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Abstract

The electronic charge density due to the sp® hybridized orbitals
electrons in the diamond-structure semiconductor crystals has been
calculated for the k = 0 state. This charge density represents the electronic
distribution in the direct lattice of the crystals. Normally, the charge density in
a condensed matter such as crystals is obtained from extremely complicated
functions. However, in this work, the charge density is calculated from first-
principles. The basic inputs are the lattice constant of the crystal and the
atomic number of the atom. To obtain the required expression for the
hybrids, we must choose some orientation for the tetrahedral bonds with
respect to the Cartesian axes. The most convenient orientation chosen is to
inscribe the tetrahedron in a cube whose edges are parallel to the Cartesian
axes as shown in Figure 3.1 The tetrahedral bonds point towards the corners
of a unit cube. The centre of the cube is the origin of the coordinates. The
charge density is calculated along the four tetrahedral bonds and the [100],
[010], and [001] directions. The density along the bonds directionsis found to
be the same. Also, the density along the [100], [010],and [001] directions are
the same at equal distances from the center of the Wigner-Seitz cell (which is
the origin of coordinate axes employed). In general, the density rises from
zero at the center of a cell to a certain maximum value and then drops down
as the distance is further increased. The results obtained also explain the

known hardness of carbon (diamond).
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1.0 Introduction
It is a well known fact [9] and [22] that the one-electron wawection for the

electron in a crystal¥; (k,r) at the point is given by the Bloch theorem as

v, (2,k,r) = explik « r)u, (r) (1.1)
where is the energy eigenvaluk,is the wave vector, and u is the Bloch function. The Bloch
function is required to have the full translational symmetry of thiedai.e
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U (r)=u,, (r+R), (1.2)
for any direct lattice point vectd. The probability function for the electrons in a spatialaeg

of volume dQ is given by‘llJn’k (r)‘de for the electrons in valence band n and stawhen

manyk-states are considered, a charge density can be describedidulgra the charge density
for each valence band can be written as

2
Ion(r)zzkc‘lpn,k(r)‘ ' (13)
where the summation is over all states in the Brillouin Zona given band n. The total charge
density for a semiconductor can be obtained by adding the chargtedefinam all the valence

bands. i.e.
p(r)=2,p.(r), (1.4)

where the sum is over all occupied bands. The funcﬁp(nr) yields information about the

properties of individual bands and can be used to determine thef edeh band in the bonding
nature of the crystal. The total charge densﬁ(/r) represents the electronic distribution in a

direct lattice. It has been shown experimentally in [4] and thealgtin [8] that ,o(r) clearly

demonstrates the peaking of the charge density in the covalenhaliwdy between the atoms
in C, Si, Geand graysn

Normally, the charge density in a condensed matter such sialsrys obtained from
extremely complicated functions. However, in this work, theetgctrons charge density in the
diamond-structure semiconductor crystals for the dtateO is calculated from first-principles.
The basic inputs are the lattice constant of the crystatt@ndtomic number of the atom. It is
assumed here that the Bloch functions in the crystal will eot seriously differ from the wave
functions in the atomic system; in fact even in practical agwirate calculations in solids, the
atomic orbitals are used as a first approximation [5]. Theretoeesi normalized Slater orbitals,
were used to represent the various Bloch functigns, u

It should be noted that for the state k =e&p(ik * r) =1. Therefore, the one-electron

wave function in a crystal reduces = u, and the electronic charge density is simply given by
2
u

2.0 The normalized slater orbitals

There are many ways of obtaining the one-electron function foreatrah in an atomic
system. For example, they can be obtained numerically witiH#mree-Fock method [6] or
analytically with Roothan's Self-eonsistent-Field (SCF)hmeét[1]. However, the usefulness of
functions simpler than the Hartree-Fock functions were recogiongdago, [10] and [18]. They
both made use of a single exponential function to describe an avolitial. In this work, the
one-electron function for an electron in an atomic systempiesented by the Slater atomic
orbital for multi-electron atoms and ions, given by [13] as

