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Abstract

In this paper, we examine the dynamic stability of a nonlinear
dynamical system, with quadratic nonlinearity, pressurized by a strictly slowly
varying time dependent load applied just after the initial time. Regular
perturbation method in asymptotic expansions of the variables is used .The
dynamic buckling load is determined nontrivially and is related to the static
buckling load. Such a procedure by-passes the labour of repeating the entire
asymptotic procedure for different imperfection parameters.

1.0 Introduction

Slowly varying nonlinear dynamical systems have long been tigagésd since its
humble beginning by Kuzmak [1] .Over the intervening years , many eaposiantributions on
the subject matter have been added to swell up the regosftdinowledge on the subject .
These include investigations by Luke [2] , Bourland and Habermai¢syorkian [4] and Li
and Kervorkian [5] , among others .However, none of the cited inaéetig , and perhaps ,very
few of the uncited ones have specifically addressed the itoicdynamic buckling setting. In
this paper, we are therefore confronted with a nonlinear dynkmioalem, with quadratic
nonlinearity, that is trapped by a slowly varying explicitimei dependent loading history .Our

objective is to determine the dynamic buckling lodd for which the structure becomes
dynamically unstable.

2.0 Formulation

Budiansky and Hutchinson [6-8] were the first to investighte dynamic stability of
elastic model structures, one of which was the elastic dqimgteucture. Later, Danielson [9]
made a significant improvement on the Budiansky/ Hutchinson muwmgeéhcorporating an

additional masdM , and a spring ,with spring constalt, , to stimulate pre-buckling motion (see
Figure 2.1) .
Except for the additional madd , and spring with spring constalt, ,the rest of Figure

2.1 is the original version of the Budiansky/Hutchinson modahi€son obtained the following
equations of dynamic equilibrium which we have further refined bynitlasion of an arbitrary

explicitly time dependent slowly varying Iodﬁ(T)
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Figure 2.1 A simple quadratic — elastic model structure
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where @), and ¢ are the circular frequencies of the pre-buckling mefgél') and buckling
mode &(T) respectively. Both&,(T) and &(T) are additional displacements from the

equilibrium position while £ is the nondimensional imperfection amplitude deemed small

relative to unity .Similarly, A is a nondimensional load amplitude that has been
nondimensionalized with respect to the classical buckling lgamhd satisfying the condition

0<A<A:. =1, a>0 is a constant otherwise called the imperfection-sensitpéyameter

while T is the time variable. We let = w,T and get the following equations

d*¢, Ko .
e aler ) =1 () (2.3)
‘Zf + Q¢ (1-&,)-Q%ag; +%Q2(ff+ 25+ 2% ) =Q%, (2.4)
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dé, (0 dé, (0
where &(0)= E;)jtg )251(0)= iljtg )= 0 (2.5)

and f(g?f)= IE(LJ Q=(ﬂj , 0<Q<1.Here, we consider the nondimensional load
Wy 28

function f(g? f) to be continuous and dynamically slowly varying over the naturagef the

vibration of the structure and to have right hand derivativeallobrders atf =0 and also
satisfies the following conditions

f(0)=1, ‘ i) ‘s 1 for & ( (2.6)

Except for conditions (2.6),f (g?f) is strictly arbitrary. Dynamic buckling problems with

explicitly time dependent loadings were similarly analyzedSwalbonas and Kalnins [10],
Aksogan and Sofiyev [11] and Ette [12], among a few others. Weedtfan dynamic buckling

load A, as the largest value of for which the solution of the problem (2.3)-(2.6) has a bounded

solution for all timef > 0. As in [1-3] ,and in Ette [12],the usual procedure for determiniges

the maximization

dA _ _
d_fa_o ’ga _EO max+§(1max (27)

Where é,,.., and ¢, are the maximum values &, and ¢, respectively, as functions of the
load parametek. In what follows, we shall first initiate a perturbatiomeme for determining

,.

3.0 Perturbation Solution

. 7 : I
As in [9,10] , we shall assume th@ — <1 so that the natural period of oscillation of
w,
the massM, is much more longer that that of malsk, with the result that we can neglect the
2

pre-buckling inertia—22

.This simplification yields the following equations derivablenir

dt?

equations (2.3) and (2.4)
&(f)=1(£1)+226 (6 +27) (3.10)
32521 +Q%,(1- A1) —szf(a +K/‘_o<(j = Q% f (3.1)

where (3.1b) is obtained by substituting @(f) in (2.4) .We must acknowledge that the highest
nonlinearity in (3.1b) is quadratic .We now let

1
2

—~ dt a2
r=¢&t ,m=(1—/1f(£t))2=(1—/1f(r)) (3.2)
O dE o
so that we now have the following: it =(1-Af)2¢&  +&& (3.3a)
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Whered— = ( ) and a subscript following a comma indicates partial differentiatianletV
r

k=01  (3.3b)

