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Abstract 
 

A FORTRAN code to compute the structure of white dwarf Stars 
has been written. It is assumed that a good model for the matter in white 
dwarf stars is the free Fermi gas of electrons at zero temperature, treated with 
relativistic kinematics. The code written essentially solves numerically the two 
coupled first-order differential equations that determined the structure of the 
star for the given equation of state. The variation of mass density with 
distance from the center of the star is found to be directly proportional to the 
assigned density at the center of the dwarf and the value of the parameter η  
which characterizes the chemical  composition of the dwarf, but inversely 
proportional to the distance from the center of the star. In general, the density 
decreases with increase in the distance. For a given central density, the radius 
of the hydrogen white dwarf is greater than that of the helium, carbon, or 
oxygen which are equal and greater than that of iron. Thus the radius 
increases with the parameter η. The so called Chandrasekhar mass limit has 
been found to be 1.144 × 1034 gm for hydrogen white dwarf, 2.861 × 1033 gm 
for helium, carbon, and oxygen white dwarf, and 2.464 × 1033 gm for iron 
white dwarf. 
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1.0 Introduction 

A white dwarf is a small star made up mainly of electron-degenerate matter. White 
dwarfs are very dense. It is estimated [10] that the average mass density of matter in a white 
dwarf is approximately 103 kg/cm3. Today there are thousands of known white dwarfs, in fact 
they account for roughly 6%  of all known stars in the solar neighborhood [9]. White dwarfs have 
a faint luminosity arising from the emission of stored heat. 

At the expiration of the hydrogen-fusing lifetime of a main sequence star of low or 
medium mass, it will expand to a red giant which fuses helium to carbon and oxygen by the 
triple-alpha process. If a red giant has insufficient mass to generate the core temperatures required 
to fuse carbon, an inert mass of carbon and oxygen will build up at its center. After shedding its 
outer layers to form a planetary nebula, it will leave behind this core, which forms the remnant of 
the white dwarf [15]. Usually, therefore, white dwarfs are composed of carbon and oxygen. It is 
also possible that core temperatures suffice to fuse carbon but not neon, in which case an oxygen-
neon-magnesium white dwarf may be formed [18]. Also, some helium  
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white dwarfs appear to have been formed by mass loss in binary systems. 

The high mass densities in white dwarf stars are possible because white dwarf material is 
not composed of atoms bound by chemical bonds, but rather consists of a plasma  of unbounded 
nuclei and electrons. There is therefore no obstacle to placing nuclei closer to each other than 
electron orbital. Compression of a white dwarf by gravitational force will increase the number of 
electrons in a given volume. Applying either the Pauli principle or the uncertainty principle, we 
can see that this will increase the kinetic energy of the electrons, causing pressure [1]. This 
electron degenerate pressure is what supports a white dwarf against gravitational collapse. It 
depends only on density and not temperature.  

A white dwarf star has no internal source of energy since its material no longer under 
goes fusion reactions, thus it is not supported against gravitational collapse by the heat generated 
by fusion. However, it is supported against gravitational collapse only by electron degeneracy 
pressure, which enables it to be extremely dense. Degenerate pressure yields a maximum mass for 
non-rotating white dwarf, the Chandrasekhar mass limit – approximately 1.4 solar masses, 
beyond which it can not be supported by degeneracy pressure. A carbon-oxygen white dwarf that 
approaches this mass limit, typically by mass transfer from a companion star, may explode as a 
Type Ia supernova via carbon detonation [10]. 

Although most white dwarfs are thought to be composed of carbon and oxygen, 
spectroscopy typically shows that their emitted light comes from an atmosphere which is 
observed to be either hydrogen-dominated or helium dominated. The dominant element is usually 
at least 1,000 times more abundant than all other elements. The high surface gravity is thought to 
cause this purity by gravitationally separating the atmosphere so that heavier elements are at the 
bottom and lighter ones on top [12]. This atmosphere, the only part of the white dwarf visible to 
us, is thought to be the top of an envelope which is a residue of the star’s envelope in the AGB 
phase and may also contain material accreted from the interstellar medium. The envelope is 
believed to consist of a helium-rich layer with mass no more than 1/100th of the star’s total mass, 
which, if the atmosphere is hydrogen-dominated, is overlain by a hydrogen-rich layer with mass 
approximately 1/10,00th of the star’s total mass [7] and [11]. 

