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Abstract

In this paper, the problem of analyzing the torsiahvibration of
thin-walled elastic beams, with open cross-sectidinat are doubly symmetric
and traversed by moving concentrated masses at teanispeeds is addressed.
The mathematical model adopted accounts for botle thravitational and
inertial effects of the moving loads, thus makinget problem a moving-force
moving-mass problem. Variable coefficients with @tig singularities are
therefore present in the characterizing differenti@quation. By means of
Green’s function of the associated moving-force ptem, the complete
moving-force  moving—-mass problem is transformed dntan integro-
differential equation. An iteration scheme for sahg the integro-differential
equation has been proposed and shown to converga tmique continuous
function of space and time, the only solution toettequation.
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1.0 Introduction

On the strength of its importance in bridge engineering, the flexamc or torsional
vibration of beams due to moving loads has remained a sutijeictense research. Early
contribution by research scientists and engineers, espedial®y 3] focused principally on the
flexural vibration of beams traversed by moving concentratadses. In order to achieve a
simplified model, the inertial effects of the moving loadgrev ignored by these early
contributors. However, attempts were later made to addressthmtiravitational and inertial
effects of the moving concentrated masses. The researchcandkicted and reported on this
subject area by [8] is a good example of the attempt to accouriioth effects of moving
concentrated masses.

In the paper by [7], the problem of assessing the response &f éleatns to moving
concentrated masses termed in that paper as a “moving-n@asegrforce problem” was
rigorously analysed. The paper treated the approach given byd9ja=d first approximation to
the problem and proceeded to give a scheme for generating aibmtteved solution to the
moving-force moving-mass problem.
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Fryba [3] offers an excellent comprehensive up-to-date account ofvdhieus
contributions in building up the literature in this subject area.

However, it is pertinent to observe that the torsional or eauglexural-torsional
vibration of beams carrying moving concentrated masses hdseantgiven the same level of
attention by researchers, as given to the flexural vibrationthéetorsional vibration, especially
of thin-walled beams may be the dominant effect of moving contedtnmasses on the
supporting beams. For instance, an eccentric moving load from an adetragelling crane,
moving on a crane gantry girder, can result in dynamic twistingients setting the girder into
torsional vibration.

A recent publication by [5] represents one of the earliéstnpts at opening up this area
for further investigation. In that paper the authors analysedflexural-torsional vibration of
simply supported beams under moving loads. They considered only thiatgraal effects of
the moving loads. When one considers that the structural systéangibg to this class, almost
invariably, are of thin-walled sections, then the inertia of rtteving masses cannot be safely
ignored. Be that as it may, that paper presents a commendablerpigneffort. The authors
remarked that the subject of the torsional vibrations of beantise context of moving loads
remained largely unexplored.

In a paper on a related subject, [2] examined the coupletitargional vibrations of
thin-walled Z-section beam although not in the context of moving loads.

The objective of the present paper is, therefore, to analyzgnme great detail, the
response of an elastic beam, with an open section that is doubly-sjenioetorsional vibration
arising from moving concentrated masses. Evidently, the sysdpnesents a moving-force
moving-mass problem. The differential equation of motion contasrsabe and singular
coefficients. The essence of the presentation is to demlgtiaal tools for handling rigorous
analysis of the system despite singularities in the cdefiic of the characterizing differential
equation.

First, Green’s function for the approximate moving-force mwobis developed. Utilizing
that Green’s function, the complete moving-force moving-mass proisléaransformed from a
differential equation into an integro-differential equation. é¢hesne for iterative solution
procedure is proposed. It is shown that the scheme converges tora@antfunction of space
and time which is not only a solution to the integro-differergguation but the only solution to
that equation. Thus, existence and uniqueness of the solution toetpmidifferential equation
are thereby established.

The strength of this presentation derives from the following;

() The need to stimulate research work in the important subject area ofdbxsimation of
beams carrying moving masses; and

(i) That despite the challenges posed by the presence dfleaaizd singular coefficients in
the describing differential equation, a rigorous analysis of the systetrecaade.

