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Abstract

The problem of fluid flow in an open trough driven by the base
moving horizontally along its plane, was considered in [2, 3]. The approach
used was based on finite difference technique which takes a lot of memory.
This paper reformulates the problem in terms of integral equations and the
resulting equations solved numerically. The integral reformulation is
desirable as it uses less computer memory and is expected to give more
accurate result as numerical integration is a more stable process than
differentiation process.

1.0 Introduction

The steady state flow of a liquid in an open trough driven by the ibaonsidered. The
base is assumed to move along its plane at constant velodity th upper part of the liquid
opened to the atmosphere and so in contact with the air above lfpghe boundary is a free
surface whose shape has to be determined as part of the@rsolotithe problem. This free
surface is fixed by the stress equations at the interfacthandlume constraints imposed on the

problem. )
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Figure 1.1

The problem has been considered in [2, 3, 4] and is a limiting caise pfoblem proved
by Jean [1] theoretically to have a unique solution.

The numerical solution was sought in [3] for the problem usingefulifference approach
. Being a two dimensional problem, a lot of memory was needeget a more accurate
technique. In this paper this same problem is reformulated in form ofdlgegth
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hope to reduce the size of memory demand and the numerical pfoeedsscritization process)
undertaken to obtain solution of the problem. Unlike in the finiteeidihce approach only the
unknowns at the low boundary ( and not those in the internal domdie 86%) need be known
to determine the shape of the free surface. Moreover sitemration unlike differentiation is a
more stable process numerically, the hope is that a more accesatt might be obtained with
moderate effort and storage size.
1.1 Formulation

Introducing the dimensionless variableg, u, h, gn place of the dimensional variables,
y,u,h’.

1 1 1 1 I+ 1
lezilu =£|h=E| p* :M
a a U a yla
the governing equation of the steady creeping flow considered ifiegeverned by the
biharmonic equation

y:

0% =0 (1.1)
with the following boundary conditions. (assumis@ndn are distances measured along the

surface and normal to the surface of the flow boundBy
(a) No-slip and Non-penetration condition

¢ =0 ondD (1.2a)
0 Oonx=-1/2,1/2
0% - g% = : (1.2b)
on f(x)ony=0
(b) shear stress
20— o, 0
0% = -2k—— ondF (1.3)
07
(c) Normal Stress
—-ca(p+ p,)+Bh-2Ca oy =kondF (1.4)
0s0n
wheredF is the interface (free surface ) curve while
d*h
(2 doy) - dx
dh
ds @+ (T2yere
dx

is the curvature of the free surface &¢-1/2,h(-1/2)) is the angle which the interface makes
with the horizontal at its point of contact with the lefttieal wall. The variable s, is the distance
along the boundary measured in the anti-clockwise direction frororthm, while n is the
distance along the outward normal to the boundary. The angle goihe (X,y) on the
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boundarydD which the tangent to the boundary curve makes with the horizerdaehoted by
@ or sometimes by(X,y) to indicate the point at which the tangent is taken.
(d) Volume constraint

1/2
j h(x)dx = vol (1.5)
-1/2
() Contact angle condition:
3: ey ,= tan@(-1/2,h(- 1/2)) dn |X 1= tand @/2,h(1/2)) (1.6)
(9) Pressure equation:
2 2
@:—GD‘/I'@:GD‘/I (]_7)
0s an  on 0s
where u=- 6(// 6[// (1.8)

ay 0x
being the stream function
The three parametefSa, B volume are the capillary number, Bond number and the

1 1 2
vol' p_d'9a oM e

aspect ratio respectively and are defined as follovad,=

a y 4
variable p and p, are defined as
p=p*(xh(x)-p,p=p*(-1/2h(-1/2)) = p_ (1.10a)
ondF so that p(-1/2,h(-1/2)) =0 (1.10b)

2.0  Method of solution
The general solution of (1.1) can be expressed in the integral form as

)= 1% 2600 - TR+ P (1) - ) g 22

where X =(X,y) ,w=0% and X, =(X,Y,) is any point on or within the domain bounded by

the boundarydD . The function G(X, X,) is the solution of 1*G(X, X,) = (X, X,) , (5(X, %)
being the usual dirac function) here taken as

