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Abstract 
 

We present the modified version of the code HFODD which solves 
the nuclear Skyrme–Hartree–Fock problem using the Cartesian deformed 
harmonic-oscillator basis. The modified code gives (i) the general parameters 
for starting point of the iteration, that provides the convergence report (ii) 
maximum numbers of the HO quanta in three directions, (iii) the vacuum and 
particle-hole configurations for the case of the parity symmetry, (iv) the 
corresponding values of the coupling constants in the Skyrme functionals, (v) 
the average values of the total and intrinsic neutron, proton, and total angular 
momentum, it (vi) the corresponding values and contributions to the first 
moment of inertia and (vii) a summary of the energies calculated for the HF 
state. Items (ii) and (iv) we not obtainable using the original program. 

 

 
1.0 Introduction 

The nuclear mean-field and an analysis of its symmetries in realistic cases are the main 
ingredients of a description of nuclear states. Within the Local Density Approximation, or for a 
zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity 
dependent. The locality allows for an effective and fast solution of the self-consistent Hartree–
Fock equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole) 
configurations, deformations, excitation energies, or angular momenta. 

The program uses the Cartesian harmonic oscillator basis to expand single-particle wave 
functions of neutrons and protons interacting by means of the Skyrme effective interaction. The 
expansion coefficients are determined by the iterative diagonalization of the mean field 
Hamiltonians or Routhians which depend nonlinearly on the local neutron and proton densities. 
Suitable constraints are used to obtain states corresponding to a given configuration, deformation 
or angular momentum.  
1.1 Cartesian harmonic oscillator basis 

The set of Hartree-Fock (HF) equations is solved by expanding the single-particle wave 
functions ( )iψ σr  onto the deformed Harmonic Oscillator (HO) wave functions ( )

x y zn n nψ σr  in 

the Cartesian coordinates, [1] i.e 
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Here Nx, Ny, and Nz are the maximum numbers of the HO quanta corresponding to the three 
Cartesian directions. However, the three parametersxωh , yωh , zωh  defining the HO 

frequencies in three Cartesian directions and on the number M of the HO states are included in 
the basis. In the code HFODD we use the standard prescription [2, 3] to choose the HO states 
included in the basis, namely, the M states with the lowest HO single-particle energies. The sums 
over nx, ny, and nz are performed over the grid of points which form a pyramid rather than a 
cube. 

The HO wave functions have the standard form 

σδψψψσψ
zzyxzyx snnnnnn zyx )))) ((((r = ,    (1.2) 

where, 
211

22 (0)( ) ( ) ,n nb H e µ

µ µ

ξ
µ µψ µ ξ −= and b xµ µ µξ = are dimensionless variables scaled by the 

oscillator constants,    b mµ µω= h      (1.3) 

Polynomials (0)( )nH ξ are proportional to the standard Hermite orthogonal polynomials ( )nH ξ  

[4],    ( )
1
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=     (1.4) 

and normalized as,   
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When convenient, we also use the standard bra-ket notation: 

. ,, )
x y z zx y z z n n n sn n n s ψ σ≡ (r     (1.6) 

1.2 The Simplex basis 

The y-simplex symmetry operator ̂ ˆ ˆexp( )y yS P i Jπ= −  transforms the HO states Eq. 

(1.6) in the following way 
1
2ˆ , ( 1) ,y zn s

y x y z z x y z zS n n n s n n n s+ −= − .   (1.7) 

Since in the present implementation of the code HFODD, the simplex symmetry is always 
assumed, it is convenient to use the HO basis composed of states which belong to a given 
simplex, i.e., 

( )11 1
2 2
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, , ,
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x y z x y z x y zn n n s i i n n n i n n n+= + = − − ,   (1.8a) 
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x y z x y z x y zn n n s i i n n n i n n n+ −= + = − + − ,               (1.8b) 

for which  ( )ˆ , ,y x y z x y zS n n n s i i n n n s i= ± = ± = ± .    (1.9) 

