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Abstract

The allocation of human and physical resources over time is a
fundamental problem that is central to science, management science and
engineering. In this paper, we consider the dynamics of allocation of
resources at a minimum cost in a production company in Nigeria. The
company is assumed to be made up of different departments. Our aim is to
consider problem arising from freight department. We consider a process
where by n-dimensional vector functions F with error sequence
IT*F - F*|< B*N, for all NOO,0<4<1 js use to determined the
minimum costs of distributing products from production centres to the
markets. We found that the minimum costs of the operations converges to
minimum costs when error bounds are included. In other word, minimum
costs of the operation with error bounds and without error bounds assumed
the same vector values only at infinite stage. We also found out that the first
production centre has the minimum costs.
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1.0 Introduction
The allocation of human and physical resources over time usdafental problem in

science and engineering. In a production company, for instant, musgenaeasonnel and
equipment as well as shipments in a timely manner in theeqwesof a variety of dynamic
information process such as customer demands, equipmentdailvgather delay, accident on
the way and failures of execution. This is a high-dimensional probiece it comprises a large
number of resources, each of which must be considered as it itedffey decisions and
uncertainties, (see [4]). The problem of dynamic resource dabbocatn be treated as Markov
decision processes and solved using value iteration. Markovatepi®cesses provide a unified
framework for the treatment of problems of sequential detimaking under uncertainty. For a
variety of optimality criteria, these problems can be sblyg dynamic programming via value
iteration. Value iteration play tremendous role in determining the value
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of cost or returns in organisation settings. It is used to slieelsspproximate costs value
function(s) as well as return value function(s).

In this paper, our approach builds on previous research on dynamicarroigg
principles, (DPP). Many authors have used this principles wingplproblems arising from
various settings. [3], presented computationally efficient appratd dynamic programming
algorithms for application to problems in freight transportatlantheir work, they considered
problems arising from shippment in a sea port. Mulvey and Vladin{ir], used the stochastic
programming technique of dynamic programming in financial adémtation problems for
designing low-risk portfolios. They found out that the use of DBEfRg® about computational
efficiency even under uncertainties. Van Roy et al [8], proptsedtea of using a parsimonious
sufficient static in an application of approximate dynamic prognang to inventory
management. Powell [5], used dynamic programming for large-asaé# management problems
for both single and multiple assets. Topaloglu and Kunnumkal [7¢nd&t an approximate
dynamic programming method to optimize the distribution operationsa otompany
manufacturing certain products at multiple production plantssaighing to different customer
locations for sales. But they did not considered the possibilijmoértainty that may arise on the
process of distribution of the products. In this paper, we intend to consider thdlt &tkela [1],
considered the allocation of buses from a single station to ddifferoutes for profit
maximization. They developed efficient algorithm of DPP forahecation of buses putting into
consideration the possibility of break down as a result of badsraad depreciation. Nkeki and
Nwozo [2], considered the use of value iteration to minimize the obstspping different goods
without error bounds. In this paper, we consider the dynamic ofbditm of products from
production centre to the markets at minimum costs with the pagsitiluncertainty that may
arise on the process of operation. We also considered the problem using error bounds.

1.1 Basic definitions and assumptions

B: discount factor, 0 § < 1.

S the state space i.e. the set of all buses

T: set of time periods in the planning horizon.

n :S—X: is a rule which chooses an action X based on current state of the system

S: number of products at peridds € S

@, expected return of products from centre n at petiod,

IT: set of all admissible policyt € IT
m: number of market under consideration
n: number of production centre
S : humber of products at perioe O.
We make the following assumptions:
D The amount spent for distributing products from production centrethiet markets
depend on the distance covered and the nature of the routes.
(2) There ara production centres and n markets.
3) Each production centre produce a unigue product.
4) The production centres distribute their product to all the maikéependently.
1.2 One-period expected costs function
Suppose that the costs of distributing the products from the produetntre § to the

market S, is ¢, (i,Kk) at periodt, the number of products in production centre is giveS&sat
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period t and the number of products in the markets is give&raat periodt, then the costs over

T-horizon i g, (,k)(S,, 7(S,) » (see [9]).