2.0 Problem formulation

The partial differential equations of motion, describing the caufliexural-torsional
vibration of a beam, have been lucidly set up in [9]. For a beamsthitoubly symmetric, the
flexural and torsional vibrations are completely uncoupled.skis&em under consideration here
(see Figure 2.1) falls into this latter category. The ielastsional vibration of the system due to
moving-force moving-mass type of excitation is governed by:

4 26 26
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=Pad(x—wt) . (2.2)
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We consider, here, simple boundaries and for simplicity of ptasen, without any loss of
generality, homogeneous initial conditions. Thus, the boundary and indgraditions are,
respectively, given by;

|—>B

i

- X
S7777777 L B . ST777777
\ !
1
w Section B-B
Figure 2.1: A beam of doubly-symmetric cross-section undergaansional vibration
8(0,t)=6( t)=6"(0t)=6"( t)= 0, (2.2)
and 6(x,0) = @ - 2.3)

Equations (2.1) through (2.3) constitute the problem for which thei@olis sought. We will be
referring to the problem, in all further developments, simply as RroBle

The notations used in Problem P1, which are not obvious from Figure & defared as
follows: 8(x,t)is the angular displacements the warping rigidity of the section whilgis its
torsional rigidity,g is the acceleration due to gravity,is the constant velocity of traverse of the
mass andis the Dirac distributiong(X,t) is given by;

@Ax,t)=pJ +gh25(x—vt), (2.4)

where,0is the density of the beam materidlis the centroidal polar moment of inertia of the
section and t is time.

3.0  Problem analysis and solution
3.1 The associated moving-force problem

The associated moving-force problem is obtained from problem Pihnoying the
inertia of the moving mass, thus resulting in the following problem:

(g0 g0t 0"
Dz(”ﬁ Fox +'Uc')t2j’ (3.1)
D[n(x,t)] = Pao(x —vt) (3.2)
n(0,) =nA\t) =n"(0,5) =n"(A) =0 (3.3)
n(x,0) =#x,0) =0. (3.4)

In equations (3.2) through (3.4),(x,t) is the moving force response and a dot on top of any
guantity indicates differentiation with respect to time.
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The notation u , replaceg@d , for convenience. Let it be assumed, meanwhile, Ehag an
invertible operator. Thus, [D™*:n(xt) = D{Pad(x-vt)} . (3.5)

By the existence ob?, it is implied that, there exists Green’s function G &igactoD which
allows the solutioru(x,t) of the general operator equation

Dlu(x.H]=a(xt), (3.6)
to be written in the form

u(x.t) = j j G(x, &,t,7)q(&, )d&r . (3.7)

In (3.7), the boundary and initial conditions (2.2) and (2.3) respectiaedyduly satisfied. S and
T indicate the spatial and temporal domain of the problem respectively.

To establish the existence @fas well as to obtain explicit expression &rwe consider
the general operator eq (3.6). In the context of the appropaatedary and initial conditions of
the problem as laid out in equations (2.2) and (2.3) respectiveliafitace transformation of eq
(3.6) yields:

au" (x,5) = A1 (x,9)+ ((x,9) =q(x,), (3.8)
where primes denote differentiations with respect to x. Théatagmages ol and q are
defined as follows:

U(x9)=[eu(xt); andd (s e *q &t Jt . (3.9)
0 0
We can express and in their bilinear expansion forms, as infinite series, given by:
u(x,s)=> A (9f,(x); (3.10)
j=1
a(x,s)=>.B,(9f,(x (3.11)
j=1

The coordinate function§j (X) in egs (3.10) and (3.11) are the eigenfunctions of the following
auxiliary problem:

at " (%)= B, (%)= et £, (9, (3.12)

f,O=fMN=f ©O=Ff V=0 (3.13)
Proposition3.1
The series in (3.10) and (3.11) are absolutely and uniformly convergent.

