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Abstract 
 

In this paper, solutions to the mathematical models in Part I of this 
title are derived. Appropriate flow period delineation methods are discussed. 
Results show that as an enlarged reservoir, flow attains pseudosteady state at 
late times when reservoir dimensionless pressure is inversely proportional to 
the reservoir dimensionless external lengths and directly proportional to 
dimensionless flow time. Furthermore, only superposition in time can be used 
to account for complete dimensionless pressure history. Finally, flow periods 
delineation makes it possible for individual layer dimensionless pressures to 
be quantified and therefore permits individual layer characterization. 

 
 
 
Nomenclature  
A = external dimension along x-axis, ft;  
b = external dimension along y-axis, ft; 
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p = pressure, psi;  
k = permeability, md;  
 
 
1.0 Introduction 

In Part I of this title [1], only mathematical models are derived. In this concluding part, 
solutions to the mathematical models are now presented. Although, there can be more flow 
periods, only two major flow periods will be delineated, these are (1) the infinite-acting flow 
period and (2) the period during which the interface is felt. These are the periods needed for 
transient flow test analyses and layers cossflow characterization. It should be noted that only a  
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h = pay thickness, ft;  
t = time, hours;  
q = flow rate, STB/Day;  
µ  = oil viscosity, cp;  
B = oil formation volume factor, bbl/STB;  
ct =  total fluid compressibility, 1/psi;  
L = well length, ft;  
erf = error function;  
τ = dimensionless dummy time variable. 
 
Subscripts 
x, y, z = x, y, or z, directions; 
D = dimensionless;  
w = wellbore;  
e = external 
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bounded reservoir with crossflow layers are considered. All dimensionless parameters and 
detailed reservoir description appear in [1]. 

 
2.0 Early radial (infinite-acting) flow period pressure  

distribution approximations 
During this period, the reservoir pressure changes rapidly at inception of a new transient 

regime. In general, if we consider the early times as very small, then [2] shows that 
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where α = 2 for xD < xkk , 1 for xD = xkk , and 0 for xD > xkk , for an anisotropic reservoir. 

Equation 2.2 describes the dimensionless pressure distribution when the reservoir is 
infinite-acting and applies to any layer of the reservoir. It prevails until curbed by boundary 
effects. The dimensionless time, tD, is the dimensionless flow time of interest. This flow period 
occurs in all reservoirs irrespective of size. 
2.1 Early linear period pressure distribution approximations 

When there is crossflow between layers, the entire reservoir behaves as one enlarged 
reservoir, especially when the entire length of the interface is permeable. Early linear flow period 
manifests when the nearest boundary (reservoir or wellbore) is felt, and the dimensionless 
pressure approximation will be considered under the following instances of production/injection 
of fluid from/into Layer 1. 
2.1.1 Layer 1 still being produced or injected 

Flow transients have moved beyond the wellbore in Layer 1 but have not felt the impact 
of the crossflow interface. The total dimensionless pressure distribution in this case is obtained as 
a superposition of the dimensionless pressure during infinite behaviour and the dimensionless 
pressure at the inception of initial transient but before the interface is felt. That is, 
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where 
zD1+zwD1+2rwD1 < hD1, 

and zD1 is an arbitrary position within Layer 1, along the z-axis. 
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2.1.2 Layer 1 top boundary felt by production or injection 

Flow transients have now moved very far beyond Well 1 and at the interface. 
Accordingly, the total dimensionless pressure distribution is obtained as 

∫ ⋅
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where tDzf is the dimensionless time the interface is felt. The difference between the 
dimensionless times tDz and tDzf may be so small that it could be neglected thus making the period 
from tDz to tDzf indistinguishable in practice. This period (when the interface is felt) may not occur 
if  
(1) the interface is very permeable throughout its entire length 
(2) fluid passes through the interface at very high rate, and 
(3) the reservoir layers have high vertical permeabilities 
2.1.3 Layer 2 now being produced or injected 

The moment fluid in Layer 2 is being produced or injected, pressure gradient are 
expected to fall, if the permeability of Layer 1 is greater than that of Layer 2, and vice versa. This 
is as a result of fluid equilibrium readjustment. For more than two layers, this change in pressure 
gradient will characterize depletion or injection of each new layer. The total dimensionless 
pressure distribution is therefore given as the sum of the dimensionless pressure since Well 1was 
put on  production or injection and the dimensionless pressure created in Layer 2 since the 
interface had been felt. That is, 
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where β = (µ1φ1ct 1L1
2k2)/ (µ2φ2ct 2L2