Let c,,h=12,...,n be different kinds of products to be distributed from the productintreé

m
the markets. Theanrf’f > Zc{f‘f c™,c™OC,tOT, wherecly is the number of products
h=1 h=1

before distribution at period t arrcj;"‘tC is the number of products that is already in the markets at

periodt.
The expected minimum costs function obtained under control policjest period t is
given as follows:

=E[ min > £900(E (S )

subject to Zc >Zcm,cpc c™0C,tOT, ¢, i 20,h=1...m (1.2)

h=1 =1
where Crf”f,ch’t JC is the set of feasible solutions of problem (1.1). We canesgpl.1) as

the expected minimal cost from period t onward as an optimization{oyg,,...,C,,} condition
on § =s as follows:

X{(8)=El mITI{Zﬁ P70, (S)) S =8}, SOS,cOC.  (1.3)
i=12,....nk=12,..
subject to ZC >Zcht,c"° c™ OC,tOT, Cﬁf Xpe 20,h=1...m. For a function

h=1 h=1
¢:S - 0", we accumulate the cost of the firbistage and add to it the terminal costs

¢ (S) = anzm:ﬂi,k)(sr) , then (1.3) becomes

X7(S) = E[mudziiﬁ¢(u I (Sa)+ A #:(S)}S =), § 0S¢, 0C (1.4)
SubjeCttOZC >Zcht,cpc c™0C,tOT, ¢} xht >0,h=1,...m.

1.3 Dynamic programming formulation
The company decides tBinimize the costs of distributing m kinds of products from n

numbers of production centres to m numbers of markets. The compangiaglpgproduct to all
the markets over time. It is also expected that the produdttethe the centres to the markets
will not come back (in the case of defective, damage, €dms). The company considered n
numbers of control policiesy ={/T",77,...,/T"} to determine which of them will yield optimum
control policy. They also estimated that certain percentageegiroducts are to reach their final

destination successfully at a minimum costs. We are goinddpt ahe monotonic error bounds
which will serve as a by product in our computational work.
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Let S be the state variable at peripdndSthe state space, we formulate the problem as
a dynamic program. The number of products i that leave the production cehtrenarket

k at period t is given byP,  cPt, where P, is the transition percentage from production centre i

to market k. Hence, the total expected cost of goods lost in dkcegs of distribution is given by
BY. D PP t=1LA T;i=1A ,n.
h=1 k=1
Let S, be the number of products to be distributed in petiedl, then § is the
expected number of products that will get to the markets angt leé the percentage of the

products that is recovered from the lost ones which are expected to go intokbtsmaperiod t,
then we have that

S=S.-@-»D D R, i=LA ,n, t=12A T, (1.5)
h=1 k=1
where § is the products that are successfully in the mar&edS, _, is the goods that are in the
production centre before distribution takes pla&guation (1.5) is the transformation equation
and § is a random variable. We can express (1.5) asvisl|

Si :Si—l_lgzzl:)tykcff:!i :l/\ ln'1t:112HT- (1'6)
h=1 k=1
The optimal policy can be found by computing thdugafunctions through the optimality
equation

F"(S)=ming, (k)" (S)) + AR (S} IS =8}

=ming, (i, k)" (S-)) + BY. R (T{FL(S)) (L.7)
k=1
subject toy ¢ = > cy¥, ¢™,c™ OC,tOT . Equivalently,
h=1 h=1
>cl =+, ¢*,c™OC, tOT, (1.8)
h=1 h=1