&(f)=2¢"(tr) & (3.4)

and now substitute (3.3a,b) and (3.4) into (3.1b), and after , equatersatpowers off to
get the following equations:

W< 0 2,00 —o2p(r) - | g=_ AT
LeW =gl ++Q%l =Q%B(r) ; (B i f)j (3.5)
: -3 2(70)?
0 = o1 g1y 0 JAFEAT)2 g a @*(¢)
L 2(1-21) 247, + 5 i+ (1 1) (3.6)
@ =0 A1) (o, 20 Q¢I7P ZQZKO(Q@))Z
LY =-2(1-Af) 2%, + + 1Lo1 4 (3.7)

2 B (1A 6) A (14 1)
The initial conditions are evaluated as follows:

. _1
7"(0,0=0.¢7(0,0= 0 ¢P( o)r( 4)2¢Y( 0)& 0& plzp 28438)
On solving (3.5) with appropriate initial conditions as in (3.8), we have
. A
M (1) =a(r)coN t4(7) siQ +Q B, P=-B, ,B=B( oy B )& (3.9
We now substitute (3.9) into (3.6), and to ensure a uniformly galigtion int , equate to zero
the coefficients ofcosQ t andsinQt and get the following respective equations

1 1
PRV _aaB(1-At): g M __aBB(1-4f): (3.108)
4(1-11) Q 41-A1) Q

If we multiply the first and second of equations (3.10a)hwnnd a, respectively , simplify the
two , and integrate the resultant equations, we get the relationshigeberywand S, as

1-Af
The actual solution of the equations in (3.10a) is accomplished by letting
a,(r)=ne’ g (r)=ye’" (3.10c)
On substituting (3.10c) into equations in (3.10a) , usinl;(O) and ,6’1(0) as in (16a) and also
1
_B3f'0) aB;(1-1):
Q

a?+B? = Bg( 1-4 JZ (3.10b)

, each obtained by evaluating

and ,81'(0) =

using the fact thatr;(0) =

(3.10a) atr =0, we get
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a,(1)= 1 {AcosQ ¢ }B sinQ ¢} B(r)=-B, @Af 719 si 7{  (3.10d)

(A-Af)
A 1+A)A%f'(0 T A f
Az-——2 g = QLA oy [ aAt)ds (3.10€)
(1-1) 4a(1-A)a 0Q(1-Af (s))
The remaining equation in the substitution into (3.6) is now
Lo (a2 +5)  a (ai-Bi)oosBt aapsnmt, B . a1
2(1-1f1) 2(1-11) (=2f)  (xaf)
¢?(0,0=0¢?(0,0 +¢?( 0,9= 1 (3.11b)
On solving (3.11a,b), we get
3 )= . O’(Of*ﬁf) 0’(0’ 12) _aapfsin2Qt QB
7P(t,7)=a,(1) cosQt3, sin QtZQz(l 2 @A) 3a( £A) +( 1) (3.12a)
__4B a B, f'(0)(4-4) .5rg-Bf'(9)
where a,(0) = 3(1_/1) B,(0) =~ (1) ;B(0= (=) (3.12b)
Thus we now write &(t) =&Y +&2¢P 4L (3.13a)
) (Cfﬁ@z)ms@ taap sinQt, o 3.13b
=¢(qcoQt+4 sin Qt Bré’ [a, cosQiB, @ -+ 6 (A1) 1) (1—/]f)}|— (3.13b)
The condition for maximum displacemen{,, ., , is
& (t,1,)+ &6, (t,,7,)=0 (13.14a)

where t, and 7, are the critical values of and 7 respectively each having the following
asymptotic series expansions
t, =ty + &t + &+ 7, =8t = E{t + Et+ 8,4 | (13.14b)
Since, on using (21b), the maximum displacemgpt, will eventually take the form
flmax:?[B(o)—al(o)]+§2[|3'(o)—a'l(o) to+ o,()}+|_ (3.15)
we shall therefore evaluate onty which is easily obtained , using (3.14a), from the equation
Vs

ZW(00)=0. This yields t, = o (3.16)

where we have taken the least nontrivial valug of On substituting fot, into (3.15) , we have
88;a |, Byrf'(0)(4+4 )
3(1-4) Q(1-1)

Using (3.1a) and (3.13a),we have & (t)=4 (f t) {;K (Z 24070 )+L (3.18)

Gime =2BE +&°

:|+L (3.17)

The condition for the maximurd,,, of &(t) is & (L9 +E&,  (%PA=0 (3.19)
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where f; and 7, are the respective values dfand 7 and each has the following series
expansions =00+ - EXYrL 1, = 1Y f{t% Et%EL YL } (3.19b)