2k1), and E is defined in [1] for several flow periods. All 
reservoir properties are now average of the two layers properties. Equation (3.5) takes into 
account the fact that Well 1 is still used as the production or injection well and (βτ) is the 
dimensionless time since Layer 2 started responding to production/injection in Well 1. It should 
be noted that the entire vertical thickness of the reservoir hD  is now exposed to flow. For 
vertically stacked layers, 

     222
DDD zxy +=      (2.6) 

The same derivation procedure is applicable if Well 2 is used as the monitoring well. 
Late Intermediate Linear Flow Dimensionless Pressure Approximations for Individual 

Layers.  The chances that any of the early linear pressure distributions given by (3.3 to (3.5) 
will occur depend on  

(1) the thickness of the reservoir in relation to the length of the producing  
wellbore,  

(2) the vertical-to-horizontal permeability ratio, and  
(3) the production or injection rate of fluid from Well 1.  
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If the wellbore length is short compared to the reservoir thickness, the early time radial 

periods may not occur for long. Rather, the lateral ends of the well will be felt earlier giving 
rise to an early linear flow period, while the transient in the vertical direction will still be 
exhibiting infinite behavior. On the other hand, if the formation is thinner than the length of 
the wellbore, then the early time linear behavior will be noticed earlier than the ends of the 
wellbore are felt. During this late intermediate flow period dimensionless pressure distribution 
approximations are written as 
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for Layer 1, and 
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for Layer 2. 
2.1.5 Late and final linear dimensionless pressure distribution 

During this period all the external boundaries have been felt, and thus, since the external 
boundaries are all sealed, pseudosteady flow now prevail through out the production life of the 
well. This is the case if one well is used for pressure monitoring. 

Using Equation (22) of [1], the late and final dimensionless pressure distributions for the 
layers are written approximately as  
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for Layer 1, and 
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for layer 2. Obviously, (2.9) and (2.10) could yield a final steady state period, if the interface is 
long, reasonably permeable and is felt first. Otherwise, infinite-acting flow continues to prevail. If 
a steady state is eventually achieved it may be irreversible if any of these layers is experiencing 
highly compressible fluid recharge. Note however, that (2.9) and (2.10) do not show complete 
history, which can be obtained by superposition of (2.9) and (2.10) with equivalent infinite-acting 
expressions.  
 
3.0 Flow periods determination 

Several flow periods may exist in each of the horizontal wells. The number of periods 
and their duration depend strongly on the wellbore geometry, reservoir properties and well flow 
rates. 
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For a given reservoir thickness the times required for pressure transient to reach the 

vertical boundaries is derived according to Odeh and Babu [3] as 
tz(1% error) = 0.536αd2

z/kz    (3.1) 
For the nearest vertical boundary  

dz ≡ min(zw, h-zw)    (3.2) 
and for the farthest vertical boundary 

Dz ≡ max(zw, h-zw)    (3.3) 
where      α = 157.952φµct     (3.4) 
With reference to Figure 3.1, these times can be written as 

2
)11 )(85 DDDzf zht −≈     (3.5) 

for Well 1 and     

2
285 wDD zt ≈      (3.6) 

for Well 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Well arrangement model in the layers 
In the same manner, the top-most no-flow boundary is felt from Well 1 at dimensionless 

time given as  

    2
)11 )(85 DDD zht −≈     (3.7) 

and      

2
285 wDD zt ≈      (3.8) 

for Well 2. 
 
4.0 Computation of well responses   

Integration with respect to position as encountered in the expression for E is performed 
analytically. But all integration with respect to time can be evaluated numerically using two 
methods, viz.: (1) the Gauss-Laguerre quadrature and (2) the Gauss-Legendre quadrature [4, 5].  
The first method can be used to evaluate the associated exponential integrals at early times. The 
Gauss-Legendre quadrature is very useful in computing dimensionless pressures after the 
expiration of the early radial (infinite-acting) flow period. Associated errors were not quantified 
where these quadratures were applied as they are not capable of affecting overall results 
according to [5]. 