Chts Gt 20,h=1A ,m, 5, 20 where 7,, is the number of products that is lost in traasit

periodt. If 77, =0, it implies that all the products that left the pumotlon centres get to the

markets succussfully without damages or lost. it lsa shown that (1.4) is equal to (1.7), (see [8,
12 and 14]). We may use (1.4) and (1.7) intercletslye We now find the best control policg,,
that minimize our problem. We do that by solving tptimality equation

F7(S)=_min_ ¢, (.K)(c" (S.))+ AE{FL (S} S =5} (1.9)
If @ (S',7",S?) is the costs of using policyr” at state S =i and moving to stat§™ =k
at period t, we use as costs per stage the expensesip(S™, 77", S™) given by

H(S*. ", S™) = B (MF (S, ", S™), tOT, =3 B (MF(,mk), i =1A n.

= k=1
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Let Mand ', be mapping, such thaf :F - Oandl, :F, - O ,then, we

expres{TF)(S!) = min [4,K)(S™, 7, S™) + Y. R, (7HF (S} 8 =(Sh.. S} an

d (FF)S) = min [#6.0(S, 7, S+ B3P (P (F, (S} 8 =(Sh-.§}.

The Lemma 1.1 below is the monotonicity propertyeriables us to analysis the error bounds
associated with our problem. It also enhance thepctational aspect of our work.
Lemmal.l

1. The operator has a unique fixed point (given by F*).
2. Forany~, I, F= F* ‘
3. For anyF, if 7'F > F, thenF* > I’F for all k

Proof: (see [14).

Theorem 1.1

Let the bounded optimal cost functidh: S — 0" be n-dimensional vectors. Then F
satisfiesF " (S) = lim(F'F)(S),0S OS.
].,oo

Proof
Since F is a bounded function, thgf — F" || <. It implies that

F(S)-¢ <F (S)<F(S)+y¢,SOStOT.
Using Lemma 1.1, we have
(MF)S)-B'¢<F(S)=(TF)S)+ L'y, S OStOT.
This shows tha{|“F — F" ||,,is bounded by a constant multiple . Whenk — o, we
have F'(S)= Lim(FkF)(S), 0S OS, as required.
The Theorem1.3 below characterized the optimalschsiction F*, as well as optimal
stationary policies. The result also give cond#iamder which value iteration converges to the
optimal costs function F*. In the proof, we willteh need to interchange expectation and limit in

various relations. This interchange is valid urttierassumption of the following theorem:
Theorem 1.2

Let P={p,, p,,...} be a probability distribution oveﬁz{sl'sz""}. Let {hT}be a

sequence of extended real-value functions on S ghah for all §USand T =12A
0<hr(s) < hri(s) Let h:S - [0,«] be the limit function such thQ{S.) =l'['lhT (s)-

Thenlim 3B (8) =3 p, im i (s) = Y ph(s).

Proof (see [2]).
Theorem 1.3

Suppose that the costs per st%jekzimi K) satisfies

Z¢(i,k)(c(s)) >0 for all (s,c)0SxC.
i=1 k=1
Then the following holds:
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® Let Fr be the optimal costs function for the correspogdinstage problem, then
F*<(T'F*)(s) for all sOS.
(i) If F:S—(-0,00] satisfieskF > I'F and eithelF is bounded below arfii< 1 orF > 0, thenF
> F*,
Proof
For any admissible policyt = {no, m,...}, we consider the costs functioR"(S)
corresponding ta when the initial state ig,sve have

F7(s) = E[ > > $(0.)(e(9) + G (7, (s»} w10
where, for alls; € S
G"(3) = Iim E{ZZZM ¢ k)(n;(s»}t = 02A

Thus, G'§,) is the costs from stage 1 to infinity usingvhen the initial state is; We clearly have

G"(s) = fF*(s), foral s OS.
Hence, from (1.10),

F(5) E[iiqp(i,k)(no(s» - (na(s»} >ming| 3> ¢.K(A(9) + 5 (n(s»}
Taking the minimum over all admissible policies, elaain
minF"(s) = F*(3)> min E{iiqfo,k)(c(s» - (c(s»} =P8 (1)