Proof
Let F be a differential operator given by;

d* d?

F=a -
dx* 'de2

(3.14)

Consideru,wJC*[0,A] such that:
u(O)=u()=u"(0)=u"( )=0,andv OFwWI( FW' (OFWI( ¥ ( (3.15)
In the sense oL, (0,A) inner product,
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(Fu,W):J.{aE_'B } b I{ o ﬁ%}uw}(: EWa) (s

4
o | dX

ThusF is symmetric and self adjoint. Furthermore,

(Fu,u) = j {a—— B }W(x)dx j { (gvzvj ‘;";"j }dx. (3.17)

But by Friedrich’s inequality {see Reddy [6]}
2

| | du
dx<c || — | dx,wh > 0. 3.18
! u“ax Clj;(dxj X, wherec, (3.18)

Following from (3.18) and, due to the homogeneous boundary conditions, we also have;

j(‘;}‘(‘j dx<c j( j dx (3.19)

0
Now, introducing (3.18) and (3.19) into (3.17) leads to:

A

(Fu,u)= (%+£jju2dx = (%+£J ||u||2L2 dx . (3.20)
G GJo G G

Thus, F is a positive-definite operator. Sinde, which is the differential operator that

generate§j (X), has been shown to be symmetric, self-adjoint and positive-defimitaeries in

(3.10) and (3.11) are absolutely and uniformly convergent, in accardeitit Hilbert-Schmidt

theorem, {see Bolotin [1]}. In addition, the coordinate functidqs(,x), can be appropriately

named to satisfy the foIIowing orthonormality conditions:

it =k
jf Xf,dx=a, =" 175 (3.21)
" |0, otherwise
In view of egs (3.10) and (3.11), eq (3.7) yields
ZAj(s){afj””—,@rj"+pszfj}:sz(s)fj(x). (3.22)
j=1 j=1

When we introduce eq (3.12) into the left hand side of (3.22), we obtain

ZA (SJufs? +af}, (x ZB() () (3.23)

Due to the orthonormallty conditions (3.21), eq (3.23) yields
B, (s)
J

A (s) =m . (3.24)
Similarly, from (3.11) and (3.21) we obtained
|
= j q(x,9)f, (x)dx, (3.25)
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which can be used in (3.24) to yield A (s) = (3.26)

When (3.26) is introduced into (3.10), we obtain

1 ¢ _
2 e vor)] H@aE9ds 3.27)

Upon inverting the Laplace transforms in (3.27), using the convolution theorem, omsobtai

u(x,t) z —J' j &)sinw, (t - 7)q(&, 7)d&dr, (3.28)
J 0 o
as the solution, at least in the formal sense, to problem (3.12).,

In order to establish that the formal representation of dhdiasn, as given in (3.28), is
indeed the actual solution, the series in (3.28) has to be provedatmsbleitely and uniformly
convergent.

Let the integration with respect ® on the right hand side of (3.28) be carried out by
parts, once, to obtain:

u(x,t)=

We, first, consider the third series on the right hand side of (3.29). Noting)fhﬂe all positive,

~coxtq(£,0) - [ cosy (t - r)g—j di}f,(x)f,(6)dé.  (3.29)

= f

) It
5 1] feom -2 0 e 3l | comfr 14414915 oo
i HW 5 % or
For a stable system, the eigenfunctions are uniformly bounded, that is,
OxO[o,1],0y:y<w,and ‘fj(x)‘ <yforj=123.. (3.31)
Besides,
max‘ cosw, (t—r)‘: 1,foralt :&r<t (3.32)

Suppose the improper integrﬂlg—q dris bounded, that is,
r
0

™
Ilar

Introducing the relation (3.31), (3.32) and (3.33) into (3.30) results in:

1 ¢ aq = A2 £
——| | cosw, (t—r)—f (x)f ( )d&dr| < (3.34)
pe; { { o or Z pe;
The auxiliary problem (3.12) actually corresponds to the free iobraf the system. It
follows then that it admits Green’s functi€ (x,f) given by
\ = f{x)f
G (xé&)=> % (3.35)

=1 j

dr =& <oo. (3.33)
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a symmetric and bounded quantity with the series on the right bésgutely and uniformly
convergent. In view of the boundedness@fand the orthonormality properties df](x) we

have:

A = . ) 1 A .

