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Abstract 
 

The electronic charge density due to the sp3 hybridized orbitals 
electrons in the diamond-structure semiconductor crystals has been 
calculated for the k = 0 state. This charge density represents the electronic 
distribution in the direct lattice of the crystals. Normally, the charge density in 
a condensed matter such as crystals is obtained from extremely complicated 
functions. However, in this work, the charge density is calculated from first-
principles. The basic inputs are the lattice constant of the crystal and the 
atomic number of the atom.  To obtain the required expression for the 
hybrids, we must choose some orientation for the tetrahedral bonds with 
respect to the Cartesian axes. The most convenient orientation chosen is to 
inscribe the tetrahedron in a cube whose edges are parallel to the Cartesian 
axes as shown in Figure 3.1. The tetrahedral bonds point towards the corners 
of a unit cube. The centre of the cube is the origin of the coordinates. The 
charge density is calculated along the four tetrahedral bonds and the [100], 
[010], and [001] directions. The density along the bonds directions is found to 
be the same. Also, the density along the [100], [010], and [001] directions are 
the same at equal distances from the center of the Wigner-Seitz cell (which is 
the origin of coordinate axes employed).  In general, the density rises from 
zero at the center of a cell to a certain maximum value and then drops down 
as the distance is further increased. The results obtained also explain the 
known hardness of carbon (diamond). 
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1.0 Introduction 

It is a well known fact [9] and [22] that the one-electron wave function  for the  jth 
electron in a crystal, ( , )jΨ k r   at the point r  is given by the Bloch theorem as 

  ( ) ( ) ( )rurikλ,k,rΨ λkj •= exp  (1.1)  

where λ is the energy eigenvalue, k is the wave vector, and u is the Bloch function. The Bloch 
function is required to have the full translational symmetry of the lattice, i.e 
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( ) ( ), , ,k ku r u r Rλ λ= +      (1.2) 

for any direct lattice point vector R.  The probability function for the electrons in a spatial region 

of volume dΩ  is given by ( ) 2

,n k r dΨ Ω  for the electrons in valence band n and state k. When 

many k-states are considered, a charge density can be described. In particular, the charge density 
for each valence band can be written as 

( ) ( ) 2

, ,n n kk
r c rρ = Ψ∑     (1.3) 

where the summation is over all states in the Brillouin zone for a given band n. The total charge 
density for a semiconductor can be obtained by adding the charge densities from all the valence 
bands. i.e.  

( ) ( ),nn
r rρ ρ=∑     (1.4) 

where the sum is over all occupied bands. The function ( )n rρ  yields information about the 

properties of individual bands and can be used to determine the role of each band in the bonding 

nature of the crystal. The total charge density ( )rρ  represents the electronic distribution in a 

direct lattice. It has been shown experimentally in [4] and theoretically in [8] that ( )rρ  clearly 

demonstrates the peaking of the charge density in the covalent bond halfway between the atoms 
in C, Si, Ge, and gray-Sn. 

Normally, the charge density in a condensed matter such as crystals is obtained from 
extremely complicated functions. However, in this work, the sp3 electrons charge density in the 
diamond-structure semiconductor crystals for the state k = 0 is calculated from first-principles. 
The basic inputs are the lattice constant of the crystal and the atomic number of the atom.  It is 
assumed here that the Bloch functions in the crystal will not very seriously differ from the wave 
functions in the atomic system; in fact even in practical and accurate calculations in solids, the 
atomic orbitals are used as a first approximation [5]. Therefore, the sp3 normalized Slater orbitals, 
were used to represent the various Bloch functions, uj. 

 It should be noted that for the state k = 0, 1exp =• r)(ik . Therefore, the one-electron 

wave function in a crystal reduces to u=Ψ , and the electronic charge density is simply given by 
2

u . 

 
2. 0 The normalized slater orbitals 

There are many ways of obtaining the one-electron function for an electron in an atomic 
system. For example, they can be obtained numerically with the Hartree-Fock method [6] or 
analytically with Roothan's Self-eonsistent-Field (SCF) method [1]. However, the usefulness of 
functions simpler than the Hartree-Fock functions were recognized long ago, [10] and [18]. They 
both made use of a single exponential function to describe an atomic orbital. In this work, the 
one-electron function for an electron in an atomic  system is represented by the  Slater atomic 
orbital for multi-electron atoms and ions,  given by [13] as  

( ) ( )1
,, , exp , ,effn

n l m

Z r
r Ar Y

n
θ ϕ θ ϕ

∗ −
∗

− 
Φ =  

 
    (2.1) 

where n is the principal quantum number, n* is the effective principal quantum number, A is a 
normalization constant, and Zeff  is the effective nuclear charge. The effective nuclear charge is 
given by  
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,effZ Z σ= −
      (2.2) 

 
 
where σ is the screening constant. 