It is simple to derive an approximate relationship between the mass and radii of white 
dwarfs using an energy minimization argument. It has been shown [2] and [8], assuming the 
electrons in a white dwarf to be non-relativistic, the mass, M and radius, R are related by  

1/3

1
R

M
= ,      (1.1) 

while in the extreme relativistic approximation (i.e. kinetic energy of electrons = p c )  

2
lim ,it

c
M N

G
 ≈  
 

h
      (1.2) 

where G is the gravitational constant, N the number of electrons per unit mass of the dwarf, c  the 
speed of light, h   the reduced Planck constant, and Mlimit is the limiting mass of a white dwarf. In 
this work, a FORTRAN code which numerically solves the equation of state in a white dwarf is 
written. The code was then used to study the structure of white dwarf stars. The investigations 
carried out include determining the variation of mass density from the center to the surface of the 
dwarf, the mass and radius of the dwarf, the variation of mass with radius etc. 
 
2.0 Theoretical background 
2.1 Introduction 
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It is assumed that the matter in a white dwarf star is spherically symmetric, that the white 
dwarf star is not rotating, and that the effects of magnetic fields are not very important.  

 
 

 
These assumptions are known to be accurate for many purposes [3]; [5], and [17] and so 

are justified. If the star is in mechanical (hydrostatic) equilibrium, the gravitational force on each 
bit of matter is balanced by the force due to spatial variation of electron degenerate pressure, P. 
The gravitational force acting on a unit volume of matter at a radius r is 

2
,grav

Gm
F

r
ρ= −       (2.1) 

where ρ(r) is the mass density, and m(r) is the mass of the star interior to the radius r: 
2

0
( ) 4 ( ) .

r
m r r r drπ ρ ′ ′ ′= ∫      (2.2) 

The force per unit volume of matter due to changing pressure is –dP/dr. When the star is in 
equilibrium, the net force on each bit of matter is zero, therefore, from (2.1), we have 

2

( )
( ).

dP Gm r
r

dr r
ρ= −       (2.3) 

A differential relation between the mass and the density can be obtained by differentiating Eq. 
(2.2):  

24 ( ).
dm

r r
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π ρ=      (2.4) 

Upon using the identity ,
dP d dP

dr dr d

ρ
ρ
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 (2.3) can be transformed to  
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Equations (2.4) and (2.5) are two coupled first-order differential equations that determined the 
structure of the star for a given equation of state. The values of the dependent variables at r = 0 
are ρ = ρc , the central density, and m = 0. 
2.2 The equation of state 

The assumed properties of matter in white dwarf star stated above means that a good 
model for the matter in white dwarf stars is the free Fermi gas of electrons at zero temperature, 
treated with relativistic kinematics. Such a model has been fully described [6]; [12]; [13] and 
[14], therefore, only a brief outline will given here. 

The equation of state for matter in white dwarfs can be written as 

4
0

1
,

3 eP n m x β ′=      (2.6) 

where,    
3
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is the number density of electrons at which the Fermi momentum is equal to the electron mass, 
me, 
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fp   being the Fermi momentum,  



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 237 - 246 
The structure of white dwarf stars, Garba Babaji J of NAMP 

d

dx

ββ ′ = , and ( ) { }2 2 1/ 2 2 1/ 2
3

3
(1 2 )(1 )  - log (1 )

8
x x x x x x

x
β  = + + + +  . (2.9) 

But x can also be written as  
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where,    

0 5 1 3
0 9.79 10   ,pm n

gm cmρ η
η
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is the mass density of matter in which the electron number density is n0, and η  is the number of 
electrons per nucleon. η  is equal to 0.5 for helium, carbon, and oxygen, 1.0 for hydrogen, and 
0.464 for iron. 
Differentiating (2.6) yields  
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where mp is mass of proton (the difference between the masses of proton and neutron is 
neglected), and     
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2.3 Scaling the equations 
Very often, it is desirable to transform equations describing a physical system to 

dimensionless form, for a better physical insight and for numerical convenience. To do this 
transformation for the equations of the white dwarf star, we introduce a dimensionless radius, 
density, and mass variables as follows. 