. ~ 1 . : .
As it can be seen from (3.36) the sen{s:, — is uniformly convergent. Therefore inequality
=1 HW,
(3.34) becomes

<\/0e - (3.37)

- jjcosw t_ )%fj(x)fj(f)dfdf

We can now examine the first two series on the right hand siq8.2%). From all
practical considerations, we are justified to assume that q is uniformly huhdeis;

gL

e} :‘q(x,t)‘<q* <o0,[0t > 0. (3.38)
Then, it follows that
3 Sl &0 —cosata(€.0M, ()1, (€)ael <3 Pl e
|£,9]| f,(8)| +|coswt||a € £)|f; &)|f, € )< 201qy. (3.39)

Relations (3.37) and (3.39) establish the absolute and uniform genvef the series in (3.29)
or (3.28). The conclusion, then, is that (3.28) or equivalently, (3.28)eisactual solution to
problem (3.12).

The proceeding proof of convergence justifies interchange of stioma@and integration
in (3.28) or (3.29). Thus, we can re-write (3.28) as

At
u(xt)=[ [6(xétr)a(é,r)dédr, (3.40)
0 0
where G is Green’s function of the operdigrgiven by
=~ 1 .
G(x,&.t,7)=> —— 1, (x)f,(é)sinw, (t-7) (3.41)
Eae

Consequently, the moving-force response of the system, as given by (3.5), is as
At
follows: n(x,t) :J' J'G(x,f,t,r).Pad(f—vr)dfdr. (3.42)
0 0

In view of the properties of the Dirac distribution, the righhd side of (3.42) can be integrated
with respect to¢ to yield:

t t o
n(xt)=Pa[G(xvr;t,r)dt =Pa[ Y —— 1 (%)t (vr)sinw, (t - 7)d7 . (3.43)
0 o =1 :ua)j

If one examines the auxiliary problem (3.12), it is clear that it admitsolla@on
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f, (x) = \/% sin(anXj. (3.44)

And, the eigenvalues are given by: a)j2 = : (3.45)

Therefore,

sinf 17 |sin L sinw, (t-7)
23 A A
/u}\ j=1 w; '

”(X't)_ P sin[j;\uj {(j;\szinwjt — W sin(j]}\mj} |

_)\ﬂ; w(jzﬂzvz_wzj
i i

(3.46)

and

(3.47)

}\2
3.2 The moving-force moving-mass problem

This is the problem P(1), given by (2.1) through (2.3). Equivale(@ljt) can be re-
stated as:

Ph? 926

D[6(x,t)] = Pad(x — vt ) - o I(x-wt) . (3.48)
Pre-multiplying each term of eq. (3.48) by the oper&dt results in the following:
2 2
DD[a(xt)] = D [Pad(x-wt)] + D'l[—% 3 9 s(x-w). (3.49)

But, by definition, D™'D is an identity operator. In additionD’l[PaJ(x—vt)] is the moving-

force responsey,(x,t), according to (3.5). MoreoveD) ™ is an integral transformation, as given
in (3.7). Consequently, (3 49) reduces to:

Ph aﬁ(fr)
A(x,t)=n IJ'fotr . - J(

Using a fundamental property of the Dirac distribution, (3.50) can be sietbldiread:
2
d H(VZT, T) dr.

&-vr)d&r . (3.50)

_ Ph? | .
o(xt) —n(x,t)—?jG(x,vr,t,r) (3.51)
0

where

0°6(vr,7) _ | 0°6(¢,1)
ar? ar?

moving-mass problem has been transformed into an integro-differegtiation, given by (3.51).

