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Abstract 
 

Methods of collocation and interpolation were adopted to generate a 
continuous implicit scheme for the solution of second order ordinary 
differential equation. Newton polynomial approximation method was used to 
generate the unknown parameter in the corrector. This enables us to solve 
both initial and boundary value problems. 
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1.0 Introduction 

The second order ordinary differential equation of the form  

),,( ''' yyxfy =     (1.1) 

subject to 1
'

0 )(,)( ηη == ayay is called initial value problem. When the condition is of the form 

20 )(,)( ybyay ==η  for bxa ≤≤  it is called a boundary value problem, where f is a continuous 

function. Scientific and technological problems often lead to mathematical modeling of real life 
applications such as motion of projectiles or orbiting bodies, population growth, chemical kinetics 
and economic growth. Differential equation is often used to model the problems and most times 
these equations do not have analytic solution, hence an approximate numerical method is required 
to solve the problems. Equations (1.1) is conventionally solved by first reducing it to the system 
of first order ordinary differential equation and then one applies the various methods available for 
solving the system of the first order. This approach is extensively discussed in the literature and 
we cite few examples among others, [1], [2], [3], [4], [5], [6], [7].  Although this approach has 
tremendous success yet it has certain drawback. For instance, computer programs associated with 
the method are often complicated especially when the subroutines to supply the starting values for 
the methods result in longer computer time and more computational work. In addition Vigo –
Aguiar and Ramos [8], stated that these methods do not utilize additional information associated 
with a specific ordinary differential equation, such as oscillatory nature of the solution. 
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 Block methods for numerical solution of the first order ordinary differential equations 
have been proposed by several researchers such as in [18, 20, 21 and 27].  Rosser [19] introduced 
the 3- point implicit block method based on integration formulae which is basically Newton’s 
cote type. Zanariah et al [26], proposed 3 points implicit block method based on Newton’s 
backward divided difference formula. 
 Considerable attention has been devoted to development of method to solve special 
second order ordinary differential equation of the type ),('' yxfy =  directly without reducing it 
to system of first order. For instance [1],[9], [10], [11] and [12] among others.  Hairer and 
Wanner [13] proposed Nystrom type method and stated other conditions for determining the 
parameter of the method. Chawla and Sharma [14] proposed a method due to Runge kutta 
method. Method of linear multistep method have been considered by Awoyemi and Kayode [15], 
and Kayode [23].  These methods are predictor corrector methods, although the implementation 
of the method in a pc mode yield good accuracy, the procedure is costly to implement. For 
instance, pc subroutine are very complicated to write, since they require special techniques for 
supplying the starting values and for varying the step size, which lead to longer time and more 
human effort. Jator and Li [16], proposed an order 5 method that was implemented without the 
need for either predictor or starting values from other methods. Jator [6] proposed an order 6 
method based on the same method.  Adesanya et al. [17] proposed a two step method for the 
general solution of second order which is self starting and adopt Newton’s polynomial to generate 
the starting value.  Awoyemi et al. [24] recently proposed a self starting Numerov method. This 
method solves both initial and boundary value solution of ordinary differential equation.  Yahaya 
[12] constructed a Numerov method from a quadratic continuous polynomial solution. This 
process led to method applied to both initial and boundary value problems.  
 In this work, we propose a block method for three steps.  This method adopt Newton’s 
polynomial approximation to generate the starting value and solves both initial and boundary 
value problems. 
 
2.0 Methodology 

We first state the uniqueness theorem for higher order ordinary differential equation with 
initial value problem 
Theorem 2.1 

Let 

)......,,( )1(' −= nn uuuxfu , k
k cxu =)( 0     (2.1) 

k = 0, 1…n - 1, where u are scalars 

Let R be the region defined by the inequalities ,00 axxx +≤≤  bcs jj ≤− , 

1,...,1,0 −= nj , ( 0, 0).a b> >   Suppose 0 1( , ,..., )nf x s s − is defined in R and in addition 

(a) F is non negative and non decreasing in each 10 ,..., −nssx in R 

(b) 0 1( , ,.., ) 0nf x c c − > for axxx +≤≤ 00  

(c) 0≥kc , k = 1,2,…,n - 1 

Then the initial value problem (1.1) has a unique solution in R. (see Wend [25]) for 
details).  We consider an approximate solution to (1.1) in power series  