The radial part of the Slater orbital, R is given by  

( ) ( )exp ,b
nR r Ar t r= − ×     (2.3) 

where 

1,   and  .effZ
b n t

n
∗

∗= − =      (2.4) 

To calculate R(r), n* and σ must be known. There are several rules proposed for the calculation of 
these quantities and the interested reader is referred to the work of [17]. These rules were used to 
calculate n*, σ, and zeff and then the various radial factors R(r) in α – tin. However, in the case 
of C, Si and Ge the various R(r) were calculated using the values Zeff reported by [2]. 
 
3.0 Normalized wave function for sp3 orbital  

In its ground state, carbon atom has the 1s and 2s orbitals filled and only two electrons in 
the three 2p orbitals i.e. configuration of 1s22s22p2. Therefore, it might be expected to be divalent 
and form bonds through the 2p orbitals, at 90o to one another. But in nearly all its compounds 
carbon is tetravalent. In order to account for the tetravalent bond formation,  we must assume that 
the state of carbon which is forming the bonds is one having the electron configuration 1s22s12p3, 
for then the 2s and the three 2p electrons are all available for bond formation. Let the normalized 
ground state orbitals be represented by the letters s, p, d, ect, and the hybridized state be 
represented by SP. Considering sp hybridization, the general expression for a normalized hybrid 
wave function is given in [5] as 

1 2 ,SP s pα α= +      (3.1) 

where  2 2
1 2 1.α α+ =   Its fractional s and p characters are 2

1α  and  2
2α   respectively and it is 

called an 
2 2
1 2s pα α  or ( )2

2 1/spα α hybrid. Reversing the process, we see that an spx hybrid has a 
normalized wave function  

   ( ) ( )1/2
1 ,xSP x s x p

−= + +     (3.2) 

where x may be any positive number. 
 Since the s orbitals are spherically symmetrical, the directions in which these hybrids 
orbitals point are the same as the directions of the p orbitals [14].  As the three p orbitals (px, py, 
and pz) have angular variation like unit vectors in the x-, y-, and z-directions respectively, we can 
always find the component of a p orbital pointing in a specified direction by the normal rules of 
vector algebra. If we are interested in the direction of the unit vector (a,b,c) then the value (i.e. 
magnitude) of the p orbitals along this direction, p(a,b,c) is given by the wave function  

    ( ), , .x y zp a b c ap bp cp= + +     (3.3) 

Thus an spx hybrid along this direction has the wave function 

( ) ( ){ }1/2
( , , ) 1 .x

x y zSP a b c x s x ap bp cp
−= + + + +    (3.4) 

In sp3 hybridized orbital, x = 3, (3.4) becomes 

( ){ }3 1
( , , ) 3 .

2 x y zSP a b c s ap bp cp= + + +    (3.5) 
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Figure 3.1: Tetrahedral bonds pointing towards the corners of a unit cube. the center of the cube is the 

origin of the coordinates. 
 

To obtain more detail expression for the hybrids, we must choose some orientation for 
the tetrahedron with respect to the Cartesian axes. The most convenient orientation is to inscribe 
the tetrahedron in a cube whose edges are parallel to the Cartesian axes as shown in Figure 3.1. 
The corners of the tetrahedron can be labeled by their Cartesian coordinates as shown. A p orbital 
pointing to the corner (1,1,1) must have an equal mixture of px, py, and pz. It can be proved [14] 
that after normalizing, the wave function p(1,1,1) is given by  

( )(1,1,1) 1/ 3 .x y zp p p p= + +    (3.6) 

Alternatively, 1/30.5 is the cosine of the angle which the vector makes with each of the coordinate 
axes. It follows that the sp3 hybridized orbital pointing to the corner (1,1,1) will have the wave 

function ( )
3

1,1,1SP  which is given by 

( ) ( )3
1,1,1 1/ 2 .x y zSP s p p p= + + +    (3.7) 

The normalized wave functions of the other three hybrids are 

( ) ( )3
1, 1, 1 1/ 2 ,x y zSP s p p p− − − = + − −    (3.8) 

( ) ( )3
1,1, 1 1/ 2 ,x y zSP s p p p− − = − + −    (3.9) 

( ) ( )3
1, 1,1 1/ 2 .x y zSP s p p p− − = − − +                (3.10) 

The charge density of the sp3 orbitals electrons along the bond direction is given by  

( ) ( )( )2
rΨrρ a,b,c= ,                (3.11) 

where 3SP≡Ψ , and is given by equations (3.7) to (3.10). 
 
