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Abstract 
 

The allocation of human and physical resources over time is a 
fundamental problem that is central to science, management science and 
engineering. In this paper, we consider the dynamics of allocation of 
resources at a minimum cost in a production company in Nigeria. The 
company is assumed to be made up of different departments. Our aim is to 
consider problem arising from freight department. We consider a process 
where by n-dimensional vector functions F with error sequence 

,||*|| NFF kk β≤−Γ  for all 10, <≤ℜ∈ βN  is use to determined the 
minimum costs of distributing products from production centres to the 
markets. We found that the minimum costs of the operations converges to 
minimum costs when error bounds are included. In other word, minimum 
costs of the operation with error bounds and without error bounds assumed 
the same vector values only at infinite stage. We also found out that the first 
production centre has the minimum costs.  
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1.0 Introduction  

The allocation of human and physical resources over time is a fundamental problem in 
science and engineering. In a production company, for instant, must manage personnel and 
equipment as well as shipments in a timely manner in the presence of a variety of dynamic 
information process such as customer demands, equipment failures, weather delay, accident on 
the way and failures of execution. This is a high-dimensional problem since it comprises a large 
number of resources, each of which must be considered as it is affected by decisions and 
uncertainties, (see [4]). The problem of dynamic resource allocation can be treated as Markov 
decision processes and solved using value iteration. Markov decision processes provide a unified 
framework for the treatment of problems of sequential decision-making under uncertainty. For a 
variety of optimality criteria, these problems can be solved by dynamic programming via value 
iteration. Value iteration play tremendous role in determining the value  

 
1Corresponding author: 

1e-mail address: nkekicharles2003@yahoo.com; 
1Telephone: +234-08038667530 
2e-mail address: crnwozo@yahoo.com 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 253 - 264 
On a dynamic costs for a production company, I. C. Nkeki and C. R. Nwozo J of NAMP 

2Telephone: +234-08056028461  

 
 

of cost or returns in organisation settings. It is used to successively approximate costs value 
function(s) as well as return value function(s).  

In this paper, our approach builds on previous research on dynamic programming 
principles, (DPP). Many authors have used this principles in solving problems arising from 
various settings. [3], presented computationally efficient approximate dynamic programming 
algorithms for application to problems in freight transportation. In their work, they considered 
problems arising from shippment in a sea port. Mulvey and Vladimirou [7], used the stochastic 
programming technique of dynamic programming in financial asset allocation problems for 
designing low-risk portfolios. They found out that the use of DPP brings about computational 
efficiency even under uncertainties. Van Roy et al [8], proposed the idea of using a parsimonious 
sufficient static in an application of approximate dynamic programming to inventory 
management. Powell [5], used dynamic programming for large-scale asset management problems 
for both single and multiple assets. Topaloglu and Kunnumkal [7], extended an approximate 
dynamic programming method to optimize the distribution operations of a company 
manufacturing certain products at multiple production plants and shipping to different customer 
locations for sales. But they did not considered the possibility of uncertainty that may arise on the 
process of distribution of the products. In this paper, we intend to consider that as well. Nkeki [1], 
considered the allocation of buses from a single station to different routes for profit 
maximization. They developed efficient algorithm of DPP for the allocation of buses putting into 
consideration the possibility of break down as a result of bad roads and depreciation. Nkeki and 
Nwozo [2], considered the use of value iteration to minimize the costs of shipping different goods 
without error bounds. In this paper, we consider the dynamic of distribution of products from 
production centre to the markets at minimum costs with the possibility of uncertainty that may 
arise on the process of operation. We also considered the problem using error bounds.  
1.1 Basic definitions and assumptions 

β: discount factor, 0 < β < 1. 
S: the state space i.e. the set of all buses 
T: set of time periods in the planning horizon.  
π :S →X: is a rule which chooses an action x ϵ X based on current  state of the system 
st: number of products at period t, st ϵ S. 

n
tϕ : expected return of products from centre n at period, t. 

Π: set of all admissible policy; π ϵ Π 
m: number of market under consideration 
n : number of production centre 
s0 : number of products at period t = 0. 

