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Abstract 
 

In this paper, we examine the dynamic stability of a nonlinear 
dynamical system, with quadratic nonlinearity, pressurized by a strictly slowly 
varying time dependent load applied just after the initial time. Regular 
perturbation  method in asymptotic expansions of the variables  is used .The 
dynamic buckling load is determined nontrivially and is related to the static 
buckling load. Such a procedure by-passes the labour of repeating the entire 
asymptotic procedure for different imperfection parameters. 

 
 
 
1.0 Introduction 

Slowly varying nonlinear dynamical systems have long been investigated  since its 
humble beginning by Kuzmak [1] .Over the intervening years , many expository contributions on 
the subject  matter have been added to swell up the repository of knowledge on the subject . 
These include investigations by Luke [2] , Bourland  and Haberman [3], Kervorkian [4] and Li 
and Kervorkian [5] , among others .However, none of the cited  investigations , and perhaps ,very 
few of the uncited ones have specifically addressed the topic in a dynamic buckling setting. In 
this paper, we are therefore confronted with a nonlinear dynamical problem, with quadratic 
nonlinearity, that is trapped by a slowly varying explicitly time dependent loading history .Our 
objective is to determine the dynamic buckling load Dλ  for which the structure becomes 
dynamically unstable. 

 
2.0 Formulation 

Budiansky and Hutchinson [6-8] were the first to investigate the dynamic stability of 
elastic model structures, one of which was the  elastic quadratic structure. Later, Danielson [9] 
made a significant improvement on the  Budiansky/ Hutchinson model by incorporating an 
additional mass 0M  and a spring ,with spring constant 0K , to stimulate pre-buckling motion (see 

Figure 2.1) . 
Except for the additional mass 0M  and spring with spring constant 0K ,the rest of Figure 

2.1 is the original version of the Budiansky/Hutchinson model. Danielson obtained the following 
equations of dynamic equilibrium which we have further refined by the inclusion of an arbitrary 

explicitly time dependent slowly varying load ( )TF  
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Figure 2.1: A simple quadratic – elastic model structure 
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where 0ω  and 1ω  are the circular frequencies of the pre-buckling mode ( )T0ξ  and buckling 

mode ( )T1ξ  respectively. Both ( )T0ξ  and ( )T1ξ   are additional displacements from the 

equilibrium position while ξ  is the nondimensional imperfection amplitude deemed small 
relative to unity .Similarly, λ is a nondimensional load amplitude that has been 
nondimensionalized with respect to the classical buckling load λc and satisfying the condition 

10 ≤<< Cλλ , 0>α  is a constant otherwise called the imperfection-sensitivity parameter 

while T  is the time variable. We let  Tt 0
ˆ ω=  and get the following equations 
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Ff .Here, we consider the nondimensional load 

function ( )t̂ ξf  to be continuous and dynamically slowly varying over the natural period of the 

vibration of the structure and to have right hand derivatives of all orders at 0ˆ =t  and also 
satisfies the following conditions 

 
( ) ( )ˆ ˆ0 1  ,   f  t  1   for   t 0f ξ= ≤ >     (2.6) 

Except for conditions (2.6), ( )t̂ ξf  is strictly arbitrary. Dynamic buckling problems with 
explicitly time dependent loadings were similarly analyzed by Svalbonas and Kalnins [10], 
Aksogan and Sofiyev [11] and Ette [12], among a few others. We define the dynamic buckling 
load Dλ as the largest value of λ  for which the solution of the problem (2.3)-(2.6) has a bounded 

solution for all time 0ˆ >t . As in [1-3] ,and in Ette [12],the usual procedure for determining Dλ is 
the maximization 

0 max 1 max0 , a
a

d

d

λ ξ ξ ξ
ξ

= = +     (2.7) 

Where max  0ξ  and max  1ξ  are the maximum values of 0ξ  and 1ξ  respectively, as functions of the 

load parameter λ.  In what follows, we shall first initiate a perturbation scheme for determining 

aξ . 