®,(r.0,4)=Ar"" ex;{%)\ﬁ’m(ﬁ 9) . (2.1)

wheren is the principal quantum numbar* is the effective principal quantum numbérjs a
normalization constant, andZ is the effective nuclear charge. The effective nucleargehia
given by
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(2.2)
whereo is the screening constant.
The radial part of the Slater orbit& s given by
R,(r) = Ar’exp(-txr), (2.3)
where
— 1 _ Zeff
b=n-1, andt= P (2.4)

To calculateR(r), n ando must be known. There are several rules proposed for the calculation of
these quantities and the interested reader is refertbd tgork of [17]. These rules were used to
calculaten’, , and zg and then the various radial fact®§) in o — tin. However, in the case

of C, SiandGethe variouRR(r) were calculated using the valueg #ported by [2].

3.0  Normalized wave function for sp orbital

In its ground state, carbon atom has teard 2 orbitals filled and only two electrons in
the three @ orbitals i.e. configuration ofsi2s’2p?. Therefore, it might be expected to be divalent
and form bonds through the 2p orbitals, at @one another. But in nearly all its compounds
carbon is tetravalent. In order to account for the tetravalemd formation, we must assume that
the state of carbon which is forming the bonds is one havingi¢b&ron configurationsf2s'2p®,
for then the 8 and the threeRelectrons are all available for bond formation. Let the noredl
ground state orbitals be represented by the letters s, g¢tdand the hybridized state be
represented b$P. Considering sp hybridization, the general expression for a nagddtybrid
wave function is given in [5] as

SP=a,sta, p (3.1)

where af +aZ=1. lts fractional s and p characters ¢ and a respectively and it is

2
called ans® p"22 or sp(”zl”l) hybrid. Reversing the process, we see that arhgprid has a
normalized wave function

P =(1+ 97 sy, (3.2)

wherex may be any positive number.

Since thes orbitals are spherically symmetrical, the directions iniclv these hybrids
orbitals point are the same as the directions opthebitals [14]. As the threp orbitals @y, p,,
andp,) have angular variation like unit vectors in they- andz-directions respectively, we can
always find the component ofpaorbital pointing in a specified direction by the normal rules of
vector algebra. If we are interested in the direction ofutiievector @,b,9 then the value (i.e.
magnitude) of th@ orbitals along this directiom(a,b,c)is given by the wave function

p(abg=ag+ bp+ cp (3.3)
Thus arspg‘ hybrid along this direction has the wave function
SP(a b ¢=(1+ >)‘1’2{ sV & apr hpr gy}. (3.4)
In sp’ hybridized orbitalx = 3, (3.4) becomes
SP(ab Q:%{ s/3( ap+ bpr g;)} (3.5)
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Figure 3.1: Tetrahedral bonds pointing towards the cornes wifit cube. the center of the cube is the
origin of the coordinates.

To obtain more detail expression for the hybrids, we must choose aigngation for
the tetrahedron with respect to the Cartesian axes. The prostreent orientation is to inscribe
the tetrahedron in a cube whose edges are parallel to thesi@araixes as shown in Figure 3.1.
The corners of the tetrahedron can be labeled by their Cartesiamebesdis shown. A p orbital
pointing to the corner (1,1,1) must have an equal mixtugg, i, andp,. It can be proved [14]
that after normalizing, the wave functip(i,1,1) is given by

p(,1,1)=+ 1/3( Pt P+ pz) (3.6)
Alternatively, 1/3° is the cosine of the angle which the vector makes with efithe coordinate
axes. It follows that the 3ghybridized orbital pointing to the corner (1,1,1) will have the wave
function Sﬁ( which is given by

1,1,)

Sﬁ(m) :1/2( st p+ pt 9). (3.7)
The normalized wave functions of the other three hybrids are

SP 1109 =1/2( st p- p- 9) , (3.8)

SP i1y =1/2( s R+ p- 9) : (3.9)

SP 11y =1/ 2( s p- Rt 9) : (3.10)
The charge density of the’sprbitals electrons along the bond direction is given by

2
plr)= \W(a,b,c)(f)! : (3.11)

whereW = SP’, and is given by equations (3.7) to (3.10).