Since, on using (3.19b¥,,.., Will eventually have the following expansion
- rf7(0
&5 max :{/1 +A&£'(0) Yo+ &2 {OT()*-%(Z@) *(0)+ 7 (9.9 )Hﬂ_ (3.20)
C

We shall here determine onﬁ{, which is evaluated ,using equations (3.19a,b),from the equation

& (Pp0)=0 (3.21a)

This yields %_ 5 =t, (3.21b)

We now substitute foﬂ) into (3.20) and get
. i 2¢n
& max :A{1+—‘t”fQ(O)J g {4'( (B2 +8,)+ 22110 (0)}+L (3.22)

Ac 2Q?
Using the second part of (2.7), the net maximum displaceifigm$ obtained using (3.17) and
(3.22) as & =¢-A=CE+C,E*+L (3.23a)
8B a A2, (A f'(0)(1-A
(31:250,8@1(”4.M ,2(?1(/]): 1+w (3.23b)
3(1-1) Q
1-A
Ro(2)= (a2 )(22)+- 3o | 5 By 3T pigaap| 3230
204 A 1@ Q
To determine the dynamic buckling load , we first [12] reverse the series (3.24a) in trerf
E=d¢é, +d, 2 +L (3.24a)
If we substitute foré into (3.34a) from (3. 23a) and equate the coefftsie & and &2, we get
,d, = _F (3.24b)

We now use an equivalent form of the first paregfiation (2.7), which takes the fomg\/‘— =0

d(4) _ CXH(A) '
2d,(A,)  2C,(A)

and this yields &, =&, (4,) = (3.25a)

C,. (A,
If we evaluate (3.24a) afl,, using (3.25a) we get & _4C(—()I)) (3.25b)

On substituting into (3.25b) fd€, (A, ) andC, (A, ), we get
2_16/1,320’ 1+A§2(/]D)
(1_/10) -
3 |[1+A(A)

(3.26a)
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Al ot 04 (£2) e | 3 (1) 2 (e ]| oz

Alh)=3(0) (1-1) (2] (.260

4.0  Analysis of result and conclusion
We easily observe that the results (3.26a-c) depanthe first and second derivatives of

f(g? f) , evaluated at the initial time=0 and also depend on the raH%O— of the circular
2]

frequencies of the pre-buckling mode to that of fluekling mode. Using the maximization

ﬂ =0 , the static buckling loadlg is easily obtained by neglecting the pre-buckiimertia

dé&,
d*&
= ° and settingf (E t) 1. The result in this case gives

(1-A)° = 4aAE (1+ j@‘z j (4.1)

a

If we eliminate the imperfection amplitudefrom (4.1) using (3.26a), we get

- AR

We observe from (4.2) that given a certain valuéhefstatic buckling loadlg ,we can evaluate

the corresponding value of the dynamic bucklingdlad, without necessarily solving the
problem for different imperfection parameters .Tésult (4.2) is valid provided

3Ko (1= {1+ AL ()} |
A 1, A 1 | L 1.
|A11( D)|< |A22( D)|< and ‘160’2/1/]{1+A22( )}‘<
it £'(0)= f"(0)=A = f (0 (0)=0 On =1, then the loading is that of a step load charizeter
by f (O) =1and the result in this case is obtained from (3.26a
_, 2 _164éa 3K, -2 | (. A
(1-4p) 3 {1+ o {1+ e } (1 AD)} (4.3)
On eliminating the imperfection parameter from J4iding (4.3) we get

14y | _4As(h) (A )[4, 3(A4) | (4.43)
1-Ag 3 As 1&72/10/]CA33 (AD)

_ 3K, 1-1, _
where Ags(/]D)—|:l+ ZGADAC{ 1+ i } (1 AD)} (4.4b)

where (4.4a,b) are valid provided

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009)47 - 54
Dynamic buckling of an elastic model structure MA.Ette J of NAMP



|o3e-A) | | 3K -2 | (o
‘160'2/]D/1C233(/]D)‘<1'and‘z,]D/O‘C 1+ ADD (1 /10) <l

Alternatively, the result (4.4a) can be obtaingdsbtting f'(O) = f"(O) =0 in (4.2). Danielson
[9] used Mathieu-type of instability and obtain&e tesults for the step loading case as

2
Ao |23[1-4p for 0<|“ <1 (4.5a)
2. ) 4\ 1- A, w, ) 2
2
ity
j—D = C;)l fo l<[ﬂJ<1 (4.5b)
W
° /15+10(w1j (1-15)° °
a)o

We expect the step loading result (4.4a) to bettebespresentative of the dynamic buckling
process compared to (4.5a,b) because, as noteduthyarky [8,page 100], Mathieu-type of
instability used by Danielson is normally assodatéth many cycles of oscillation as opposed to
just one shot or cycle of oscillation that normatiggers off dynamic buckling.
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