]ds(2.1)

G(X, %) = r(fél—’j)) lo r;((;—"f())) - Zi’; (2.2)
wherer(x,z) = (x—u)®>+(y—-v)? 5| x-z]*, r*(x,2) = (x—u)> +(y +Vv)? (2..3)

X=(%Y), X = (X ¥o),Z2=(u,v) . The functionG(x,X,) and its normal derivative vanish on
liney = 0. Its tangential derivative on the line also vanishes. In view of thigorel

I—Gds— J'?Gds (by equation (1.7))
S
dD
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= j pa—G ds(after integration by parts (2.4)
i 0s

and the boundary conditions (1.2a,b), (1.3), (1.7) inserted in the general solutiiore(2.1)
above becomes

paGQ(’l(O)dS— j aGQ(il(o)

j[ZKaG(l( XO) + DZG(X, 2(0) ] aw(l() dS
0s on 0

w01 T (25
+ [ F(90°G(x,%,)ds=0
AC

dD-AC

On the other hand applying the Green'’s third identity to the harmonic functior (% (X)
one obtain the equation

W2)ax) + [t 29820 96 gy jas= o0 256)
0 07
The function g is defined as g(x,%,) = —I og——=22 " (X.X) (2.7)
4 " r(X,X%,)

being a solution of1°g(x, X,) = d(X,X,) . The function g ,x,) vanishes on ling = 0.

For each pointX, on the free surfaadF, this equation (2.6) (by virtue of (1.3)) simplifies to
the equation
QU [ 08K)ge It QX)) 4 [ By (o
6,7 dD-dF ,7 6,7 6,7 dD-AC as
whereas for every poirx, on the fixed vertical boundaries it takes the form:

W2)exxo) + | w()Md j a9(“0)6‘/’()‘)o|s [ p%dszo (2.9)

dD-dF dD-AC

and should be solved together with (2.1) for the unkn%‘oéoﬂﬂnlx at each nodal poirx, on the
,7 20

interface, aw(X,) at each nodal poink, on the fixed boundary ang(X,) at each nodal point

on the whole boundary. The values of these quantities are nigefled), (1.5), (1.6) to obtain
the constantp, and the shape of the free bound#u(x). The choice ol andg above makes it
unnecessary to solve for the unknown quantities at the boundary.

In general X is a (variable) point on the boundary, whi¥g is any point within the

domainD or on the boundargD.

3.0  Discretization
The boundarydD is approximated by a sequence of line segmebis

x=tx_, + (1-t)x,forte[01]
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joining points X, , X.,, for all points x;,(i =12,A ,N) on the boundandD . The corner points

i1 2+

of the boundarydD, are taken to be some of those points. Defining the nodal gq as the

mid-point of the boundary line segmedD,, that isl(: = @/2)(x; +X,,,), foreachi = 1,2,...,

and supposqai*,a),*,h*,(g—l,/;j denote the values op,w,h,(;—‘,/; at the nodal pointx; while

pi,cq,h(g—i[;j denote their values at the mesh potthen applying equations (2.1), (2.6),

(1.6), (2.5), (2.8) at each nodal poilq*t we have the equations below in methods 1 and 2. From
(2.5) we have

28, e zq( j‘:‘Z%}f(xi),ﬁlZ/\,N (3.1)

giadD—Ac X; aD-dF-AC x. adF X;eAC
From (2.8) we have-(/(a—wj + > dw-2) a_l//j - >.b’;p; =0 which
n ). X, &dD—dF X, &dF an | x&D-AC
may be re-written as
b p d o 5 w2t (%) -
2hip+ X dyw- Y (kG +2f ) an =0 (3.2)
xdD-AC X, &dD—dF X, edF ),

for nodal points on the interface and from (2.9) we have

Wa+ Y d6-23 (awj S'bp, =0i=12A N
i

x, adD-dF x, edF on x, &dD-AC
on the fixed vertical boundaries and this may be rewritten as

dhipt D (W25, +d Dw -2 f (al//j =0 (3.3)

xdD-AC X, &dD—dF X, edF on

9G(x, %) ds f [2k aG(>,<;X.)