∑
=

=
k

j
jj xaxy

0

)()( φ      (2.2) 
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12)1(0,, −== kja j
j

j φφ are constants to be determined. Consider a linear multistep method 

of the form   

∑ ∑
−

=

−

=
++ +=

1

0

1

0

2 )()()(
t

r

m

r
rnrrnr fxhyxxy ϕφ      (2.3) 

where ],[ rnn xxx += , k = step length, m = the distinct collocation point, t is the interpolation 

point, for our method, the step length k = 3 

∑
−+

=
+=

1

0
,1 )()(

mi

i
irir xpx φφ , 1,....,2,1,0 −= mr      (2.4) 

∑
−+

=
+=

1

0
,1

22 )()()(
mt

i
iri xpxhxh ϕϕ ,r=0,1,2…,m - 1     (2.5) 

rnrn yxy ++ =)( , [0,1, 2,..., 1]r t∈ − ,)('' rnfxy += r = 0,1, m – 1  (2.6) 

To get )(xjφ  and )(xjϕ , According to Yahaya [12], Onumanyi arrived at matrix of the form DC 

= I, where I is an identity matrix of dimension )()( mtmt +×+ . 
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  (2.8) 

 
3.0 Development value for the unknown 
Theorem 3.1 

Assuming that ],[1 bacf n+∈  and ],[ baxk ∈ for k=0, 1, n are distinct values, then 

)()()( xRxyxf n+=  , where )(xy is a polynomial that can be used to approximate )(xf  

For Newton’s polynomial  

0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ... ( )( )...( )n ny x a a x x a x x x x a x x x x x x −= + − + − − + + − − −   (3.1) 

)()( xyxf ≅ , )(xRn is the remainder and has the form 

))()....()((
)!(

)( 110
1

1

nn
n

n

n xxxxxxxx
x

f
xR −−−−= −

+

+

   
 (3.2) 
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(See Awoyemi et al. [24]) for details. 

 
4.0  Development of three steps method 

In developing the method with step length k=3, we consider  

D=
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  (4.1) 

This gives  
t−=1α  , 12 += tα  

    ( )ttt
h

t 7103
360

)( 35
2

0 −+−=ϕ
 

 
( )tttt

h
222053

120
345

2

1 +−+=ϕ
 

( )ttttt
h

436010103
120

2345
2

2 ++++−=ϕ
 

( )tttt
h

820153
360

345
2

3 −++=ϕ
      

 (4.2) 

1'
1 −=α , 1'

2 =α  

( )73015
360

)( 24
2

'
0 −+−= tt

h
tϕ

 

( )2260 2015
120

)( 234
2

'
1 +−+= ttt

h
tϕ

 

( )43120034015
120

)( 234
2

'
2 ++++−= tttt

h
tϕ

 

( )8606015
360

)( 234
2

'
3 −++= ttt

h
tϕ

 
      (4.3) 

where 
h

xx
t n 2+−

= .  Evaluating (4.2) at 3+nx i.e. when t = 1 and substituting the result in (2.3) 

gives   )10(122412 123
2

123 ++++++ ++=+− nnnnnn fffhyyy   (4.4)
 

(4.4) has order p=4 and error constant 
240

1
 2 −=+cp

 
Evaluating (4.2) at nx i.e. when t = -2 and substituting the result in (2.3) gives 

)10(122412 12
2

12 nnnnnn fffhyyy ++=+− ++++     (4.5) 

(4.5) has order p = 4 and error constant 2 1
.

240
cp+ = −

 
Evaluating (4.3) at t =-2 and substituting the result in (2.3) gives 
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)127414924(360360360 123
2

12
'

nnnnnnn ffffhyyhy −−+−=+− +++++  (4.6) 

 
 

Evaluating (4.3) at t =-1 and substituting the result in (2.3) gives  
 )952471546127(360360360 123

2
12

'
1 nnnnnnn ffffhyyhy −+−=+− ++++++   (4.7)  

Evaluating (4.3) at t = 0 and substituting the result in (2.3) gives  
)8129667(360360360 123

2
12

'
2 nnnnnnn ffffhyyhy +−−=+− ++++++   (4.8)  

Evaluating (4.3) at t = 1, and substituting the result in (2.3) gives  
)7661298(360360360 123

2
12

'
3 nnnnnnn ffffhyyhy −++−=+− ++++++  (4.9)  

Solving (4.3), (4.4) and (4.5) using matrix inversion method, we obtain the block 
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(4.10) 

Hence, from (4.10) 

,
321

2

1 )972439114(
360 nnnnnnn hyffff
h

yy +++−+= ++++              (4.11) 
2

,
2 1 2 3(66 6 6 28 ) 2

45n n n n n n n

h
y y f f f f hy+ + + += + + + + +                 (4.12) 