Next, we prove that the reverse inequality alsadidlVe are to proof that there exists
such that’,F* = I'F*. Since in generat need not exist, we introduce a positive sequenge {
and we choose an admissible policy {no, y,...} such that

(M F)(8) = (TF)(s)+ 0, s 0S,t= 0LA
provided F*(s,) 20 for all s,

By using the inequalityF* <7F*. as obtain in (1.11), we obtain
(M F)(s) S F*(s)+ 0, 8, US t=0L,...
Applying " ~... to both sides of this relation, we have
(M T F(s) = (M, F)s)+BL, s, US t=0L...
< (TF9(sp)*+ Uiy 8L,
<F*(s)+ 0, +0;
Continuing this process, we obtain
t .
(Ml T )S) S (TF(s) + X 80

i=1
By taking the limit ag — oo and noting that
F*(s) <F7(sy) = 1im(F,T0 r,,l...r,,t Fo) < !im(r,ror,&...r,q F*)(sy),
whereF, is the zero function. It follows that
F*(sp) S F(sy) =(TF®(sp) + Y B' 0,5, 08.

i=0
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Since the sequence;) is arbitrary, we can take. B' Ui, 0S as small as desired and we
i=0

obtain
F*(s,) < (TF*)(s,), for all s,0S.

Combinning this with (1.11), we have
F * (s,) = min E[Z > @(i,k)(c(s) + BF * (c(s))} sOS.

i=1 k=1

or equivalentlyF* = I'F*.

(iv) Let z be a scalar such tHas) + zfor allse Sandp > 1, letz= 0.

For any sequencef with ¢ > 0, letn = {mo, m3,...}, be an admissible policy such that, for every
se Sandt, we obtain

E{ii«ﬁa.k)(m (9)+ B (7 (s»} SR)O+0,t=01..s0S, (1

i=1 k=1
such a policy exists since (TF) ® for allse S We have for any initial statge S

F*(s,) = maxlim E{Zziﬂ #(,K) (7 (s[))}

< maxlim inf E{,BT (F(s)+2)+ Zii

1

B'¢.(.k)(m (s ))}

< lim maxinf E{ﬂT(F(sr)+z)+ DL, (n,k)(ff;(s[»}
e t=0 i=1 k=1
Using (1.12) and assumptior=H'F, we obtain

T-1

E[ﬂTF(sn DR PN (i,kxn:(st))} - E{ﬁTF(sr-l,nT-1<sT-1» DN PN (i,kxs.zf;(a»}

< E[/f (s, +Ziiﬂt¢t (i.k)(s[.ff;(s[»} LA

=0 i=1 k=1

<E[/f F(s)+ > YD A4, m(s»}/f 20, +f 0 s F(So)+Zﬂ 0.

t=0 i=1 k=1
Combinning these inequalities, we obtain

F(s) < Fs)+im(Fz+ Y A 1),

t
Since the sequenceis arbitrary (except fot; > 0), we may selectef} so that I|m zﬂ L is

arbitrary close to zero, and the result follows.

The Theorem 1.4 below provides a measure of qualityolicy 7. the expected
increased in the infinite-horizon discounted costs)ditioned on the initial state of the system
being distributed according to a probability distition w; i.e.,

Ex[F"(X)=F*(X)I=lIF" = F*l, .
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We defined a measur’gﬂ,w over the state space associated with each poliyd probability
distribution,w as

79-” w — (1_ ﬁ)WTr let P,tT,
t=0

Since

0

Zﬁt Pztz = (I _ﬂpn)_l!we have thaf?-rr”’w = (1_ﬁ)WTr (I _ﬂpﬂ)_l'

t=0

The measurd =+ captures the expected frequency of visit to etate svhen the system runs
under policyr, conditioned on the initial state being distrilslisecording tav.

