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Abstract 
 

This is a study of the relative performance of nine automatic 
autoregressive order determination criteria for full-order modeling using the 
least squares approach.  Of the nine: AIC, FPE, CAT2, S, FPE4, ΦΦΦΦ, SIC, BIC 
and CAT3, we have found the trio, AIC, FPE and CAT3, to be the most 
consistent. The rest underestimate relatively. 

 
 
 
1.0 Introduction. 

A stationary time series {Xt} is said to follow an autoregressive model of order p, if it 
satisfies the following difference equation 

tptpttt XXXX εααα =++++ −−− ...2211     (1.1) 

where {εt} is a white noise process with variance σ2. For stationarity of (1.1), it is required that 

1||,0...1 2
21 ≤≠++++ zzzz p

pααα  

 Any stationary time series can be expressed as an infinite-order autoregressive (AR) 
process. In practice, autoregressive modeling amounts to approximating the infinite order auto-
regression by the finite one (1.1). The problem is two-fold: the determination of the order p and 
the estimation of the parameters α1, …, αp. The latter can be achieved by the use of any 
conventional method like those of the least error sum of squares (or the Yule-Walker (Y-W) 
method), maximum likelihood, maximum entropy, etc. The former has been addressed by many 
authors some of whom have proposed automatic criteria for it. For example, Akaike [1, 3, 4] has 
proposed Final Prediction Error (FPE), Akaike’s Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) respectively. Schwarz [13] proposed his Information Criterion (SIC) 
and [20] proposed Criterion Autoregression Transfer Function (CAT). Order determination is 
very important since underestimation increases the residual variance and overestimation 
decreases the reliability of the model. 
 A comparative study of the criteria has engaged the attention of many researchers such as 
[5], [11], [12], [16], [18] and [19] to mention a few. In this paper we are interested in the 
comparative performance of nine criteria AIC, FPE, SIC, S, Φ, CAT2, CAT3, FPE4 and BIC for 
the least squares (Y-W) approach to model estimation. We shall use simulated as well as real 
series for the study. For the Monte-Carlo method, we shall observe the comparative efficiencies 
of the criteria with change in sample size. Etuk [12] has compared the same criteria for the 
maximum entropy method of estimation. 
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2.0 Order Determination  
 Consider a realization X1, X2, …, XN of the stationary time series {Xt} with E(Xt) = µ. The 
autocovariance function {γk} and the autocorrelation function {ρk} defined by 

 Λ,2,1,0]},][{[ ±±=−−= − kXXE kttk µµγ  and Λ,2,1,0,
0

== kk
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respectively, may be estimated by {ck} and {rk} given by 
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respectively, where tX
N

X Σ= 1
.  After specifying a maximum lag L, the order in the range 0, 1, 

2, …, L is that for which any of the following criteria is minimum: 
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Λ,2,1,0,~)2()( 2 =+= ppNpS pN σ  (Shibata, [25]) 

where 2ˆ pσ  and 2~
pσ  are respectively the least squares and the maximum likelihood estimates of the 

residual variance. 
 With the order p estimated, an approximate least squares (Yule-Walker(Y-W)) approach 
to the estimation of (1.1) is obtained by the application of the recursive formula: 
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where (1.1) is written more specifically as tptPPtptpt XXXX εααα =++++ −−− ...2211 . 

 
3.0 Simulation results 
 Two AR(2) series with (α1, α2) equal to (-0.66, 0.10), (-0.46, 0.08) were simulated 
twenty independent times each. In the sequel we shall refer to them as series I and II respectively. 
We used sample sizes of 50, 150 and 250 for each simulated series.   
 The white noise process of each simulation is a sequence of pseudorandom numbers 
generated by the use of the RAN function of the FORTRAN 77 language. The sequence is made 
standard normal. In the sequel we use c = 1.5, an arbitrary choice, for Φ. We observed the 
frequency with which the correct order of 2 was picked by each order determination criterion for 
each series. Table 3.1 gives the summary of the results. 
 

Table 3.1: Frequency out of 20 of correct picking of order 2 
 

Series N AIC FPE BIC ΦΦΦΦ  SIC S CAT2 CAT3 FPE4 
I 50 

150 
250 

7 
5 
11 

7 
5 
11 

6 
5 
11 

4 
2 
11 

 
 
 

4 
2 
9 

7 
6 
12 

3 
7 
12 

7 
5 
11 

6 
4 
11 

II 50 
150 
250 

5 
7 
4 

5 
7 
4 

4 
3 
3 

2 
2 
4 

 
 
 

3 
2 
3 

4 
5 
3 

2 
1 
2 

5 
7 
4 

3 
2 
3 

TOTAL  39 39 32 25  23 37 21 39 29 
 
 For all the 120 simulated series i.e. 60 independent series for each model, AIC, FPE and 
CAT3 agreed with each other always. AIC and FPE are known to be asymptotically equivalent 
(e.g. Priestley, [21]). Tong [26] analytically proved that CAT3 and AIC possess the same local 
behaviour. Consistent with Shibata’s [24] result that asymptotically AIC has a zero probability of 
underestimation, we observed that the trio tended to overestimate, this tendency increasing with 
sample size. Akaike [2] also noted this with FPE. 
 BIC, Φ, SIC and FPE4 recommended  the same order most of the time, tending to 
underestimate.  Whereas increase in sample size was observed to enhance the consistency of Φ 
and SIC, it appeared to decrease that of FPE4 which tended to overestimate relatively. 
 S showed a tendency to overestimate which increased with sample size but which is less 
than that of FPE. CAT2 recommended zero order most often. This was also observed by 
Tong(1977). Generally, as obvious from Table 3.1, AIC, FPE, CAT3 performed best, S next, then 
BIC, FPE4 and so on and CAT2 least. 
 