 

hD 

hD2 

hD1 

Well 2 

Well 1 

zwD2 

zwD2 

zD1 

zwD1

 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 197 - 204 
The use of source and Green’s functions to model pressure,      E. S. Adewole J of 
NAMP 

Apart from (3.5) and (3.8), some knowledge of tDZf   can also be either estimated from 
observed changes in gradients on pWD  versus log tD  plot long after the expiration of the early 
radial period or as follows: 
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This time suggests that flow has moved entirely away from the x-z-plane of Layer j and now in 
the x-z-plane of Layer j + 2, depending on the layer of interest. In a layered reservoir tDzf may be 
compared to long time flow period for a particular layer.  Equations (3.5) and (3.6) provide an 
upper limit check on tDz and they indicate that the interface had been felt since tDzf. tDzf  values 
enable correct computation and analysis of well flow pressures to be done. 
 At tD > tDzf  flow transients are in another portion of the reservoir. To be sure of the 
location, if tDzf  is known, then calculate tDzfj , the dimensionless time for the pressure transient to 
have gone beyond the interface and now at any point in Layer j or (j + 1). For Layer 1, 
 tDzf1 ≅ 85(hD −hD1)

2     (4.2) 
and for Layer 2, tDzf2 is calculated from (3.6). 
 If tDzf1 is greater than tDzf then depending on the layer of interest a portion outside the 
interface is exposed to flow. In a layered reservoir with crossflow, if Well j is used to monitor 
pressure distribution then early time flow will last for as long as given below: 
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where  

DjxDj xkk −=δ if  xkk > xDj and δDj=2 xkk  if xkk =xDj. 

It should be noted that hDj ≤ zDj+zwDj < hD. For the same crossflow layers, given Well j, long time 
pressure distribution is obtained in the reservoir at dimensionless time given approximately as  
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The periods given by these expressions are approximate. Fairly accurate periods can be 
confirmed from plots of pw D versus tD and on pressure derivative plots. 
To simulate an infinite-conductivity wellbore, take xDj = 0.732, but 0 ≤ xDj ≤ 1.0 represent 
uniform flux wellbore. Specifically, xDj = 0.0 represents fluid flow measurement at the well 
“elbow” and xDj = 1.0 gives pressure distribution at the well tip or well “toe”. 

Finally, because Layers 1 and 2 may have quite different reservoir and wellbore 
properties, it is provided that the response time of Layer 2 is some multiple, β, of Layer 1. In 
other words, if a comparison between Layers 1 and 2 is to be made in terms of pressure 
behaviour, then this factor has to be used to establish a basis for comparison. The factor accounts 
for flow time between layers as a result of layering in the reservoir. 
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When interlayer flow cases are considered, for example, in enhanced oil recovery (EOR) 
projects the actual values of β are calculated for a given set of reservoir fluid and wellbore 
properties. In all computations n, 1, and m should be assumed to be unity, i.e., near the wellbore.  
For early times, our results are compared with some authors’ results [6], [7] and [8] as shown in 
Table 4.1 below. 

 
 

Table 4.1: Comparison of results of some authors for 
dimensionless Wellbore pressure 

 xD  = 0.732, ywD  = 0.0005, hD =  0.1 
tD Ref. [7] Ref. [8] Ref. [9] Our Results 

0.000001 0.05490 0.05472 0.05507 0.05489 
0.00001 0.1124 0.1126 0.11245 0.11245 
0.0001 0.17007 0.1700 0.11260 0.17001 
0.001 0.22888 0.2288 0.17098 0.22758 
0.01 0.34958 0.3495 0.29164 0.29547 
0.1 0.66767 0.6675 0.60972 0.66853 
1 1.37630 1.3760 1.31828 1.34005 

 
There is close agreement with other authors’ results. The slight difference occurring at late 
dimensionless times is probably due to differences in choices of numerical methods and in the 
yardstick for delineating flow periods. Like earlier remarked, only plots of observed 
dimensionless pressures against dimensionless time can reliably reveal the commencement and 
end of flow boundaries. 
 
5.0 Conclusion 
 Mathematical models describing pressure in a bounded layered reservoir with lateral wells 
have been solved.  Results obtained from numerical computation show  
 That pressure distributions are the same for all layers of the reservoir at early times, if the 
layers and wellbore properties are the same. 
(1)  The interface effect is actually felt later than the infinite–acting period. 
(2) Regional dimensionless pressure distribution can be estimated for each layer even with 
cross flow interface, if flow boundaries are reliably delineated. 
(3) Well design and completion strongly affect the performance of a layered reservoir with 
crossflow. 
(4) Superposition in time is the only way of accounting for complete dimensionless pressure 
history. 
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