Since the HO wave functions are real, the time-reversal operator 0
ˆ ˆ

yT i Kσ= − , 2ˆ ( 1)AT = −  where 

0K̂  is the complex conjugation in coordinate space, transforms them in the following way 

   ( )
1
2ˆ , 1 ,zs

x y z z x y z zT n n n s n n n s
−= −                (1.10) 

The relative phases of states (1.8a) and (1.8b) have been chosen in such a way that the time 
reversal simply flips the simplex: 

ˆ , ,x y z x y zT n n n s i n n n s i= ± = ± = m .                (1.11) 
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Having the relative phases established, we may still arbitrarily choose the absolute phases of, say, 
the s = +i simplex eigenstates. The choice in (1.8a) is made by considering the antiunitary  

 
 
 
 

operator K̂ ,    ˆ ˆ
zK Tiσ= , 2ˆ 1K = .                 (1.12) 

This operator does not act on the space coordinates and therefore conserves quantum 
numbers x y zn n n . Since it is an antilinear operator with the square equal to one, the phases in the 

spin space can always be chosen [5] in such a way that all the basis states are its eigenstates with 

the eigenvalues being equal to 1. Since K̂  commutes witĥT , such a choice of phase convention 
made in (1.8a) applies in fact to both simplexes, i.e., 

ˆ , ,x y z x y zK n n n s i n n n s i= ± = = ±                 (1.13) 

One should stress that , ,x y zω ω ωh h h  is not a conserved symmetry, and therefore the HF single-
particle states do not have any particular symmetry with respect to this operator. 
 
2.0 Description of the code HFODD 

The original code HFODD written in FORTRAN program was obtained from the CPC 
Program Library, Queen’s University of Belfast, N. Ire-land. The computers for which the 
program was designed and others on which it has been tested are CRAY C-90, SG Power 
Challenge L, and IBM RS/6000. The Operating systems on which it was run are UNIX, 
UNICOS, IRIX, AIX and the Programming language used was FORTRAN-77. The memory 
requirement to execute with typical data was 10 Mwords Number of bits in a word was 64 
Number of lines and the distributed program was 19 438 (of which 8354 are comments and 
separators) [6] 

Modification was made to the code to make and operate under Windows and Visual 
Fortran. Initially we encountered different errors some more subroutines were added, which 
included: CGEMM, ZHPEV, ZDSCAL, ZHPTRD, DSTERF, ZUPGTR, ZSTEQR e.t.c, number 
of lines for the original code was 19438 with number of characters 814761. with the added 
subroutines the code line now becomes 24536. 

In addition, we have implemented an interface to the LAPACK subroutine ZHPEV, 
which was downloaded (with the dependencies) from http://netlib2.cs.utk.edu/cgi-bin/netlibfile. 
pl_filename=/lapack/complex16/zhpevx.f. This subroutine finds not all, but only the lowest 
eigenvectors, and hence performs calculations in less CPU time. The gain is particularly 
significant for large HO bases. Numbers of eigenvectors to be found are defined by the size of the 
HO phasespace, Subroutine ZHPEV and its dependencies are in the REAL*/8/COMPLEX* 
16 version, and should be compiled without promoting real numbers to the double precision. On 
the other hand, the code HFODD itself does require compilation with an option promoting to 
double precision. Therefore, the code and the ZHPEV package were compiled separately and then 
linked together. CGEMM  performs one of the matrix-matrix operations, ZHPTRD reduces a 
complex Hermitian matrix A stored in packed form to real symmetric tridiagonal form T by a 
unitary similarity, ZLARFG generates a complex elementary reflector H of order n, such that H' * 
( alpha ) = ( beta ),   H' * H = I, ZHPMV  performs the matrix-vector operation y := alpha*A*x + 
beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n 
hermitian matrix, supplied in packed form, ZHPR2 performs the hermitian rank 2 operation A := 
alpha*x*conjg( y' ) + conjg( alpha )*y*conjg(x') + A, where alpha is a scalar, x and y are n 
element vectors and A is an n by n hermitian matrix, supplied in packed form.and so on. 
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3.0  Numerical tests 