} . Thus, the differential equation of the moving-force
&=vr

4.0 Solution of the integro-differential equation
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Equation (3.51) is not readily amenable to exact or closed-fromiculiHowever, we
can seek the solution through the successive approximations pecéldisrapproach constructs

a sequence of approximation§, (x,t), based on the scheme below, which progressively

improves the accuracy of the solution. It is technically logioainitialize the scheme with a
simple function which satisfies the boundary and initial conditmhthe problem. In view of
this, it is proposed that:

G (x.t) :sinlﬂ(l— cost)

026, (vr, 1)

Pye dr

6 (x) =f7(x,t)—/1jG(X'VT’I’T)

¢ G(X,Vr,t,7)

0%0,(vr, 1)
Hz(X,t)=/7(x,t)—/1j —ZdT

(4.1)

M M M

9°0 _1(vr r) dr.

8,(x,t)y=n(xt)- )le(xvrt r)
Proposition4.1

As n - o, the sequence of functions given in (4.1) converges to a continuactsoh
of x andt.
Proof

Let us consider a generic term of the sequence given by:

t 2
6., =n(xt) —Aje(x,vr,t,r)w. (4.2)
0 or
But, following from (3.46), we easily deduce that
5 o sm( X jsm(lg\fjsinwj(t—r)
G(x,&,t,7) == (4.3)
| | M; W, ‘
Examining (3.45), noting that
. 2
ﬁ(ﬂj >0, 4.4)
Y7
it follows that:
a .n_ 4 ,8 .77_ 2 a .77_ 4
a0 S e
U\ A M\ A M\ A

If we combine (4.4) and (4.5) we obtain:
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2 & 1
1, < 4.6
Gles.tr) = ,UAZ-;'G(J” LB m #\/_ﬂlz—;l 9

A J70\

w1 : . . ,
The quantltyz — » Is clearly the Riemann ZetaZ(Z), function whose majorant |s€.
j=1
Therefore, relation (4.6) reduces to

Gx,vr,t,7) < A 4.7)
3yau
Hence,
; 2 %
j G(x vz t,7)dr < : (4.8)
0 au
where it has been observed that:
0<svr <A, (4.9)
Moreover, from the choseﬁd , as givenin (4.1),
t|a2 2 t
IM dr = J' nzsin(ﬂjcosm < E (4.10)
ol 0T 5 A v

The elastic properties of the vibrating system allow theurapon that the differential
2

operatora? , Is Lipshitz continuous. In that cadeB :0< B <o,

026?m 0°6,
ar> or’
whereB is a constant. Now, from(4.3) follows that:

6,., - 6,)> [I{ar af‘l}Gdr]. (4.12)

Applying the Schwartz inequality to (4 12) leads to the following:
2p2y2 t

(91—9)</|2j|69-1 020, | AB)\J-
" ‘ or? ar? v

where we have made use of (4.8) and (4.11) to arrive at thedgsiality of (4.13). By a similar
application of the Schwartz inequality, one can easily obtain:

0’ 0 J- /127T4)\3

G| dr , (4.14)
~ Quav

where (4.8) and (4.10) were applied to obtain the last inequality of)(#A&4 consequence of

(4.13) and (4.14), the following sequence ensures:

(6 _0)2 /12 2)\3 j’|6 6| d AZBZ)\S AZHA)\S j’dr
2 Qv 3 v )\ 9auv '

<B6, -6,/ (4.11)

6,-6,,dr, (4.13)

dr j‘G| dr

(6,-86,) Aj
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2 _ 2B 3( 12 132t t
(&)= 9aw( j oo
M M M