+0°G(x, X )]ds
an

wheregq, ; = IG(Z,&*)dS b= .[
dD,

dD,

IMdsq, = jg(x,x,)ds, f = j k%

. X, X; 0G
& ;= .[ 0°G(x,x)ds b | = J-gdg( S G .[ a—ds (3.4)
dD, wedd-Ac 95
andJ = {%) ! o) . Equations (3.1), (3.2), (3.3) are systems of linear equations of the form

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009)137 - 146
A flow in a trough: An integral equations formutatj P. B Shola  J of NAMP



An A, Ag
Ay Ay A u=C

A Agp Agg

where
Al =[¢,; A, =-1h ], As=I[c
_[Q ]AZZ_[dI]] A23_ (kJ |J+2fivi)

A, =-hb, ]A32 ( d.]) A33__[2fi,j]

AN ANNICIAR:
4=Th Pt Pl o 4 (anj (0/71’/\ ’(ank]

C=[a f,(x).8,f ()N ,a,f(x,),00A 00A 0]
to solve for the unknown u (i.e the unknowzr*j] at the nodal point s_{; on the boundary

except those on the horizontal bound&v}/ at the nodal pointsi(*j on the boundary except the
) - . . . . .
free boundary. a at the nodal pointx; on the interface). The differential equation (1.4) is
i

discretized by first integrating it over the inter\[gd: , 1(;1] along the x direction and using the
following approximations

'jhdx (X, - x)(dxj (%D_EQH:Q

j pdx= U/ 2)(P/, + P)(X.1 = X)

.
X

to have equation (1.4) becoming

.= 1+(h+1-hj2 T h-n, 1{nh ]
X =% | Xy X=X | \X-x (35)

. . 1 . . . .
—Bh(X.,—%)=—ZCa(p., + P +p )X, — %) —2CaZ

2
(o), (o) A5)

e ( ]f UV on ), \on)
0110s ; | X =X | \/1 (h* _h*jz

L [ SR

X ™%

S X)) =
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whereZ, =




The values ofh,,,h" are replaced byl/2)(h +h,,), @/2)(h_ +h) respectively so that

h,, —h becomes(l/2)(h,, —h). This equation is solved for h (using Newton’s method for

solving system of non-linear equations) together with conditions (1.6) whieppreximated as
h —h, =ltanf(-1/2,h(-1/2)),h, —h,_, = -l tanf(-1/2,h(-1/2)) (3.6)

where h, =h@/2), h_=h@/2-1), h,=h(-1/2) h =h(-1/2+1) and the volume

constraint condition from (1.5) (which on using trapezoidal rulepjgraximate the integral)

becomes
i=n-1 i=n-1

Vol =23 (% =) (R + ) = 206 =3 + 2 3 (X =X + (%, = %), B7)

4.0 Hydrostatic problem
The corresponding hydrostatic equation can be obtained from (1.4) by putting ca and to
zero so that the pressure p, becomes zero leaving the equation,

d2h,
dx® — Bho
[1+ (C:::.'O)Z]SIZ
X

With replacingh, in (1.4) to denote the hydrostatic solution of the interface. This is to be be
solved together with the conditions in 1.6.

5.0 Computational step
The equations above are solved iteratively and the procedwutésusescribed as follows
for a given vol and B.

1. Input the number of subdivision points needed on the vertical waligohtal wall and
the interface and compute the total number N, of the subdivision points.
2. Divide the boundary into subintervals and store the subdivision péitsy,) for

i=1,2,...N.. Compute the coordinates of the nodal poﬁ)(*ﬁ, yi*) of dD as well as its length
|dD, | for i=1,2,...N.