4.0 Real series analysis. 
 Three well analysed series are used. Our method is to compare the models selected by the 
criteria within an order range of 0 to 30, with earlier ones. Also we shall subject each selected 
model to the Box-Pierce [8] portmanteau test. Another diagnostic checking method we shall use 
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is comparing the spectra of the models with the estimated raw spectrum. Other diagnostic aids we 
use are the inverse autocorrelation function (IACF) and the partial autocorrelation function 
(PACF) (see Etuk [12]). 
4.1 Wolfer’s sunspot series (1700-1955) 
 The yearly data are available as from1700 onwards (see Waldmeier, [27]). We used the 256 
values of 1700 to 1955 inclusive. FPE, AIC and CAT3 recommend the model 
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with the Box-Pierce [8] statistic R = 356.846. 
FPE4, Φ and S choose the AR(8): 

17.27,18.210ˆ,223.0135.0

085.0169.0185.0178.0427.0214.1
2

87

654321

===−

+−+−++−

−−

−−−−−−

RXX

XXXXXXX

ttt

ttttttt

σε
 (4.2) 

 
SIC chooses the AR(3): 

 40.48,04.234ˆ,153.0452.0248.1 2
321 ===++− −−− RXXXX ttttt σε   (4.3) 

BIC chooses the AR(2): 

 61.51,67.239ˆ,658.0348.1 2
21 ===+− −− RXXX tttt σε   (4.4) 
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Figure 4.1: Some sunspot series spectra 
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CAT2 chooses no autoregressive model. IACF suggests an order of 2 and the PACF an order of 3, 
8 or 18. The portmanteau test disqualifies (4.1), (4.3) and (4.4) but suggests the adequacy of (4.2). 
Figure 4.1 is a superimposition of the spectra of (4.1) and (4.2) on the raw spectrum. From this 
graph we observe a closer agreement of the spectrum of (4.1) to the raw spectrum than that of 
(4.2). Those of (4.3) and (4.4) are much further from resembling the raw spectrum, [11] This 
suggests (4.1) as the adequate model. In support [17] and [22] chose an order of 9. Evidence is 
therefore in favour of FPE, AIC, and CAT3. 

 
 
 
4.2. Series A ([7], pp. 526) 
 BIC, Φ, SIC, S and FPE4 recommend the model 

 03.100,1002.0ˆ,252.0427.0 2
21 ===−− −− RXXX tttt σε  (4.5) 

On the other hand, AIC, FPE, CAT2 and CAT3 pick the model  

ttttttttt XXXXXXXX ε=−−+−−−− −−−−−−− 7654321 156.0062.0015.0014.0020.0197.0373.0  

   44.22,0950.0ˆ 2 == Rσ     (4.6) 
 The portmanteau test discredits (4.5) but not (4.6). The IACF and PACF both recommend 
an order of 7 for the series (see, [12]). Cleveland [10] suggested the order of 7. The spectrum of 
(4.6) agrees more closely with the raw spectrum than that of (4.5) (see [11]). This implies that 
(4.6) better fits the data than (4.5). 
4.3 Canadian Lynx Numbers (1821-1934) (Campbell and Walker, [9], pp. 430) 
 We used the well-analysed logarithmic transformation. BIC, Φ and SIC recommend the 
AR(2): 

 154.40,3027.0ˆ,720.0350.1 2
21 ===+− −− RXXX tttt σε   (4.7) 

 The criteria AIC, FPE, CAT2, CAT3, FPE4 and S choose the AR(11): 

7654321 068.0120.0113.0270.0213.0508.0139.1 −−−−−−− −+−+−+− tttttttt XXXXXXXX

545.16,2263.0ˆ,311.0185.0134.0040.0 2
111098 ===+−−+ −−−− RXXXX ttttt σε  (4.8) 

The IACF recommend an order of 2 whereas PACF recommend 11. Both the R-test and the 
spectrum test support an order of 11, but not of 2. Etuk [11] found the order 11 adequate. Haggan 
and Oyetunji [19] and Priestley [21] also chose an AR(11). 
 
5.0 Conclusion. 
 Etuk [11] has shown that  
 )()()()4()()()( AICpFPEpSpFPEppSICpBICp ≤≤≤≤Φ≤≤  
for N > 44 where p(BIC) refers to the order p chosen by BIC. Both our Monte Carlo and real 
series results are consistent with this relationship. Hence, it is advisable to use any of AIC, FPE 
and CAT3 in full-order autoregressive modeling with the least squares method. However, other 
diagnostic checking criteria should also be applied before final model selection. 
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