2 A%BA 3 A%
(6,..,-6,) < S [ 9auvj UdzL jdyjdr J . (4.15)

The last quantity in brackets on the right hand side of (4.15pisduct of n integrals. Noting
the following:

jdz...jdyjdr=%n! , (4.16)

t" [ "
and max — | =——, (4.17)
n'| nv"

then the last member of the sequence (4.15) reduces to

B ) N
6,..—6,)° (9 j( J — (4.18)
LV 9awv nlv
rQ"
-0 |<
Thus, 6,1 = 6,]< T (4.19)
2p 233
where, M= (A BA j : (4.20)
9av
1
2 3\2
and, Q:(A 4L j (4.21)
9auv

Let us, now, consider the following infinite series:
o(xt) =6 (xt)+{6,(xt) -6, (x th H{ 6,(xt) -6, (xt} +. € G, (xt)-G(x8).. 4.22)
The n+%' partial sum of the series (4.22) is evidenﬂy(x,t). In view of this fact as well as the
inequality (4.19), we then have:

0, (xt)sr> =— (4.23)
T
It follows from the inequality (4.23) that the majoran t@( ) is given by:
g (xt)=ry =—, (4.24)
; m
which is always a converging series for finite value$ gandQ . Therefore,
lim 8,(x,t) = o(xt), (4.25)

with the series converging uniformly.
Proposition4.2

The Iimit-functiona(x,t) is a solution of the integro-differential equation (3.51).
Proof
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We set, a(x,t)=8,(x,t)+T,(x.t), (4.26)
where, T, (x,t) is the remainder, as a result of the truncation of the iafseries. Therefore, by
the inequality (4.23) we can put:

Qk
T, (1) )y = . (4.27)
Lol s T2
Since the majorant series is convergent, it follows that
Iirrg) T2(xt)=0 (4.28)
But from (4.1) and (4.26), we obtain:

t i 6 0' 6 6,
J(x,t)—/7(x,t)+/1J'G(x,vr,t,r)a ‘1}Gd (4.29)
Therefore,

LA (020 0%q i
a(xt)-n(xt)+A|G =<T.(xt)+A -—2L \Gdry . 4.30
fotet)-stu) 6,2} () {[6,2 R
By the algebra of real numbers, we know that, jpoiq L] L]
(p+q) <2p®+2¢°. (4.31)
Applying (4.31) to (4.30) results in
2 2
6 o 0°6
o(x.t)- xt+/1 G— < 2T, +2)l = |Gdr
t
<2T?+ 2/12J' 0'c o «9_1 Z'J-|G|2dl', (4.32)
or’  ar? 5

where the last inequality of (4.32) derives from the application of¢chev&tz inequality.
In view of the inequality (4.8) and (4.11), the relation (4.32) can be simplifiezht:

2
_ d’c 2 2A%Bl ® | _ 2
{J(X,t) n(xt) rz} <2T%+ S {a g, dr. (4.33)
Let us define the quantiﬂ]n_l(x t) as
T . (xt)=0,_,(xt)-6,(xt). (4.34)
t
Then, “0’ -9,,[dr< tsuprl, > slg suf,_ 2. (4.35)

0
Thus, inequality (4.33) reduces to

t 2
a(x,t)—/7(x,t)+/1J'Gngdr)2 <2T?+ supr?, (4.36)
0

9av

Observing that, a$1 — oo, the quantity on the right hand side of (4.36) vanishes and that the
guantity on the left, must be non-negative, only the equality of (4.36) holds. Giteeref
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J(x,t):q(x,t)—AJt'G(x,vr,t,r)% (4.37)