3. Input the flow parameters (Ca,vol,B).

4. Solve numerically equation in 4.1 to obtain the hydrostatic solution. (Thisspands to
the case when Ca=0).

5. Increase the current value of Ca for which solution is already obtédynedme amount,
to say Ca* say.

6. Solve the problem for this value Ca*:

(@) Set the interfada(x), equal the one obtained for Ca*
(b) Solve the linear systems (3.1), (3.2) for the unknowins‘?;al,(g—‘//)i and
7

(© Calculate h, from 3.6a, 3.6c and compute the new valuehpf from 3.7a

(d) Re-adjust the subdivision points, nodal points and the lengthS. | in the
interface.
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(e) Check the termination condition,
If iteration diverges then
0] set Ca = (Ca + Ca*)/2
(ii) go to step 6
Else, if termination condition is met then
)] Output result
(i) If desired to compute for larger value of Ca then
(@) CA=Ca*
(b) Gotostep5
Otherwise terminate computation
Else gotostepb

6.0  Results and observations

The above results presented in the graphs shows that the sdlih@orinterface)
approaches the hydrostatic solution as the capillary number becongzsingty small.
The linear system resulting from the normal stress equa@snsolved at each round of equation
by Gauss-elimination method. The choice of the normal stressi@ydat revising the free
surface is madedue to the fact that we are interestée iftobv with low capillarity number (that
is, a flow with large surface tension).
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Figure 6.1: Interface curve. Nature of the limit Ga N o x -,
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Figure 6.4: Interface curve: Effect of variation of Ca

Figure 6.% Interface curve. Nature of the limit C: on the interface. Vol =0.8, Q =3® = 2.

—0,Vol=15Q=-1B=2.

7. Lonciusion

The work above considers a very highly viscous flow with adtetace in a rectangular
trough. The problem is turned into a dimensionless form makmfow to depend only on three
parameters, namely the capillary number Bond number and the troagest ratio. The
problem in its dimensionless form is reformulated in term of matedjfferential equations and
the resulting equations solved numerically. The equations converge for soilzaumber.

Appendix
Solving the non-linear system of equations (3.5), (3.6) and (3.7). The system of non linear

equationF (h') =0 whereh = (h,,h,A ,h)), h =(h,,h.A LK, B,
E(h) =(fo(0), (A, f (1)), fo(h') =h —hy = (x — %) tand(=1/2,h(-=1/2)),

f (b*) = h..—h {1+(h+1‘h jzr 2 _h-h, [1+[h _h'ljzr 2
X7 X X1 7% X~ %X X =%

- Bh (Xi*+1 - Xn*) +%Ca( pi*+1 + pi* + pL)(Xi*+l - Xn*) - 2C3-Z =0, fori=12A n-1

f,(h) =N, —h +(x, =X, tan6(-1/2,h(-1/2)),
i=n-1

fn+1(b*) =Vol _% Z(Xm =-%)(h,, +h)

i=n-1 1

Z(Xiﬂ _Xi—l)hi +§(Xn _Xn—l)hn]

i=1

is solved using Newton’s method, which specifies that the system of éqaations

1 1
=Vol ~[ (% = Xo)h, +

F'(h™)ah =-F(h""),i = 012 be solved fordh” whereh™ = (h® h A |
hﬁ”, pf)) | b*(i+1) :b*(i) +Ab*,
of,  ofy ofy  ofy
oh, oh ~ ° oh  op,
of,  of, of,  of,
F'(h)=[a,]= of Ofi |_| ohy, oh oh, 0p,
oh. ' ap, . . .
Oy Of s Oy O
oh, oh, oh.  op,

This matrix F'(h") is of form
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* * * *
* * * *

* * * *

* * * *

* * * *

* * * *

Note that
o TMI=0 o
= 1ifi=1 =—2=0

0,otherwise P
of 1 1 of 1 1
oh,, X, —X 21327 0n ., x —-x_, 27?2

1 1 1+ hi+1_hi i—-1 i i—1 1+ hi_hi—l
Xiyg = X X~ Xiq
Fo BT g, -x)
oh, oh,, oh,
of. . .. of 1 . .
—L=0,forjzi+1i,i-1, —==Ca(x,, — X
oh J 1 op, 2 a(%. ~ %)
5 -1ifi=n-1
3 L= 1if i=n, n=0
h 0, otherwise P
%(xl—xo),ifi=0

o ., L of
2 = (x —x_),ifi=n — =0
ah (%41 =% 1) ap

%(xn - X,_,) otherwise

We assume equally spaced interval in x with each subinterval of len(jta |X.,, — xi| =1 for
all i)
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