semigroup, then S has a minimum group congruence.
Proof
Recall from [9] that a regular semigroup is a group if and only if it has a unique idempotent. Let $\Gamma(S)$ be the sublattice of $\wedge(S)$ consisting of all group congruences, and let $\sigma=\mathrm{I} \Gamma(S)$. Then S / σ is a homomorphic image of S, and therefore is regular. And if S / σ has idempotents $\sigma^{b}(x)$ and $\sigma^{b}(y)$, then $x^{2} \sigma x$ and $y^{2} \sigma y$, so for every $\rho \in \Gamma(S), x^{2} \rho x$ and $y^{2} \rho y$. But for each $\rho \in \Gamma(S), S / \rho$ has a unique idempotent, and so $x \rho y$ for all $\rho \in \Gamma(S)$. Thus $x \sigma y$, so there is a unique idempotent in S / σ, showing that S / σ is a group.

The following results of [3] and [4] typify the approach of investigating the position of special congruences within $\wedge(S)$.
Theorem 2.5 [3, Theorems 1.3, 1.4]
If S is a regular semigroup, then

$$
H^{*} \subset \beta \subseteq R^{*} \cap L^{*} \text { and } \eta=D^{*}=J^{*}
$$

Definition 2.6

Let S be a semigroup and $A \subseteq S$. We say that A is unitary if

$$
a \in A, x \in S, a x \in A \Rightarrow x \in A
$$

and

$$
a \in A, x \in S, x a \in A \Rightarrow x \in A
$$

Theorem 2.7 [3, Corollary 2.7]
If S is a regular semigroup, then σ I β is the minimum $U B G$ congruence on $S(U B G=$ band of groups in which E is unitary)

Another approach is to attempt to use certain sublattices of $\wedge(S)$ to describe the global structure of $\wedge(S)$. In this direction, we note that, on a band of groups S, the following are sublattices of $\wedge(S)$.
$B(S)=$ lattice of band congruences on S
$M(S)=$ lattice of idempotent-separating congruences on S
$D(S)=$ lattice of congruences on S contained in D.

Theorem 2.8 [11, Theorem 3.9]
Let S be a band of groups. Then the map

$$
\phi: D(S) \rightarrow B(S) \times M(S)
$$

given by

$$
\psi(\rho)=(\rho \vee H, \rho \wedge H)
$$

is an embedding.
Definition 2.9
Let S be a regular semigroup. On $\wedge(S)$, define a relation θ by

$$
\left(\rho_{1}, \rho_{2}\right) \in \theta \Leftrightarrow \rho_{1} \mathrm{I}(E s \times E s)=\rho_{2} \mathrm{I}(E s \times E s)
$$

That is, two congruences are θ-related if they partition the idempotents in the same way. Reilly and Scheiblich proved in [7] that each θ-class of an inverse semigroup is a complete, modular sublattice of $\wedge(S)$. This was later extended by Scheiblich in [8]. Exploiting this θ relation, we define the following class of semigroups.
Definition 2.10
A semigroup S is called θ-modular if each θ-class of $\wedge(S)$ is a modular sublattice of $\wedge(S)$.
Theorem 2.11 [11, Theorems 3.14, 3.15]
Let S be a band of groups. Then S is θ-modular if and only if the mapping $\psi: \wedge(S) \rightarrow B(S) \times M(S)$ given by

$$
\psi(\rho)=(\rho \vee H, \rho \wedge H)
$$

is an embedding.
It is immediate that the intersection of a nonempty collection of congruences on a semigroup S is a congruence on S. Moreover, if α is an equivalence relation on S and let α^{*} denote I $\{\rho / \rho$ is a congruence on S and $\alpha \subseteq \rho\}$, then α^{*} is the smallest congruence containing α. Thus, the set $\wedge(S)$ is a complete lattice, in the sense that every nonempty subset has a meet and a join.

3.0 Conclusion

Not every semigroup has a minimum group congruence. For example, let S be the infinite cyclic semigroup on one generator. The group homomorphic images of S are precisely the groups ($\mathrm{Z}_{n,+}$), and so there is no maximal group homomorphic image of S, and therefore no minimal group congruence.

References

[1] Hall, T. E., On the lattice of congruences on a semilattice, J. Austral. Math. Soc. XII (1971), 456-460.
[2] Howie, John. M., "Fundamentals of Semigroup Theory," Oxford University Press, Oxford, 1995.
[3] Howie, J.M., and G. Lallement, Certain fundamental congruences on a regular semigroup, Proc. Glasgow Math. Associ. 7 (1966), 145 - 156.
[4] Lallement, G. Demi-groups reguliers, Annali di Matematica Pura et Applicata 77 (1967), 47-163.
[5] Mitsch, Heinz, Semigroups and their lattice of congruences, Semigroup Forum 26 (1983) , 1-63.
[6] Mitsch, H., Semigroups and their lattice of congruences II, Semigroup Forum 54 (1997), 1-42.
[7] Reilly, N. R., and H. E. Scheiblich, Congruences on regular semigroups, Pacific J. Math. 23 (1967), 349 - 360.
[8] Scheiblich, H. Certain congruence and quotient lattices related to completely 0 -simple and primitive regular semigroups, Glasgow Math. J. 10 (1969), 21 - 24.
[9] Spitznagel, Carl R., Structure in semigroups I, seminar notes, 1997.
[10] Spitznagel, Carl R., Structure in semigroups II, seminar notes, 1997.
[11] Spitznagel, Carl R., The lattice of congruences on a band of groups, Glasgow Math. J. 14 (1973), 187 - 197.