4.0  Computational procedure

An outline of the computational procedure is as follows:
(1) Slater rules were used to calculateands and then the various radial fact®§) in o—
tin. However, in the case @, SiandGe the variousR(r) were calculated using the valugs
reported by [2]. The author could not find in the literaturelable Z. for a—tin; therefore, it
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becomes imperative for it to be evaluated using Slater rules.

(i) The radial part of the Slater orbital, (2.3) is then formed for etirhia species.
(iii) The expressions for the real spherical harmonics given in appArafikl1] were used to

evaluate the angular part of the Slater orbitﬁj,,(@,¢) along the [001], [010], and [100]
directions.
(iv) The Slater orbitals,¢n(r,9,¢) (i.e. Eqg. [2.1]) were then setup along the directions

[001], [010], and [100] directions.

(V) A direction is chosen and then
(a) The normalized $mrbitals for the chosen direction calculated by use of (3.4).
(b) Finally, the charge density is evaluated from (3.11).

5.0 Results and discussion

The bonding electrons charge density is calculated along theefimahedral bonds and
the [100], [010], and [001] directions. The density along the bond diredddiasind to be the
same. Also, the density along the [100], [010], and [001] directioastrer same at equal
distances from the centre of the Wigner-Seitz cell (whiclthes origin of coordinate axes
employed), therefore, only the charge densities along the bond and [001] directipresarted.
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Figure 5.1.Variation of bonding electrons charge density wiitstance from the center of the wigner-seitz ol
diamond-structure semiconductor crystals alonghtiraling direction. (a) carbon, (b) silicon, (c)ganium, and (d)
a-tin
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Figure 5.2.Variation of bonding electrons charge density wiitstance from the center of the wigner-seitz ctll
diamond-structure semiconductor crystals along@b&] direction. (a) carbon, (b) silicon, (c) gemam, and (d)-
tin.

The graphs for the variation of density with distance fromctdre of the Wigner-Seitz
cell are given in Figures. 5.1 and 5.2, and a summary is given in Tablieshduld be noted that
the charge density is given in units of (electronic chérgehile distance is in units of the
appropriate nearest neighbour distaritdn general, the density rises from zero at the centre of
the cell to a certain maximum value and the drops down as the distance isifierissed.

The maximum density along the bond direction is about 2.5 times thienora density
along the [001] direction in all the crystals investigated. Tlagimum density in each crystal
occurs at the same distance along both the bond direction apdxtse In carbon the maximum
density occurs at ORin silicon at 0.8, in germanium at 0.25 and at 0.d in a-tin in agreement
with the results of [4] and that of [8].
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In the crystals investigated, carbon has the smallest Wggiez-cell anda-tin the
largest. Since the number of the bonding electrons in all théalsyare the same (four), it is
obvious that the charge density will be highest in carbon andestnal tin as has been found in
this work. The higher the bonding electrons charge density the stritregbond and the harder
the crystal. Thus the known hardness of diamond (carbon) has been edcourihe results
obtained.

Table 5.1 A comparison of the maximum charge densitieagthe [100]
and the bonding directions.

Crystal [001] Direction Bond Direction
Max. Density ¢) | r (d) Max. Density€) | r (d)
Carbon 0.042469 0.20 0.110068 0.20
Silicon 0.009839 0.30 0.024969 0.3(
Germanium 0.009179 0.35 0.023261 0.3b
a-Tin 0.003931 0.40 0.010237 0.40

6.0  Conclusion

A first-principle calculation of the $thybridized orbtital wave functions and charge dtssin the
diamond-structure semiconductor crystals has besre.dl'he basic input to all calculations are the
lattice constant of the crystal and the atomic number of thstitwent atom. The bonding
electrons charge density for the= O state (i.e. the ground state) is calculated along tie fo
tetrahedral bonds and the [100], [010], and [001] directions. The dealsity the bond
directions are the same at equal distances from the centreWidher-Seitz cell. The agreement
of the obtained results with those found by others are good, partjcuiasllicon, germanium,
and tin.
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