Accuracy of the solution of the HF equations with the wave functions expanded onto the 
Cartesian HO basis, (1.1) depends on the three parameters , ,x y zω ω ωh h h  defining the HO  

 
 
 

frequencies in three Cartesian directions, and on the number M of the HO states included in the 
basis. In the code HFODD we use the standard prescription [2, 3] to choose the HO states 
included in the basis, namely, the M states with the lowest HO single-particle energies, 

1 1 1
2 2 2( ) ( ) ( )

x y zn n n x x y y z zn n nω ω ω∈ = + + + + +h h h ,    (3.1) 

are selected among those which have 0xn N≤ , 0yn N≤  and 0zn N≤  where N0 is the fixed 

maximum number of HO quanta. It should be noted that in general both M and N0 have to be 
specified to define the basis. Only for large N0, the basis is defined solely by M and does not 
depend on N0. In this case, the grid of points (nx, ny, nz) defining the states included in the basis 
forms a pyramid in three dimensions, with the inclined face delimited by the condition 

x y zn n n const∈ ≤ . On the other hand, only for small values of N0 the basis is defined solely by N0 

and does not depend on the energy cut-off. In this case the corresponding grid of point’s nxnynz 
forms a cube of the size N0. In all intermediate cases the shape of the basis corresponds to a 
pyramid with the corners cut off, or to a cube with the corners cut off. Usually N0 is chosen large 
enough so that all the states allowed by the energy cut-off are included in the basis. The HO basis 
is composed of states having not more than N0 = NOSCIL quanta in either of the Cartesian 
directions, and not more than M = NLIMIT states in total, the states are added to the basis 
according to the increasing energy of the deformed harmonic oscillator.  

The code HFODD calculates parameters of the HO basis, and the zero-iteration Nilsson 
potential [7], by defining the standard nuclear shape defined by the surface Σ 
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enclosed by the surface Σ does not depend on α. Due to the assumed y-simplex symmetry, all 
multipole deformations λµα  are real, and only those with µ=0 are used in the code HFODD 

because then , ( 1)µ
λ µ λµα α− = − . The lengths of principal axes of the volume enclosed in the 

surface Σ can be defined as ( 2,0)xR R π= , ( 2, 2)yR R π π=  and (0,0)zR R= . All 

calculations below have been performed for the Skyrme parametrization SkM* with the coupling 
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3.1 Spherical nuclei 
We begin with the results obtained for a spherical nucleus 208Pb for which the spherical 

basis is used, q = 1, and the results are studied in function of0ωh . The physical value for this 

nucleus is 0 8.304MeVω =h , and is represented in Figures 3.1 and 3.2. The energies of 208Pb, 

shown in Figure 3.1, converge rather slowly to the exact value of -1635.956MeV. Figure 3.2 
shows the corresponding results of calculations for the root-mean-square (rms) radii of 208Pb.  
3.2 Deformed nuclei 

In order to study the properties of the optimization of the deformation of the basis, we 
have performed a series of calculations for the non-rotating superdeformed state in 152Dy 
( 0 0ω =h ) with 0ωh fixed at the physical value, and for several different values of q and M. one 
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obtains [8], respectively, the total energies E = -1234.611, -1230.769, or -1230.104MeV and the 
proton quadrupole moments Qp = 42.316b, 44.369b, and 46.376b. These values of energies were 
obtained by using the finite difference expressions for derivatives, which are less precise than the 
Fourier expressions [9]. Such a procedure yields [10] for ∆x=0.7 fm the value of E= -1229.365.  
 