 
3.0 Perturbation Solution 

As in [9,10] , we shall assume that 10
0

1 <<
ω
ω

 so that the natural period of oscillation of 

the mass 1M  is much more longer that that of mass 0M  with the result that we can neglect the 

pre-buckling inertia 
2
0

2

ˆ td

d ξ
.This simplification yields the following equations  derivable from 

equations (2.3) and (2.4) 
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where (3.1b) is obtained by substituting for ( )t̂0ξ  in (2.4) .We must acknowledge that the highest 

nonlinearity in (3.1b) is quadratic .We now let  

( ) ( )
1 1
2 2

dtˆ ˆ t  , 1 (  t) 1 ( ) 
ˆd t

f fτ ξ λ ξ λ τ= = − = −    (3.2) 

so that we now have the following: ( )
1

2
, t  , 1

ˆ 
k

k k

d
f

d t τ
ξ λ ξ ξξ= − +    (3.3a) 
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where 
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τd

d
 and a subscript following a comma indicates partial differentiation. We let 
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and now substitute (3.3a,b) and (3.4) into (3.1b), and after , equate equations of powers of ξ to 
get the following equations: 
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The initial conditions are evaluated  as follows: 
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On solving (3.5) with appropriate initial conditions as in (3.8), we have 
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We now substitute (3.9) into (3.6), and to ensure a uniformly valid solution in t  , equate to zero 
the coefficients of  tcosQ  and  tsinQ  and get the following respective equations 
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If we multiply the first and second of equations (3.10a) by 1β and 1α respectively , simplify the 

two , and integrate the resultant equations, we get the relationship between 1α  and 1β  as  
1
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The actual solution of the equations in (3.10a) is accomplished by letting 

( ) ( ) ( ) ( )    
1 1 e ,  eθ τ θ τα τ η β τ γ= =              (3.10c) 

On substituting (3.10c) into equations in (3.10a) , using  ( )01α  and ( )01β  as in (16a) and also 
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The remaining equation in the substitution into (3.6) is now 

( )
( )

( )
( ) ( ) ( )

2 2 2 2 2
1 1 1 1(2) 1 1

  cos2  sin 2  t
;

2 1 2 1 1 1

Q t Q B
L

f f f f

α α β α α β αα βζ
λ λ λ λ
+ −

= + + +
− − − −

    (3.11a) 

( ) ( ) ( ) ( ) ( ) ( )2 2 1
, , 0,0 0 ; 0,0  0,0 0t τζ ζ ζ= + =              (3.11b) 

 
 

On solving (3.11a,b), we get 
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Thus we now write  ( ) ( ) ( )1 22
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The condition for maximum displacement , max  1ξ , is 

( ) ( )1, t 1 ,, , 0a a a at tτξ τ ξξ τ+ =             (13.14a) 

where at  and aτ  are the critical values of t  and τ respectively  each  having the following 

asymptotic series expansions 
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where at
~  and aτ~  are the respective values of t  and τ  and each has the following series 

expansions  { }2 2
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Since, on using (3.19b), max  0ξ  will eventually have the following expansion 
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We shall here determine only 0
~t , which is evaluated ,using equations (3.19a,b),from the equation 
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We now substitute for 0
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To determine the dynamic buckling load Dλ , we first [12] reverse the series (3.24a) in the form 
2
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If we substitute for mξ into (3.34a) from (3.23a) and equate the coefficients of ξ  and 2ξ , we get 
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If we evaluate (3.24a) at  Dλ , using (3.25a) we get 
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4.0 Analysis of result and conclusion 

We easily observe that the results (3.26a-c) depend on the first and second derivatives of 
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If we eliminate the imperfection amplitude ξ from (4.1) using (3.26a), we get 
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We observe from (4.2) that given a certain value of the static buckling load Sλ ,we can evaluate 

the corresponding value of the dynamic buckling load Dλ without necessarily solving the 
problem for different imperfection parameters .The result (4.2) is valid provided 
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where (4.4a,b) are valid provided  
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Alternatively, the result (4.4a) can be  obtained by setting ( ) ( ) 000 =′′=′ ff  in (4.2). Danielson 
[9] used Mathieu-type of instability and obtained the results for the step loading case as 
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              (4.5b) 

We expect the step loading result (4.4a) to be a better representative of the dynamic buckling 
process compared to (4.5a,b) because, as noted by Budiansky [8,page 100], Mathieu-type of 
instability used by Danielson is normally associated with many cycles of oscillation as opposed to 
just one shot or cycle of oscillation that normally triggers off dynamic buckling.  
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