2
,

3 1 2 3(324 81 34 117 ) 3
120n n n n n n n

h
y y f f f f hy+ + + += + + + + +                 (4.13) 

4.1 Development of the unknown for k = 3 
Evaluate the first derivative of (3.1), and neglect 4a and higher values of a i.e. Newton’s 
polynomial of order 4, we obtain 

4321
' 31636482512 ++++ −+−+−= nnnnnn yyyyyhy                              (4.14) 

 4321
'

1 61810312 +++++ +−+−−= nnnnnn yyyyyhy                                  (4.15) 

 431
'

2 8812 ++++ −+−= nnnnn yyyyhy                                                        (4.16) 

 4321
'

3 31018612 +++++ ++−+−= nnnnnn yyyyyhy                                  (4.17) 

Making 4+ny  the subject in (4.14) and substituting into (4.15)-(4.16) and solving 

for 2,1 ++ nn yy and 3+ny  gives 

 
)2731057(
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3
'

2
'

11 nnnnnn yyyy
h

yy ++−+= ++++                           (4.18) 

 
)32127(

9
''

2
'

12 nnnnn yyy
h

yy +++= +++                                            (4.19) 
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8
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h

yy +++++ ++++=                                (4.20) 

 
 

 
 

Make 1+ny  the subject in (4.5) and then substitute in (4.6)-(4.8) to solve for 1+nf , 2+nf  and 3+nf , 

give  
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Comparing (4.20)-(4.23) with the second derivative of (3.1) gives 
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14417
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5.0 Numerical example 

We test the efficiency of our scheme on linear and non linear second order differential 
equation.  
Problem 5.1:  

0)( 2''' =− yxy  

40/1.0,
2

1
)0(,1)0( ' === hyy  

Exact solution 








−
++=

x

x
xy

2

2
ln

2

1
1)(  

Grid point Expected result Calculated result Error 
0.0025 1.00125000065104 1.00125000014116 5.09882D-10 
0.0050 1.00250000520835 1.00250000032393 4.88542D-09 
0.0075 1.00375001757828 1.00375001139519 6.18308D-09 
0.0100 1.00500004166729 1.00500001779432 2.38729D-08 
0.0125 1.00625008138212 1.00625002292868 5.84534D-08 
0.0150 1.00750014062974 1.00750005100468 8.96250D-08 
0.0175 1.00875022331755 1.00875020629768 1.60840D-07 
0.0200 1.01000033335333 1.01000007231814 2.61035D-07 
0.0225 1.01125047464542 1.01125041188283 3.55817D-07 
0.0250 1.01250065110271 0.012500613537337 3.75653D-07 

 
Problem 5.2 
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40/1.0,1)0(,1)0(

2
'

3''

=−==
=

hyy

yy

 

Exact solution 
x

xy
1

)( =
 

 
 

Grid point Expected result Calculated result Error 
0.0025 0.997506234413965 0.997506800724006 -4.560D-07 
0.0050 0.995024875621891 0.995029339533017 1.941D-06 
0.0075 0.992555831265509 0.992564223860174 -8.397D-06 
0.0100 0.99009900990099 0.990070873966239 2.814D-05 
0.0125 0.98765432098754 0.98759291299131 6.140D-05 
0.0150 0.985221674876847 0.985127023087557 9.465D-05 
0.0175 0.982800982800983 0.982633524787924 1.675D-04 
0.0200 0.980392156862745 0.980155071394184 2.371D-04 
0.0225 0.97799511002445 0.977688418640018 3.067D-04 
0.0250 0.975609756097561 0.975194774137825 4.149D-04 

 
Problem 5.3 

xeyy 3'' +=  

40/1.0,
32

5
)0(,

32

3
)0( ' =−=−= hyy

 

Exact solution 
)3exp(32

34
)(

x

x
xy

−
−=

 
Grid point Expected result Calculated result Error 
0.0025 

-0.094140915761848 -0.094140939393182 2.34D-08 
0.0050 

-0.094532404142338 -0.094532599228254 1.95D-07 
0.0075 

-0.094924451608388 -0.094924817272551 3.65D-07 
0.0100 

-0.095317044390700 -0.095317760663383 7.16D-07 
0.0125 

-0.095710168480980 -0.095710743379670 5.74D-07 
0.0150 

-0.096103809629113 -0.096109967248178 6.16D-06 
0.0175 

-0.09649533403163 -0.096494619870395 7.14D-07 
0.0200 

-0.096892584872264 -0.096896306302397 3.72D-07 
0.0225 

-0.097289689232184 -0.097285656289237 4.03D-06 
0.0250 

-0.097683251173919 -0.097685517015441 2.26D-06 
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