Theorem 1.4
Supposéd- satisfiedF <7F. If § is the policy defined as

g = argmslaxF(S),
then the following bound holds:
B
IFs =F = 2=5lF =F*L.. (L13)

where v is an arbitrary probability or§ and w is the probability distribution defined as
w=8,,=@1-B)(1 - P)"V.
Proof
We show first that w is a probability distributiobet e denote the unit vector for each
Ty, — T T _ AT
e v=1 ande’R" =e for allt, (whereTr denotes transpose) we have

ew=e"9,,=39,.(s) = - A" (| - B v =(1- ﬁ)iﬂ‘eﬁ Py = (- ﬁ)iﬂ‘e“v

s0S

entry. Sinc

= iﬁteﬂv_lgilgteﬁ Pt”V :ilgt _Igilgt =1.

Also, sinceP, > 0 andv> 0 componentwisay>0. We begin by establishing that (1.13) holds by
first showing that.

IF, = F* husITFr =TF b + 1T F = F* 1Ly ST F, = TF by +1TF = F* b (1 14)
< BIIP.(F, = F)lLw +BIIF = F*[l,
SINCeE < rF we haver <F* <F,. It then follows that
IP.(Fr = F)lLw=57PAF, —F) =w"P(F, - F)
Combining (1.12) and (1.15), we have
IF, = F*|lu< B9 Po(F, —F) + BI|F =F*||,, < B P,(F, —F) + B||F - F*||,, (1.16)

(1.15)

But, I (Fr = F) < B Pr(F, —F)+ BIIF —F*|L, (1.17)
Tr Tr
It implies that?me (Fr =F) = B9, Br(Fr = F) < BIIF = F ¥,
(I = BP,)(F, —F) < BIIF = F*|L, (1.18)
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Hence, 4= BV™ (1 = BR) (1 = R)(F, ~F) SlIT F =F [l BIIF ~F*L,,
A= BN (F, ~F) SlIT,F ~F I, 1.19)

@=-BIIF; = F L, slT.F-FIl,

Since we require thé&t < I'F, then by monotonicity df, this impliesF*> I'*F > F, for all k.

By Lemma 1.1 and Theorem 1.1, we have ffigt— F* for anyF. Also, the policyr is greedy
with respect to F, we have tHak 7F=I, <F*so that

IT-F=Flhw<BIF=F*lby ang IF: = F* b <lIF, = F L, (1.20)
Combining (1.18), (1.19) and (1.20), we have
1 B
IF, = F*lLsllF, —Fll, SEIIDF -F Illwsmll F-F*[L, .

0 BT E, R, AT
1-f "S-
where 7' = min{(T,F)(S,) ~ F (8] andy" = ma(r,,F)(S) - F(S)]
We now set
':ﬂ—,r
1-B

which are the error bounds associated with ourlpnob

vz BT
and g =7,

2.1 Computational work
The transition matrices corresponding to the conpalicies n*, 7%, =«
respectively presented below: (For the transitiiagm, [8]