We make the following assumptions: 
(1) The amount spent for distributing products from production centres to the markets 
depend on the distance covered and the nature of the routes. 
(2) There are n production centres and n markets. 
(3) Each production centre produce a unique product. 
(4) The production centres distribute their product to all the markets independently.   
1.2 One-period expected costs function 

Suppose that the costs of distributing the products from the production centre Si to the 
market kS  is ),( kitϕ  at period t, the number of products in production centre is given as pc

tS at 
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period t and the number of products in the markets  is given as 
mc

tS at period t, then the costs over 

T-horizon is ∑
=

T

t
ttt SSki

0

))(,)(,( πϕ , (see [9]). 
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 where pc
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before distribution at period t and mc
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where   pc
thc , , Ccmc

th ∈,  is the set of feasible solutions of problem (1.1). We can express (1.1)  as 

the expected minimal cost from period t onward as an optimization over },...,,{ 21 mccc  condition 

on tt sS =  as follows:  
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1.3 Dynamic programming formulation 
The company decides to minimize the costs of distributing m kinds of products from n 

numbers of production centres to m numbers of markets. The company ships single product to all 
the markets over time. It is also expected that the products that leave the centres to the markets 
will not come back (in the case of defective, damage, e.t.c, items).  The company considered n 

numbers of control policies, },...,,{ 21 nππππ =  to determine which of them will yield optimum 
control policy. They also estimated that certain percentage of the products are to reach their final 
destination successfully at a minimum costs. We are going to adopt the monotonic error bounds 
which will serve as a by product in our computational work. 
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Let tS  be the state variable at period t and S the state space, we formulate the problem as 

a dynamic program. The number of products i that leave the production centre to the market  
 
 
 
 

k at period t is given by pc
thki cP ,, , where kiP ,  is the transition percentage from production centre i 

to market k. Hence, the total expected cost of goods lost in the process of distribution is given by 
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Let 1−tS  be the number of products to be distributed in period t - 1, then tS  is the 

expected number of products that will get to the markets and let γ  be the percentage of the 
products that is recovered from the lost ones which are expected to go into the markets at period t, 
then we have that  
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where tS  is the products that are successfully in the markets and 1−tS  is the goods that are in the 

production centre before distribution takes place . Equation (1.5) is the transformation equation 
and tS  is a random variable. We can express (1.5) as follows: 
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The optimal policy can be found by computing the value functions through the optimality 
equation  
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th Λ=≥ 0≥tη  where  tη , is the number of products that is lost in transit at 

period t. If ,0=tη it implies that all the products that left the production centres get to the 

markets succussfully without damages or lost. It can be shown that (1.4) is equal to (1.7), (see [8, 
12 and 14]). We may use (1.4) and (1.7) interchargeably. We now find the best control policy, π , 
that minimize our problem. We do that by solving the optimality equation  
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The Lemma 1.1 below is the monotonicity property. It enables us to analysis the error bounds 
associated with our problem. It also enhance the computational aspect of our work. 
Lemma 1.1 

1. The operator Γ has a unique fixed point (given by F*). 
2. For any F, Γ∞ F = F* 
3. For any F, if ΓF ≥ F, then F* ≥ ΓjF for all k 

Proof: (see [14). 
Theorem 1.1 
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The Theorem1.3 below characterized the optimal costs function F*, as well as optimal 
stationary policies. The result also give conditions under which value iteration converges to the 
optimal costs function F*. In the proof, we will often need to interchange expectation and limit in 
various relations. This interchange is valid under the assumption of the following theorem: 
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Theorem 1.3:  
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Then the following holds: 
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(i) Let FT be the optimal costs function for the corresponding T-stage problem, then 
.)*)((* SsallforsFF ∈Γ≤  

(ii) If F:S→(-∞,∞] satisfies F ≥ ΓF and either F is bounded below and β < 1 or F ≥ 0, then F 
≥ F*. 

Proof 
For any admissible policy π = {π0, π1,…}, we consider the costs function Fπ(s0) 
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Thus, G'(s1) is the costs from stage 1 to infinity using π when the initial state is s1 We clearly have 
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Taking the minimum over all admissible policies, we obtain 
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Next, we prove that the reverse inequality also holds. We are to proof that there exists π  
such that ΓπF* = ΓF*.  Since in general π need not exist, we introduce a positive sequence {ϵi} 
and we choose an admissible policy π = {π0, π1,…} such that 
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Continuing this process, we obtain 
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Since the sequence {ϵi} is arbitrary, we can take Ss
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or equivalently, F* = ΓF*. 
(iv) Let z be a scalar such that F(s) + z for all s ϵ S and β ≥ 1, let z = 0.  
For any sequence {ϵt} with ϵi > 0, let π = {π0, π1,…}, be an admissible policy such that, for every 
s ϵ S and t, we obtain 
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such a policy exists since (TF) > -∞ for all s ϵ S.  We have for any initial state s0 ϵ S, 
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 Using (1.12) and assumption F ≥ ΓF, we obtain 
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Combinning these inequalities, we obtain 
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arbitrary close to zero, and the result follows. 
The Theorem 1.4 below provides a measure of quality of policy π , the expected 

increased in the infinite-horizon discounted costs, conditioned on the initial state of the system 
being distributed according to a probability distribution w; i.e., 

.||*||)](*)([ ,1 wX FFXFXFE −=− ππ
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We defined a measure w,πϑ  over the state space associated with each policy π and probability 
distribution, w as  
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The measure w
Tr

,πϑ  captures the expected frequency of visit to each state when the system runs 
under policy π, conditioned on the initial state being distributed according to w. 