0 0 0,   ,   ,r R r r m M mρ ρ= = =                (2.14)  

where the radius and mass scales, R0 and M0  are determined so as to get the needed convenience. 
Substituting (2.14) into (2.4 and 2.5) and using (2.12) yields after some rearrangement,   

    
3

20 0

0

4
;

Rdm
r

dr M

π ρ ρ
 

=  
 

                       (2.15) 

0
2

0

.
( / )e p

GMd m

dr R m M r

ρ ρ
η γ

 
= −  

 
               (2.16) 

Now if M0 and R0 are chosen so that the coefficients in the parentheses in (2.15 and 2.16) are 
unity, then    

1/ 2

8
0

0

( / )
7.72 x 10    cm,

4
e pm M

R
G

η
η

π ρ
 

= = 
 

              (2.17) 

3 33 2
0 0 04 5.67 x 10   gm,M Rπ ρ η= =                (2.18) 

and the dimensionless coupled differential equations for the white dwarf are 
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and    

     2 .
dm

r
dr

ρ=                  (2.20) 

 
3.0 The programme 

Essentially, the program written constructs a series of white dwarf models for a given 
electron fraction, η  with central densities ranging in equal logarithmic steps between the values 
of DEN1 and DEN2 specified. For each model, the dimensionless equations, (2.19) and (2.20) for 
the mass and density are integrated by the fourth order Runge-Kutta algorithm.  An empirically 
scaled radial step is used for each model, and initial conditions for the integration are determined 
by a Taylor expansion of the differential equations about the center of the star (i.e. r = 0 ). 
Integration proceeds until the density has fallen below 103 gm cm-3. 

For each run of the program, the inputs are the electron fraction, η  the central density for 
the first model, DEN1, the central density for the last model, DEN2, and the number of models to 
construct.  As each model is calculated, the radial step, central density, number of steps, total 
radius, and total mass are given as output. Also given for each model is the density as function of 
distance from the center of the star. 
 
4.0 Results and discussion 

In the graphs shown below, the parameter η , i.e.  The number of electrons per nucleon is 
given as ye. It should be noted that η  equals to 1.0 for hydrogen, 0.5 for helim, carbon, and 
oxygen, 0.464 for iron, and 0.4 for a hypothetical dwarf composed of more than one type of 
element. 
4.1 Variation of mass density within the white dwarf star 

The variation of mass density with distance from the center of the star are shown in 
Figures 4.1, 4.2, and 4.3. In each of these figures, (a) represents the  hypothetical white dwarf 
while (b) represents  a hydrogen white dwarf, also the distance from the center of the star is in the 
unit of radius of the earth, i.e. 6,400 km. It can be seen from the figures that the density is directly 
proportional to the assigned density at the center of the dwarf and the value ofη , i.e. the 
composition of the dwarf but inversely proportional to the distance from the center of the star. In 
general, the density decreases with increase in the distance.  
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Figure 4.1: Variation of mass density with distance from the center of the star for a central density of 106 gm cm-3 
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Figure 4.2: Variation of mass density with distance from the center of the star for a central density of 108 gm cm-3 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Variation of mass density with distance from the center of the star for a central  density of 1012 gm cm-3. 

In order to quantitatively describe the variation of mass density with distance from the 
center of the star, the author finds it convenient to introduce the following four parameters, 
namely ra, rb, rc, and r0. These parameters are respectively the distance from the center of the star 
to the point where its density reduces to 95%, 50%, and 5%, of its value at the center, while r0 is 
the distance from the center to the point where the density is equal to 1000 gm cm-3. The 
computations for the integration of the two coupled equations of state are stopped at r0. The 
values of these parameters are given in Table 4.1. 
 

 
 

Table 4.1: The Values of the Parameters ra, rb, rc, and r0 for Hydrogen and a hypothetical white dwarf. 
 

η  = 1.0 η  = 0.4 

Central Density (gm cm-3
)  →  106 108 1012 106 108 1012 

ra 0.188 0.0484 0.00262 0.102 0.0263 0.00142 

rb 0.778 0.199 0.00962 0.382 0.108 0.00522 
rc 1.55 0.469 0.0225 0.742 0.246 0.0122 
r0 1.92 0.731 0.0513 1.02 0.362 0.0274 

 
Table 4.2: The ratios of the parameters ra, rb, rc, and r0 for hydrogen and a hypothetical white  dwarf 

 
η  = 1.0 η  = 0.4 

Central Density (gm cm-3
)  →   106 108 1012 106 108 1012 

ra/r0 0.0979 0.0662 0.0510 0.1 0.07265 0.05182 
rb/r0 0.405 0.2722 0.1875 0.3745 0.2983 0.1905 

rc/r0 0.8072 0.6415 0.4385 0.7274 0.6795 0.4452 
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It can be seen from Figures 4.1, 4.2 and 4.3, that the density decreases with increasing 
distance from the center of the star. Near the center and far away from it, the rate of decrease in 
density is much less than elsewhere. The values of ra/r0, ra/r0, and  ra/r0 given in Table 4.2  
quantify the rate of decrease in density with distance from the origin. The values of these ratios 
are dependent mainly on the density at the center. The higher the central density, the lower these 
ratios are. These ratios are virtually independent of the composition of the star. For a given 
central density, the ratios for η  = 1.0 and η  = 0.4 are almost the same even though those for η  = 
1.0 are slightly less than those for η  = 0.4.   