V4 9/40 1/5 3/20 110 1/20 1/4Q| [110 ¥4 9/40 1/20 1/40 V5 3/20| [V5 140 3/20 1710 120 V4 9/40
14 9/40 U5 3/20 110 1/20 1/40 110 V4 9/40 1/20 140 U5 3/20 15 1/40 3/20 110 1/20 U4 9/40
U4 9/40 15 3/20 110 1/20 /40 110 V4 9/40 1/20 140 U5 3/20 15 1/40 3/20 110 1/20 14 9/40
P(77)=| U4 9/40 U5 3/20 110 1/20 /40 P(7*)=| 110 V4 9/40 120 140 15 3/20 P(7)=|1/5 1/40 3/20 110 1/20 14 9/40
V4 9/40 U5 3/20 110 1/20 1/40 110 V4 9/40 1/20 V40 U5 3/20 U5 1/40 320 1410 1/20 V4 9/40
Y4 9140 1/5 3/20 110 1/20 1/40 110 Y4 9/40 1/20 1/40 U5 320 U5 140 3/20 110 120 ¥4 9/40
Y4 9/40 V5 3/20 110 1/20 1/40) |10 U4 9/40 120 V40 U5 320 U5 140 3/20 110 120 V4 9/40)
[1/40 1/20 110 U5 320 940 14 [9/40 3/20 ¥4 140 1/5 110 1/20
140 1/20 110 U5 320 940 14 9/40 3/20 U4 1/40 15 140 1/20
140 1/20 110 U5 320 940 14 9/40 3/20 14 1/40 1/5 140 1/20
,R(7)= 140 1/20 110 /5 320 940 V4 P(7?)=| 9/40 3/20 1/4 1/40 1/5 140 1/20
140 1/20 110 U5 320 940 14 9/40 3/20 14 1/40 15 140 1/20
140 1/20 110 1/5 320 940 U4 9/40 3/20 14 1/40 V5 1410 1/20
| /40 /20 110 V5 320 940 V4| 9/4C 3/20 V4 1/2C U5 V1C 1/2C
/20 110 1/40 ¥4 9/40 320 V5| 3/20 US 1/20 9/40 U4 1/40 10
120 110 Y40 ¥4 9/40 320 15 3/20 U5 120 9/40 U4 140 110
1/20 110 140 V4 940 320 15 3/20 15 1/20 9/40 14 140 110
RUP)= 1/20 110 140 U4 940 320 U5|  P(f)=|3/20 U5 1/20 9/40 14 1/40 110
1/20 110 140 V4 940 320 U5 3/20 15 1/20 9/40 14 1/40 10
1/20 110 1/40 14 9/40 320 1/5 3/20 1/5 120 9/40 1/4 1/40 1/10
120 110 140 14 9/40 320 15 3/20 1/5 1/20 9/40 1/4 1/40 10|
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Table 2.1 shows the transition costs of the opmmati
Table 2.1: Transition Costs

r| ¢6.m) | ¢S.m) | §(S.m) | §(S,. ) | ¢(Ss. ") | ¢(Ss. 7)) | H(S,.7T)
(Naira) (Naira) (Naira) (Naira) (Naira) (Naira) (Naira)
%100 x100 %100 %100 %100 %100 x100

1 | 15000 12000 7900 6900 12820 10550 112Q0

2 | 5000 8700 10000 18000 10120 11250 10720

3 | 11000 13500 6900 9800 7550 9610 8005

4 | 8500 6600 12200 10200 7200 8840 8665

5 | 8000 6900 8020 8200 7050 7950 7700

6 | 9500 7500 10300 7900 6600 6750 7780

7 | 9100 8000 9900 7630 6500 5980 1099D

We take 5% to be the value of our discount fagkpresents the percentage amount of
products that are damaged in transit, MATLAB wasdito solve the problem. The results are

shown in the Tables below:

Table 2.2: Value iteration without error bounds

(T*F)(S1) (T*F)(S2) (T*F)(S2) (T*F)(S:) (T*F)(Ss) (T*F)(Se) (T*F)(S7)

K (Naira) x100 (Naira) x100 (Naira)x100 (Naira)x100 (Naira)x100 (Naira)x100 (Naira) x100

0 0 0 0 0 0 0 0

1 5000.00 6600.00 6900.00 6900.00 6500.00 5980.00 700.00

2 5338.50 6928.00 7235.40 7214.60 6822.10 6302.10014.80

3 5354.60 6944.40 7251.40 7231.00 6838.40 6318.40 031.20

4 5355.40 6945.20 7252.20 7231.80 6839.20 6319.20 032.820

00 5355.40 6945.20 7252.20 7239.00 6839.20 6319.20 2.803

Table2.3: Value iteration with minimum error bounds
K (F*F)(S1) w' (F*F)(S2) w' (F*F)(S3) w' (F*F)(Sa) w' (F*F)(Ss) w' (F*F)(Se) w' (F*F)(S7) w'
(Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100