 
 
 
 
Theorem 1.4 

Suppose F satisfied F ≤ ΓF.  If ϑ is the policy defined as 
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entry. Since 
Tr

t
TrTr ePeandve == π1  for all t, (where Tr denotes transpose) we have 
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Also, since Pπ ≥ 0 and v ≥ 0 componentwise, w ≥0.  We begin by establishing that (1.13) holds by 
first showing that. 

www FFFFFF ,1,1,1 ||*||||||||*|| −Γ+Γ−≤− ππππ ww FFFF ,1,1 ||*|||||| −Γ+Γ−Γ≤ ππππ    (1.14) 

ww FFFFP ,1,1 ||*||||)(|| −+−≤ ββ ππ  
Since F ≤ ΓF we have F ≤ F* ≤ Fπ.  It then follows that  

)()(||)(|| ,,1 FFPwFFPFFP TrTr
vw −=−=− πππππππ ϑ               (1.15) 

Combining (1.12) and (1.15), we have 

w
Tr

vw FFFFPFF ,1,,1 ||*||)(||*|| −+−≤− ββϑ ππππ w
Tr FFFFPw ,1||*||)( −+−≤ ββ ππ         (1.16) 

But,    w
Tr

v
Tr

v FFFFPFF ,1,, ||*||)()( −+−≤− ββϑϑ πππππ                (1.17) 

It implies that w
Tr

v
Tr

v FFFFPFF ,1,, ||*||)()( −≤−−− ββϑϑ πππππ  

w
Tr

v FFFFPI ,1, ||*||))(( −≤−− ββϑ πππ                (1.18) 
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Hence, .||*||||||))(()()1( ,1,1
1

ww
Tr FFFFFFPIPIv −≤−Γ≤−−−− − ββββ ππππ  

w
Tr FFFFv ,1||||)()1( −Γ≤−− ππβ                  (1.19) 

wv FFFF ,1,1 ||||||||)1( −Γ≤−− ππβ  
Since we require that F ≤ ΓF, then by monotonicity of Γ, this implies F*≥ ΓkF ≥ F, for all k.  
By Lemma 1.1 and Theorem 1.1, we have that Γ

kF → F* for any F. Also, the policy π is greedy 
with respect to F, we have that F ≤ ΓF=Γπ  ≤ F*so that 

ww FFFF ,1,1 ||*|||||| −≤−Γ βπ , and  vv FFFF ,1,1 ||||||*|| −≤− ππ               (1.20) 
Combining (1.18), (1.19) and (1.20), we have  
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We now set  

,
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=′ and
 

which are the error bounds associated with our problem.
 

2.1 Computational work 
The transition matrices corresponding to the control policies π1, π2, π3, π4, π5, π6, π7 are 
respectively presented below: (For the transition diagram, [8] 
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Table 2.1 shows the transition costs of the operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We take 5% to be the value of our discount factor, represents the percentage amount of 
products that are damaged in transit,  MATLAB was used to solve the problem.  The results are 
shown in the Tables below:

  

 
 
 
 
 
 
 
 
 
 
 

Table2.3: Value iteration with minimum error bounds 
 

k
 

(ΓkF)(S1) ψ'  

(Naira) ×100

 
(ΓkF)(S2) ψ'  

 (Naira) ×100

 
(ΓkF)(S3) ψ'  

(Naira) ×100

 
(ΓkF)(S4) ψ'  

(Naira) ×100

 
(ΓkF)(S5) ψ'  

(Naira) ×100

 
(ΓkF)(S6) ψ'  

(Naira) ×100

 
(ΓkF)(S7) ψ'  

(Naira) ×100

 

0 _ _ _ _ _ _ _ 
1 5263.20 6863.20 7163.20 7163.20 6763.20 6243.20 7963.20 
2 5355.10 6944.60 7251.90 7231.10 6838.70 6318.70 8031.30 
∞  5355.40 6945.20 7252.20 7231.90 6839.20 6319.20 8032.10 

 
Table 2.4: Value iteration with maximum error bounds 

 

 

k
 

(ΓkF)(S1) ψ' 

' (Naira) × 100 

(ΓkF)(S2) ψ''  

(Naira) ×100

 
(ΓkF)(S3) ψ''  

(Naira) ×100

 
(ΓkF)(S4) ψ''  

(Naira) ×100

 
(ΓkF)(S5) ψ''  

(Naira) ×100

 
(ΓkF)(S6) ψ''  

(Naira) ×100

 
(ΓkF)(S7) ψ'' 

 (Naira) ×100

 