It is interesting to note that ra, rb, rc, and r0 depend both on the composition and central 
density of the star. Table 4.1, and other data obtained by the author show that each of these 
parameters decrease with increase in central density, and that for a given central density they 
increase with increase in η . 
4.2 The radius of a white dwarf star 

The variation of radius of the white dwarf star with its central density is shown in Figure 
4.4a,b. The radius depends on the composition and central density of the white dwarf star. For a 
given central density, the radius of the hydrogen white dwarf is greater than that of the helium, 
carbon, or oxygen which are equal and greater than that of iron. Thus the radius increases with 
the parameter η . For example, for a central density of 108gm cm-3 the radius of hydrogen (η  = 
1.0) white dwarf is 7.312 × 108cm, that of helium, carbon, and oxygen (η  = 0.5) is 4.306 × 
108cm, while that of iron (η  = 0.64 ) is 4.097 × 108cm.  However, for a given white dwarf, (i.e. 
the parameter η  constant) the radius decreases with increase in central density. For example, the 
radius of the hydrogen white dwarf decreases from 1.92 × 109cm for a central density of 
106gmcm-3 to 5.126 × 107cm for a central density of 1012gmcm-3. 
4.3 The mass of a white dwarf star 

The graphs for the variation of mass of a white dwarf star with its central density are 
shown in Figure 4.5a,b. The mass depends on both the composition and central density of the 
white dwarf star. For a given central density, the mass of a hydrogen white dwarf is greater than 
the mass of a helium, carbon, or oxygen which are equal and also greater than that of iron. Thus 
the mass increases with the parameter η . For instance, for a central density of 106 gm cm-3 the 
mass of hydrogen white dwarf is 6.1414 times greater than the mass of iron white dwarf, and 
5.1387 greater than the mass of helium, carbon, and oxygen white dwarf. 
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Starting from a central density of 105 gm cm-3, the mass of a white dwarf star (i.e. for a given η ) 
initially increases on increasing the central density but eventually becomes constant on attaining 
its limiting mass. In the case of the hydrogen white dwarf for example, its mass increases from 
1.60 × 1033 gm to 4.04 × 1033 gm on increasing its central density from 105 gm cm-3 to 106 gm cm-3 
and increases from 7.39 × 1033 gm to 9.86 × 1033 gm on increasing its central density from 107 gm 
cm-3 to 108 gm cm-3. Thus the rate of increase of mass decreases with increase in central density, 
so that as the density is increased the rate eventually becomes zero and the mass of the dwarf 
constant. The central density at which the mass becomes constant varies with the composition of 
the dwarf and is referred to by the author as the characteristic density. Table 4.3 below shows the 
maximum mass and the characteristic density of some white dwarfs. The results in Table 4.3 
show that as the parameter η  is increased, the limiting mass of the star decreases while the 
characteristic density increases. 
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Table 4.3. Maximum mass and characteristic central density. 
 

Type of white dwarf Maximum 
Mass (gm) 

Characteristic  
Density (gm cm-3) 

Hydrogen (η = 1.0) 1.144 × 1034 6.95 × 1011 
Helium, Carbon, and Oxygen (η = 0.5) 2.861 × 1033 2.64 × 1013 

Iron (η = 0.464) 2.464 × 1033 8.86 × 1013 

Hypothetical (η = 0.4 ) 1.831 × 1033 2.64 × 1013 

 
5.0 Conclusion  

The structure of hydrogen, helium, carbon, oxygen, iron, and a hypothetical white dwarf 
stars are investigated computationally. It has been found that the structure of white dwarf stars 
depend on their chemical composition and the value of the mass density at their center. The most 
outstanding findings in this work are given in Table 3 . It is generally known that there is a 
limiting mass for white dwarfs, the so-called Chandrasekhar mass limit, it is now found that each 
elemental type dwarf has its own limiting mass. 
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