 
 
 

Figure 3.3 shows the total energies in 152Dy calculated by the code HFODD for M=300, 
600, 900, or 1200. Keeping a fixed number M of states with varying q means that a given HO 
orbital may cross the boundary nxnynz = const. However, the energy gain from optimizing the 
value of q is very small. For M = 900 the optimal and physical values of q are close to one 
another, but the minimum of energy is hardly visible. For M = 1200 we obtain E=.1229.383 in a 
very good agreement with the exact result. Figure 3.4 shows the values of proton quadrupole 
moment calculated by the code HFODD. 
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Figure 3.1: Ground-state energies of 208Pb calculated 

as functions of 0ωh  for several values of the number 

N0 of HO shells included in the basis. 
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Figure 3.2: Same as in Figure 2.1 but for the rms 
radii of 208Pb. 
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Figure 3.3: Energies of superdeformed state in 152Dy 

calculated at 0 0ω =h  as functions of the basis 

deformation parameter q for several values of the 
number M of states included in the HO basis. 
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at 0 0ω =h . 

 



Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 163 - 170 
Computation of Skyrme–Hartree–Fock equations. F. S. Koki and S. S. Duwa J of NAMP 

 
4.0 Output  

The output file begins with the information pertaining to the general parameters of the 
calculation, then gives information about the starting point of the iteration, provides the 
convergence report, and finally contains the results calculated at the last iteration. The sample 
output is as follows 
CLASSICAL NUCLEAR SURFACE DEFINED FOR: N = 86 Z = 66 
 AL10 = ZERO AL11 = ZERO. 

 
 
  AL20 = 0.610 AL21 = ZERO AL22 = ZERO. 
 AL30 = ZERO AL31 = ZERO AL32 = ZERO AL33 = ZERO. 
 AL40 = 0.100 AL41 = ZERO AL42 = ZERO AL43 = ZERO AL44 = ZERO  
HOMEGA= 9.2190 FCHOM0= 1.2000  
OSCILLATOR FREQUENCIES: HBAROX= 11.1998 HBAROY= 11.1998 HBAROZ= 6.2464  
MOMENTS OF INERTIA: XMOMFC= 90.2596 YMOMFC= 90.2596 ZMOMFC= 42.8300  
 CENTRES OF MASS: CMSXFC= 0.0000 CMSYFC= 0.0000 CMSZFC= 0.0000 
OSCILLATOR LENGTHS: X= 1.9243099 Y= 1.9243099 Z= 2.5766958 
OSCILLATOR CONSTANTS: X= 0.5196668 Y= 0.5196668 Z= 0.3880939  
 OSCILLATOR FREQUENCIES: X=11.1997759 Y=11.1997759 Z= 6.2464470  
BASIS CUT-OFF CONTROL PARAMETERS: NXMAXX= 8 NYMAXX= 8 NZMAXX= 15 
OPTIMUM NUMBERS OF GAUSS POINTS: NXHERM= 18 NYHERM= 18 NZHERM= 32 NLIMIT= 301 
LDBASE= 306 MCOUNT= 4096 ENECUT= 800.0000 ELIMIT= 112.7539 
SHAPE OF THE OSCILLATOR-BASIS DIAMOND  
 NZ ===>>> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
MAX.NX => 8 8 7 7 6 6 5 4 4 3 3 2 2 1 0 0  
NX= 0 (15) | 8 8 7 7 6 6 5 4 4 3 3 2 2 1 0 0  
NX= 1 (13) | 7 7 6 6 5 5 4 3 3 2 2 1 1 0  
NX= 2 (12) | 6 6 5 5 4 4 3 2 2 1 1 0 0  
NX= 3 (10) | 5 5 4 4 3 3 2 1 1 0 0 
NX= 4 ( 8) | 4 4 3 3 2 2 1 0 0 
NX= 5 ( 6) | 3 3 2 2 1 1 0  
NX= 6 ( 5) | 2 2 1 1 0 0  
NX= 7 ( 3) | 1 1 0 0 
NX= 8 ( 1) | 0 0  
PARAMETER SET SKM*: T0= -2645.00 T1= 410.00 T2= -135.00 T3= 15595.00  
POWER=0.1667 W=130 X0= 0.09000 X1= 0.00000 X2= 0.00000 X3= 0.00000 COEFFICIENTS DEFINING THE 
SKYRME FUNCTIONAL  
                    TOTAL(T)      SUM(S)            ISOSCALAR(P)     ISOVECTOR(M)  
 CRHO_ = -1382.012500    780.275000      -991.875000            390.137500  
 CRHOD = 1299.583333     -649.791667     974.687500            -324.895833  
 CLPR_ = -85.312500         34.218750         -68.203125             17.109375  
 CTAU_ = 68.750000         -68.125000         34.687500              -34.062500  
 CSCU_ = 0.000000            68.125000          34.062500              34.062500  
 CDIV_ = -65.000000         -65.000000         -97.500000             -32.500000  
 CSPI_ = -59.512500           661.250000        271.112500            330.625000  
 CSPID = 0.000000             -649.791667      -324.895833            -324.895833 
 CLPS_ = 0.000000             34.218750         17.109375               17.109375  
 CCUR_ = -68.750000        68.125000         -34.687500              34.062500  
 CKIS_ = 0.000000             -68.125000        -34.062500              -34.062500  
 CROT_ = -65.000000        -65.000000        -97.500000              -32.500000 
 