0 | _ _ _ _ _ _ _

1 5263.20 6863.20 7163.20 7163.20 6763.20 6243.20 963.20

2 5355.10 6944.60 7251.90 7231.10 6838.70 6318.70 031.80

o0 | 5355.40 6945.20 7252.20 7231.90 6839.20 6319.20 2.803
Table 2.4:Value iteration with maximum error bounds
(F*F)(S1) w' (MF)(S2) w" (F*F)(S3) " (F*F)(Sa) " (T*F)(Ss) w" (F*F)(Se) w" (F*F)(S7) "

Kk ' (Naira) x 100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100 (Naira) x100
0O | _ _ _ _ _ _ _
1 5405.30 7005.30 7305.30 7305.30 6905.30 6385.3(0 105.80
2 5356.30 6945.90 7253.20 7232.40 6839.90 6319.90 032.80
3 5355.40 6945.30 7252.20 7231.90 6839.20 6319.2( 2.803
oo | 5355.40 6945.20 7252.20 7231.90 6839.20 6319.2( 2.803
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3.0  Discussion

Table 2.1 contains the transition cost of distiityitthe products from the production
centres to the markets. The values in Table 2.lttentransition probabilities above are obtained
from past records of the company. These valuesatples of 100, i.e.,

#(S,, /) =15000%100, ¢(S,,77°) =12000%x100,
#(S,, 71%) = 7900x100,... ,$(S,,777) =10990x100.

When we solve our problem using the informatiofidble 2.1 and the transition probabilties

of the distribution, we obtained the results in [€aR.2 to 2.4. The results in Table 2.2 are
obtained by using value iteration without error hadst As the period, k become larger and larger
we obtained the

following results:
F*(S)=limT “F (S) = (5355 40, 6945 20, 7252 .20, 7231 90, 6839 .20, 6319 .20, 8032 .10) (3.1)

which is the optimal solutions of the system whemrebounds are not included. Note that the
vector in (2.1), the actual values are obtainednbitipling F*(S) by 100. Hence, minimum costs
of distributing the products from the productiomire 1 to 7 to the markets are 535,540; 694,520;
725,220; 723,190; 683,920; 631,920; 803,210 irarr@spectively.

Again, Table 2.3 contained the results of the dmravhen minimum error bounds are
included. As the period become larger and larger we obtained the followasyilts:
E”l, F"F(S) +¢, = (535540 694520 725220 723190 68320 631R0 80321L0 (3.2)

. . JimT*F(S)+w,
Also, the actual values are obtained by multipling by 100. Table 2.4
contained the results of the operation when maxiratnor bounds are included. As the period, k
become larger and larger we obtained the followasmilts:

lim(TF)(S) +¢, = (535540, 694520, 725220, 723190, 683920, 631920, 803210 3

. _Nim TR (S) + ¢
Also, the actual values are obtained by multiplyfng by 100.
We observed that the vector values in (2.1), @) (2.3) are the same. Hence, we write

F*(9) =lim M*F(S) + = Im(F*F)(S) +¢} = im (T*F)(S) =.
(535540, 694520, 725220, 723190, 683920, 631920, 8032.10) o

Also, the actual values are obtained by multiplitgS) by 100. This is only true at k equals
infinity.

4.0 Conclusion

The results show that the minimum costs of distifaguthe products from production
centre 1 to 7 to the markets 585,540; 694,520; 725,220; 723,190; 683,920; 631,803,210
in naira, respectively. We discovered that theaueadteration without and with error bounds
converges to the same vector values as presentglation (2.4) above. This is true only at
infinite stage. We also observed that the firsdpition centre of the production centres has the
minimum costs
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