0 _ _ _ _ _ _ _ 
1 5405.30 7005.30 7305.30 7305.30 6905.30 6385.30 8105.30 
2 5356.30 6945.90 7253.20 7232.40 6839.90 6319.90 8032.60 
3 5355.40 6945.30 7252.20 7231.90 6839.20 6319.20 8032.10 
∞  5355.40 6945.20 7252.20 7231.90 6839.20 6319.20 8032.10 
 

Table 2.1: Transition Costs 
 

r  
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×
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×
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)(

),( 7

×
Naira

S rπϕ
 

1 15000 12000 7900 6900 12820 10550 11200 
2 5000 8700 10000 18000 10120 11250 10720 
3 11000 13500 6900 9800 7550 9610 8005 
4 8500 6600 12200 10200 7200 8840 8665 
5 8000 6900 8020 8200 7050 7950 7700 
6 9500 7500 10300 7900 6600 6750 7780 
7 9100 8000 9900 7630 6500 5980 10990 
 

Table 2.2: Value iteration without error bounds 
 

 
 
k 

(ΓkF)(S1) 

(Naira) ×100 

(ΓkF)(S2) 

(Naira) ×100

 
(ΓkF)(S2) 

(Naira)×100

 
(ΓkF)(S4) 

(Naira)×100

 
(ΓkF)(S5) 

(Naira)×100

 
(ΓkF)(S6) 

(Naira)×100

 
(ΓkF)(S7) 

(Naira) ×100

 

0 0 0 0 0 0 0 0 
1 5000.00 6600.00 6900.00 6900.00 6500.00 5980.00 7700.00 
2 5338.50 6928.00 7235.40 7214.60 6822.10 6302.10 8014.80 
3 5354.60 6944.40 7251.40 7231.00 6838.40 6318.40 8031.20 
4 5355.40 6945.20 7252.20 7231.80 6839.20 6319.20 8032.10 
∞ 5355.40 6945.20 7252.20 7239.00 6839.20 6319.20 8032.10 
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3.0 Discussion 
 Table 2.1 contains the transition cost of distributing the products from the production 
centres to the markets. The values in Table 2.1 and the transition probabilities above are obtained 
from past records of the company. These values are multiples of 100, i.e.,

  ,10015000),( 1
1 ×=πϕ S ,10012000),( 2

1 ×=πϕ S
 ...,1007900),( 3

1 ×=πϕ S .10010990),(, 7
7 ×=πϕ S

 When we solve our problem using the information in Table 2.1 and the transition probabilties  

of the distribution, we obtained the results in Table 2.2 to 2.4. The results in Table 2.2 are 

obtained by using value iteration without error bounds. As the period, k become larger and larger 

we obtained the   

 

 

 
following results:

 

)10.8032,20.6319,20.6839,90.7231,20.7252,20.6945,40.5355()(lim)(* =Γ=
∞→

SFSF k

k ,(3.1) 
which is the optimal solutions of the system when error bounds are not included. Note that the 
vector in (2.1), the actual values are obtained by multipling F*(S) by 100. Hence, minimum costs 
of distributing the products from the production centre 1 to 7 to the markets are 535,540; 694,520; 
725,220; 723,190; 683,920; 631,920; 803,210 in naira respectively. 

Again, Table 2.3 contained the results of the operation when minimum error bounds are 
included. As the period, k become larger and larger we obtained the following results: 

=′+Γ
∞→ k

k

k
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    (3.2) 

Also, the actual values are obtained by multipling k
k

k
SF ψ ′+Γ

∞→
)(lim

 by 100.  Table 2.4 
contained the results of the operation when maximum error bounds are included. As the period, k 
become larger and larger we obtained the following results: 
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∞→ k

k

k
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 (3.3) 

Also, the actual values are obtained by multiplying 
k

k

k
SF ψ ′′+Γ

∞→
)(lim

 by 100. 
We observed that the vector values in (2.1), (2.2) and (2.3) are the same. Hence, we write 

.))((lim))((lim)(lim)(* =Γ=′′+Γ=′+Γ=
∞→∞→∞→

SFSFSFSF k

k
k

k

k
k

k
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ψψ

 )10.8032,20.6319,20.6839,90.7231,20.7252,20.6945,40.5355(
             (2.4) 

Also, the actual values are obtained by multipling F*(S) by 100. This is only true at k equals 
infinity. 
 
4.0 Conclusion 

The results show that the minimum costs of distributing the products from production 
centre 1 to 7 to the markets be 535,540; 694,520; 725,220; 723,190; 683,920; 631,920; 803,210 
in naira, respectively.  We discovered that the value iteration without  and with error bounds  
converges to the same vector  values as presented in equation (2.4)  above. This is true only at 
infinite stage. We also observed that the first production centre of the production centres has the 
minimum costs. 
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