PARITY/SIGNATURE CONFIGURATIONS:  

     V A C U U M    P A R T I C L E S           H O L E S  
 (++) (+-) (-+) (--)    (++) (+-) (-+) (--)         (++) (+-) (-+) (--)  

 NEUTRONS:   22   22     21   21       0      0     0     0            0     0       0     0  
 PROTONS:     16    16     17   17       0      0     0     0            0     0       0     0  
 
CONVERGENCE REPORT  
 ITER   ENERGY        STABILITY      Q20          Q22      SPIN   OMEGA  RATIO OF E  
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 0         -559.936804      -759.775974   54.178     -0.027   98.777    0.500         0.424287  
 1         -1163.385944      88.001030     48.812      0.025    53.243   0.500         1.081832  
 48        -1208.769024     0.000468        41.807     0.067     49.581   0.500        1.000000  
 49        -1208.768731     0.000400        41.806     0.067     49.581   0.500        1.000000 
SINGLE-PARTICLE PROPERTIES: HARTREE-FOCK NEUTRONS  
NO) ENERGY (++,+-,-+,--) | N,nz,/\,OMEG> <P> JY SY GFACT  
 76) -11.743  ( 0, 0,21, 0) | 5, 3, 2, 3/2> -100 0.103 -0.092 -0.896  
 77) -11.728 ( 0, 0, 0,20) | 5, 3, 2, 3/2> -100 0.209 -0.101 -0.485  
 78) -11.433  (19, 0, 0, 0) | 4, 1, 1, 1/2> 100 0.007 -0.182 -3.E+01 
 79) -11.334  ( 0,19, 0, 0) | 4, 1, 3, 5/2> 100 -0.129 -0.040 0.307 
 80) -11.241  (20, 0, 0, 0) | 4, 1, 3, 5/2> 100 -0.100 -0.189 1.885 

 
 