4.0 Computational procedure 
 An outline of the computational procedure is as follows: 
(i) Slater rules were used to calculate n* and σ and then the various radial factors R(r) in α–
tin. However, in the case of C, Si and Ge the various R(r) were calculated using the values Zeff 
reported by [2]. The author could not find in the literature a reliable Zeff for α–tin; therefore, it 
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becomes imperative for it to be evaluated using Slater rules. 

 
 (ii) The radial part of the Slater orbital, (2.3) is then formed for each atomic species. 
(iii) The expressions for the real spherical harmonics given in appendix A of [11] were used to 

evaluate the angular part of the Slater orbital, ( ), ,l mY θ ϕ  along the [001], [010], and [100] 

directions. 

(iv) The Slater orbitals, ( ), ,n r θ ϕΦ  (i.e. Eq. [2.1]) were then setup along the directions 

[001], [010], and [100] directions. 
(v) A direction is chosen and then 

(a) The normalized sp3 orbitals for the chosen direction calculated by use of (3.4). 
(b) Finally, the charge density is evaluated from (3.11). 

 
5.0 Results and discussion 

The bonding electrons charge density is calculated along the four tetrahedral bonds and 
the [100], [010], and [001] directions. The density along the bond directions is found to be the 
same. Also, the density along the [100], [010], and [001] directions are the same at equal 
distances from the centre of the Wigner-Seitz cell (which is the origin of coordinate axes 
employed), therefore, only the charge densities along the bond and [001] directions are presented.  
 
 
 
 
 
 
 
 
 
 
## 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. Variation of bonding electrons charge density with distance from the center of the wigner-seitz cell of 
diamond-structure semiconductor crystals along the bonding direction. (a) carbon, (b) silicon, (c) germanium, and (d) 

α-tin 
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Figure 5.2. Variation of bonding electrons charge density with distance from the center of the wigner-seitz cell of 
diamond-structure semiconductor crystals along the [001] direction. (a) carbon, (b) silicon, (c) germanium, and (d) α-

tin. 
The graphs for the variation of density with distance from the centre of the Wigner-Seitz 

cell are given in Figures. 5.1 and 5.2, and a summary is given in Table 4.1. It should be noted that 
the charge density is given in units of (electronic charge)2, while distance is in units of the 
appropriate nearest neighbour distance, d. In general, the density rises from zero at the centre of 
the cell to a certain maximum value and the drops down as the distance is further increased.  

The maximum density along the bond direction is about 2.5 times the maximum density 
along the [001] direction in all the crystals investigated. The maximum density in each crystal 
occurs at the same distance along both the bond direction and the z-axis. In carbon the maximum 
density occurs at 0.2d, in silicon at 0.3d, in germanium at 0.35d, and at 0.4d in α-tin in agreement 
with the results of [4] and that of [8]. 
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In the crystals investigated, carbon has the smallest Wigner-Seitz cell and α-tin the 
largest. Since the number of the bonding electrons in all the crystals are the same (four), it is 
obvious that the charge density will be highest in carbon and smallest in tin as has been found in 
this work. The higher the bonding electrons charge density the stronger the bond and the harder 
the crystal. Thus the known hardness of diamond (carbon) has been accounted by the results 
obtained.  
 

Table 5.1.  A comparison of the maximum charge densities along the [100] 
 and the bonding directions. 

 
Crystal [001] Direction Bond Direction 

 Max. Density (e2) r (d) Max. Density (e2) r (d) 
Carbon 0.042469 0.20 0.110068 0.20 
Silicon 0.009839 0.30 0.024969 0.30 
Germanium 0.009179 0.35 0.023261 0.35 
α-Tin 0.003931 0.40 0.010237 0.40 

 
6.0 Conclusion 

A first-principle calculation of the sp3 hybridized orbtital wave functions and charge densities in the 
diamond-structure semiconductor crystals has been done. The basic input to all calculations are the 
lattice constant of the crystal and the atomic number of the constituent atom. The bonding 
electrons charge density for the k = 0 state (i.e. the ground state) is calculated along the four 
tetrahedral bonds and the [100], [010], and [001] directions. The density along the bond 
directions are the same at equal distances from the centre of the Wigner-Seitz cell. The agreement 
of the obtained results with those found by others are good, particularly in silicon, germanium, 
and tin. 
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