The proof is complete.
Proposition4.3

J(X,t) is the only continuous function which satisfies the integreedbfitial equation.
Proof
Let there exist another continuous functicg(,x,t), distinct from O'(X,t), that satisfies
the integro-differential equation (3.51). Let us assume that
lg(x,t)-6,(xt)<g" <, (4.38)

whereg’, is a constant. Then, as a solution of the integro-differential (3.5hawes

t 2
g(x,t):n(x,t)—AJ'G(x,vr,t,r)%\rlzr’r)dr (4.39)
0
From (4.1) and (4.39), we obtain
t 2 2
a(x.t)-8,(x.t)= /]J'G(x,vr,t, r){aaf”;l 9 %(\TIZT T)}dr (4.40)
0
Again, applying the Schwartz inequality to (4.40) results in:
0° 629_ )l BI® {
lg(x,t)- 6, (xt)’ </12J'|G| J' g e —nt j|g 8_1| dr (4.41)
Puttingn =1 in (4.41) yields:
A*BNg™
la(xt)- 6, (xt)" ST,LNgzt . (4.42)
Similarly, allowingn to take the value of 2, we obtain:
3 2 _ A°BNg’ A“BA
|g(x,t) - 8,(x.t) Wﬂg 6 dr < gﬁ(gawj R (4.43)
Thus, in general,
2Bl g2 (1BlI*)" _ g2Q>
lo(x,t)-6,(xt)" < g’ (9H,LN] i (Qa,uv] == (4.44)
Hence,
‘o
la(xt)-6,(xt) < g\/ﬁ . (4.45)
Along the line of our earlier discussions leading to (4.25), we have
Li[rgo‘g(x,t)— 6,(xt) < m% =0. (4.46)
Therefore,
g(x,t)=limg,(x,t) =o(xt). (847

n - o

The proof is complete.
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5.0 Numerical illustration
From the foregoing developments, we have the following:

sm[ jsm(lﬂfjsinwj (t-7)
2 & A A
G(x,f,t,r)=ﬁ; ~ : (5.1)

J

() s )

2Pa &
X, t)= 52
n(xt) v ]Z TR (5.2)
w; A2 ~ W,
Hence, i, —sm—(l cos—tj Then
sm( ]{( ]sma)t—a) sm[“m]}
g = 2Pa A N
1 )\’u j:l . [Jzﬂzzvz w-zj
A
VZPh? = . cos(J_i)’M—coswjt cos(”i)m[—coswjt 5:3)
_ ) 53
2,617\9 ,Z [ j w2_(j—2)2n2v2 w2_(j+2)2n2v2
i )\2 j )\2

Continuing this procedure, higher order approximatidhsg,, ..., can be similarly generated.

Graphs of factored moving-force and moving-force-moving-mass respaatsmid span
of the beam as functions of time have been plotted as showgure& 5.1 and 5.2 respectively
for the following system’s parameters:

h =0.295m,p = 7846 kg/m, J=1.885x10°m*, 1 = ] = 0.0148gm,
a = 465x10°Nm*, B =GJ = 145x10°Nm?, A= 25m,v=3m/s, a= 015m.
“oPa’

and ‘ go= A9 (5.5)
2Pa

The figures are based on the first terms of the series only in each case

The factored responses are defined as follows:
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Figure 5.1: Graph of the factored mid-span response versusftime
the associated moving-force problem
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Figure 5.2: Graph of the factored mid-span response versusftime
the moving-force moving-mass problem

6.0  Discussion

From Figures 5.2 and 5.3, the difference between the moving-fespwnse and the
moving-force-moving-mass response is considerable. First, on ifeeiocr of the greatest
magnitude of the angular deformation, we cannot rely on the mésiiog response in designing
the system as it undervalues the greatest deformation. Setendgeros of the motion are
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different. These underscore the desirability of assessingdlvég-force moving-mass response
as against the moving force response alone.

7.0  Conclusion

A rigorous analysis of the torsional vibration of an elabgam with open doubly-
symmetric cross-section subjected to moving concentrated snaaseébeen presented. By using
Green’s function of the associated moving-force problem, the ctempleving-force moving-
mass problem was converted to an integro-differential equatioaldeltoy an iterative scheme
which has been shown to converge to a unique function of space and tingeamly solution to
the integro-differential equation. A comparison of the moving-feesponse and the moving-
force-moving-mass response shows that the former can only hedtired best, as a first
approximation to the actual response.
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