 81) -11.137  (21, 0, 0, 0) | 6, 5, 1, 1/2> 100 1.119 -0.176 -0.157 
 82) -11.069  ( 0,20, 0, 0) | 6, 5, 1, 1/2> 100 0.984  0.084   0.086  
 83) -10.881  ( 0,21, 0, 0) | 4, 1, 1, 1/2> 100 -0.112 -0.201 1.784 
 84) -10.379  (22, 0, 0, 0) | 6, 4, 2, 5/2> 100 -0.155 -0.064 0.414 
 85) -10.365  ( 0,22, 0, 0) | 6, 4, 2, 5/2> 100 0.007 -0.024 -3.300 
 86) -9.557  ( 0, 0, 0,21) | 7, 6, 1, 3/2> -100 2.517 0.041 0.016  
 87) -7.880  ( 0, 0,22, 0) | 5, 2, 1, 3/2> -100 0.903 0.201 0.222  
 88) -7.840  ( 0, 0, 0,22) | 5, 2, 1, 3/2> -100 0.442 0.217 0.490  
 89) -7.738  (23, 0, 0, 0) | 4, 0, 2, 5/2> 100 -0.247 0.161 -0.650 
 90) -7.732  ( 0,23, 0, 0) | 4, 0, 2, 5/2> 100 -0.235 0.162 -0.690 
 91) -7.562  ( 0, 0,23, 0) | 5, 2, 1, 3/2> -100 1.068 0.153 0.144  
 92) -7.221  ( 0, 0, 0,23) | 5, 1, 4, 9/2> -100 -0.337 0.028 -0.083 
 93) -7.221  ( 0, 0,24, 0) | 5, 1, 4, 9/2> -100 -0.337 0.028 -0.083 
 94) -7.096  ( 0, 0, 0,24) | 7, 7, 0, 1/2> -100 -0.134 -0.167 1.252 
 95) -7.076  ( 0,24, 0, 0) | 6, 4, 0, 1/2> 100 1.232 0.328 0.266  
 96) -6.350  ( 0,25, 0, 0) | 4, 0, 0, 1/2> 100 0.078 0.455 5.825  
 97) -6.284  (24, 0, 0, 0) | 6, 3, 3, 7/2> 100 0.140 -0.044 -0.313 
 
MULTIPOLE MOMENTS IN UNITS OF (10 FERMI) **LAMBDA   
Q00 =152.0000, Q10 = ZERO, Q11 = ZERO,Q20 = 41.8059,Q21 = ZERO 
Q22 = 0.0675, Q30 = ZERO, Q31 = ZERO, Q32 = ZERO, Q33 = ZERO  
Q40 = 4.7902, Q41 = ZERO, Q42 = 0.0058, Q43 = ZERO, Q44 = -0.0011  
 
ROOT-MEAN-SQUARE AND GEOMETRIC SIZES IN FERMIS TOTAL  
R_RMS = 5.5420 X_RMS = 2.3844 Y_RMS = 2.3712 Z_RMS = 4.4052  
R_GEO = 7.1547 X_GEO = 5.3318 Y_GEO = 5.3022 Z_GEO = 9.8504 
 
DENSITY INTEGRALS IN THE SKYRME FUNCTIONAL  

TOTAL(T)  SUM(S)  ISOSCALAR(P)  ISOVECTOR(M)  
DRHO_ = 17.566618  8.912767  17.566618  0.258917  
DRHOD = 12.488132  6.334617  12.488132  0.181102  
DLPR_ = -3.719401  -1.886188  -3.719401  -0.052976  
 DTAU_ = 15.598603  7.983209  15.598603 0.367815  
DSCU_ = 0.119929  0.064074  0.119929  0.008219 
DDIV_ = 0.823496  0.419204  0.823496  0.014912  
DSPI_ = 0.018303   0.010522  0.018303  0.002740  
DSPID = 0.013147   0.007544  0.013147  0.001941  
DLPS_ = -0.037372  -0.023155  -0.037372  -0.008937  
DCUR_ = 0.060724  0.031580  0.060724  0.00243 
DKIS_ = 0.029460   0.015277  0.029460  0.001094  
DROT_ = 0.007844  0.004322  0.007844  0.000799 
 
CONTRIBUTIONS TO ENERGY IN THE SKYRME FUNCTIONAL 

TOTAL(T)  SUM(S)  ISOSCALAR(P)  ISOVECTOR(M)  
ERHO_ = -24277.285107  6954.409417  -17423.888833  101.013143  
ERHOD = 16229.367796  -4116.181326  12172.025847  -58.839377  
ELPR_ = 317.311377  -64.543010  253.674755  -0.906388 
ETAU_ = 1072.403924  -543.856103  541.076525  -12.528704 
ESCU_ = 0.00000  0.365047  4.085077  0.279970 
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EDIV_ = -53.527218  -27.248236  -80.290827  -0.484627 
SUM EVEN: -6711.729227 2206.945789  -4533.317455  28.534017  
ESPI_ = -1.089276   6.957479  4.962258  0.905945 
ESPID = 0.000000   -4.901833  -4.271249  -0.630584 
ELPS_ = 0.000000   -0.792320  -0.639413  -0.152907  
ECUR_ = -4.174748  2.151393  -2.106350  0.082995  
EKIS_ = 0.000000   -1.040747  -1.003485  -0.037261 
EROT_ = -0.509892  -0.280907  -0.764838 -0.025961 
SUM ODD: -5.773917  2.093065  -3.823078  0.142226 
 
ANGULAR MOMENTA AND THE FIRST MOMENTS OF INERTIA FOR OMEGA = 0.500000 MEV 

  SPINS      J(1)  
ORBITAL INTRINSIC TOTAL  ORBITAL INTRINSIC TOTAL  

NEUTRONS 28.21798     1.21125        29.42923      56.43596    2.42250       58.85846  

 
 
 PROTONS   19.29890     0.85368        20.15257      38.59779    1.70736       40.30515  
 TOTAL         47.51687    2.06493        49.58181       95.03375    4.12986      99.16361  
 
 NEUTRON CONFIGURATIONS    
 =======================  
    P S 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
 CONF: + +   1  1   1    1   1   1   1   1   1  1   1   0   0   0   0   0   0   0   0   0    0  
 VACC: + +  1  1   1    1    1   1   1   1   1  1   1   0   0   0   0   0   0   0   0   0    0  
  
CONF: + -   1  1   1    1    1   1   1   1   1  1   1   0   0   0   0   0   0   0   0   0    0  
 VACC: + -   1  1   1    1    1   1   1   1   1  1   1   0   0   0   0   0   0   0   0   0    0  
 
 CONF: - +   1  1   1   1   1   1   1   1   1   1   0  0   0   0   0   0   0   0   0   0    0 
 VACC: - +   1  1   1   1   1   1   1   1   1   1   0  0   0   0   0   0   0   0   0   0    0  
 
CONF: - -     1  1   1   1   1   1   1   1   1   1   0   0  0   0   0   0   0   0   0   0    0  
VACC: - -    1   1   1   1   1   1   1   1   1   1   0   0  0  0   0    0   0   0   0   0    0  
 
ENERGIES (MEV)  
KINETIC: (NEU)= 1652.730622 (PRO)= 1107.885480 (TOT)= 2760.616103 
 SUM EPS: (NEU)= -2034.973323 (PRO)= -1133.181733 (TOT)= -3168. 
 PAIRING: (NEU)= 0.000000 (PRO)= 0.000000 (TOT)= 0.000000  
 COULOMB: (DIR)= 564.434280 (EXC)= -25.354572 (TOT)= 539. 
 CONSTR. (MULT)= 0.000377 SLOPE= -0.003881 CORR.= -0.081133 
CONSTR. (SPIN)= -24.790903 SLOPE= 0.500000 CORR.= -12.39545 
 REARRANGEMENT ENERGY FROM THE SKYRME DENSITY-DEPENDENT TERMS= 1009.023720 
 ROUTHIAN (TOTAL ENERGY PLUS MULTIPOLE AND SPIN CONSTRAINTS) = -1233. 
 SPIN-ORB (EVE) = -80.775454 (ODD)= -0.790799 (TOT)= -81.566253 
SKYRME: (EVE) = -4504.783438 (ODD)= -3.680852 (TOT)= -4508.464290  
TOTAL: (STAB) = 0.000343 (SP)= -1208.768136 (FUN)= -1208.768479 
 
5.0 Conclusion 

The motivation to construct the Skyrme-Hartree-Fock code using the Cartesian Harmonic 
Oscillator basis is based on the necessity to obtain a tool which would allow rapid computation 
for the nuclear superdeformed or hyperderformed rotating states for which the deformation is 
relatively well known. The method we employed in this research gives a fast, robust, and simple 
algorithm that can be used to solve physical problems relating to nuclear deformation 
computations. The modified HFODD developed produced, in additions to the results obtained by 
the original code, the maximum numbers of the HO quanta in three directions and; the 
corresponding values of the coupling constants in the Skyrme functional  
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